1
|
Khanum S, Gupta S, Maurya MR, Raja R, Aboulmouna L, Subramaniam S, Ramkrishna D. Modeling enzyme competition in Eicosanoid metabolism in macrophage cells using a cybernetic framework. J Lipid Res 2024:100666. [PMID: 39395792 DOI: 10.1016/j.jlr.2024.100666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/14/2024] Open
Abstract
Cellular metabolism is a complex process involving the consumption and production of metabolites, as well as the regulation of enzyme synthesis and activity. Modeling of metabolic processes is important to understand the underlying mechanisms, with a wide range of applications in metabolic engineering and health sciences. Cybernetic modeling is a powerful technique that accounts for unknown intricate regulatory mechanisms in complex cellular processes. It models regulation as goal-oriented, where the levels and activities of enzymes are modulated by the cybernetic control variables to achieve the cybernetic objective. This study employed cybernetic model to study the enzyme competition between arachidonic acid (AA) and eicosapentaenoic acid (EPA) metabolism in murine macrophages. AA and EPA compete for the shared enzyme cyclooxygenase (COX). Upon external stimuli, AA produces pro-inflammatory 2-series prostaglandins (PGs) and EPA metabolizes to anti-inflammatory 3-series PGs, where pro- and anti- inflammatory responses are necessary for homeostasis. The cybernetic model adequately captured the experimental data for control and EPA-supplemented conditions. The model is validated by performing an F-test, conducting leave-one-out-metabolite cross-validation, and predicting an unseen experimental condition. The cybernetic variables provide insights into the competition between AA and EPA for the COX enzyme. Predictions from our model suggest that the system undergoes a switch from a predominantly pro-inflammatory state in the control to an anti-inflammatory state with EPA-supplementation. The model can also be used to analytically determine the AA and EPA concentrations required for the switch to occur. The quantitative outcomes enhance understanding of pro- and anti-inflammatory metabolism in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Sana Khanum
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Shakti Gupta
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Mano R Maurya
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Rubesh Raja
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Lina Aboulmouna
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA; Departments of Computer Science and Engineering, Cellular and Molecular Medicine, San Diego Supercomputer Center, and the Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, CA 92093, USA.
| | - Doraiswami Ramkrishna
- The Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
2
|
Uttley M, Horne G, Tsigkinopoulou A, Del Carratore F, Hawari A, Kiezel-Tsugunova M, Kendall AC, Jones J, Messenger D, Bhogal RK, Breitling R, Nicolaou A. An adaptable in silico ensemble model of the arachidonic acid cascade. Mol Omics 2024; 20:453-468. [PMID: 38860509 PMCID: PMC11318654 DOI: 10.1039/d3mo00187c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Eicosanoids are a family of bioactive lipids, including derivatives of the ubiquitous fatty acid arachidonic acid (AA). The intimate involvement of eicosanoids in inflammation motivates the development of predictive in silico models for a systems-level exploration of disease mechanisms, drug development and replacement of animal models. Using an ensemble modelling strategy, we developed a computational model of the AA cascade. This approach allows the visualisation of plausible and thermodynamically feasible predictions, overcoming the limitations of fixed-parameter modelling. A quality scoring method was developed to quantify the accuracy of ensemble predictions relative to experimental data, measuring the overall uncertainty of the process. Monte Carlo ensemble modelling was used to quantify the prediction confidence levels. Model applicability was demonstrated using mass spectrometry mediator lipidomics to measure eicosanoids produced by HaCaT epidermal keratinocytes and 46BR.1N dermal fibroblasts, treated with stimuli (calcium ionophore A23187), (ultraviolet radiation, adenosine triphosphate) and a cyclooxygenase inhibitor (indomethacin). Experimentation and predictions were in good qualitative agreement, demonstrating the ability of the model to be adapted to cell types exhibiting differences in AA release and enzyme concentration profiles. The quantitative agreement between experimental and predicted outputs could be improved by expanding network topology to include additional reactions. Overall, our approach generated an adaptable, tuneable ensemble model of the AA cascade that can be tailored to represent different cell types and demonstrated that the integration of in silico and in vitro methods can facilitate a greater understanding of complex biological networks such as the AA cascade.
Collapse
Affiliation(s)
- Megan Uttley
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Grace Horne
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Areti Tsigkinopoulou
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Francesco Del Carratore
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
- Department of Biochemistry, Cell and Systems Biology, Institute of Integrative, Systems and Molecular Biology, University of Liverpool, Liverpool, UK
| | - Aliah Hawari
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Magdalena Kiezel-Tsugunova
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Alexandra C Kendall
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Janette Jones
- Unilever R&D, Quarry Road East, Bebington, Wirral, CH63 3JW, UK
| | - David Messenger
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Ranjit Kaur Bhogal
- Unilever R&D, Colworth Science Park, Sharnbrook, Bedfordshire, MK44 1LQ, UK
| | - Rainer Breitling
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, The University of Manchester, Manchester, UK
| | - Anna Nicolaou
- Laboratory for Lipidomics and Lipid Biology, Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
3
|
Aradhyula V, Breidenbach JD, Khatib-Shahidi BZ, Slogar JN, Eyong SA, Faleel D, Dube P, Gupta R, Khouri SJ, Haller ST, Kennedy DJ. Transcriptomic Analysis of Arachidonic Acid Pathway Genes Provides Mechanistic Insight into Multi-Organ Inflammatory and Vascular Diseases. Genes (Basel) 2024; 15:954. [PMID: 39062733 PMCID: PMC11275336 DOI: 10.3390/genes15070954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Arachidonic acid (AA) metabolites have been associated with several diseases across various organ systems, including the cardiovascular, pulmonary, and renal systems. Lipid mediators generated from AA oxidation have been studied to control macrophages, T-cells, cytokines, and fibroblasts, and regulate inflammatory mediators that induce vascular remodeling and dysfunction. AA is metabolized by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) to generate anti-inflammatory, pro-inflammatory, and pro-resolutory oxidized lipids. As comorbid states such as diabetes, hypertension, and obesity become more prevalent in cardiovascular disease, studying the expression of AA pathway genes and their association with these diseases can provide unique pathophysiological insights. In addition, the AA pathway of oxidized lipids exhibits diverse functions across different organ systems, where a lipid can be both anti-inflammatory and pro-inflammatory depending on the location of metabolic activity. Therefore, we aimed to characterize the gene expression of these lipid enzymes and receptors throughout multi-organ diseases via a transcriptomic meta-analysis using the Gene Expression Omnibus (GEO) Database. In our study, we found that distinct AA pathways were expressed in various comorbid conditions, especially those with prominent inflammatory risk factors. Comorbidities, such as hypertension, diabetes, and obesity appeared to contribute to elevated expression of pro-inflammatory lipid mediator genes. Our results demonstrate that expression of inflammatory AA pathway genes may potentiate and attenuate disease; therefore, we suggest further exploration of these pathways as therapeutic targets to improve outcomes.
Collapse
Affiliation(s)
- Vaishnavi Aradhyula
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Joshua D. Breidenbach
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
- Biochemistry and Biotechnology Group, Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Bella Z. Khatib-Shahidi
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Julia N. Slogar
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Sonia A. Eyong
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Dhilhani Faleel
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Prabhatchandra Dube
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rajesh Gupta
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Samer J. Khouri
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Steven T. Haller
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - David J. Kennedy
- Department of Medicine, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
4
|
Hansen J, Jain AR, Nenov P, Robinson PN, Iyengar R. From transcriptomics to digital twins of organ function. Front Cell Dev Biol 2024; 12:1240384. [PMID: 38989060 PMCID: PMC11234175 DOI: 10.3389/fcell.2024.1240384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 05/30/2024] [Indexed: 07/12/2024] Open
Abstract
Cell level functions underlie tissue and organ physiology. Gene expression patterns offer extensive views of the pathways and processes within and between cells. Single cell transcriptomics provides detailed information on gene expression within cells, cell types, subtypes and their relative proportions in organs. Functional pathways can be scalably connected to physiological functions at the cell and organ levels. Integrating experimentally obtained gene expression patterns with prior knowledge of pathway interactions enables identification of networks underlying whole cell functions such as growth, contractility, and secretion. These pathways can be computationally modeled using differential equations to simulate cell and organ physiological dynamics regulated by gene expression changes. Such computational systems can be thought of as parts of digital twins of organs. Digital twins, at the core, need computational models that represent in detail and simulate how dynamics of pathways and networks give rise to whole cell level physiological functions. Integration of transcriptomic responses and numerical simulations could simulate and predict whole cell functional outputs from transcriptomic data. We developed a computational pipeline that integrates gene expression timelines and systems of coupled differential equations to generate cell-type selective dynamical models. We tested our integrative algorithm on the eicosanoid biosynthesis network in macrophages. Converting transcriptomic changes to a dynamical model allowed us to predict dynamics of prostaglandin and thromboxane synthesis and secretion by macrophages that matched published lipidomics data obtained in the same experiments. Integration of cell-level system biology simulations with genomic and clinical data using a knowledge graph framework will allow us to create explicit predictive models that mechanistically link genomic determinants to organ function. Such integration requires a multi-domain ontological framework to connect genomic determinants to gene expression and cell pathways and functions to organ level phenotypes in healthy and diseased states. These integrated scalable models of tissues and organs as accurate digital twins predict health and disease states for precision medicine.
Collapse
Affiliation(s)
- Jens Hansen
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Abhinav R Jain
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Philip Nenov
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Peter N Robinson
- Berlin Institute of Health at Charité Rahel Hirsch Center for Translational Medicine, Berlin, Germany
| | - Ravi Iyengar
- Department of Pharmacological Science and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Mathematical Modeling of Eicosanoid Metabolism in Macrophage Cells: Cybernetic Framework Combined with Novel Information-Theoretic Approaches. Processes (Basel) 2023. [DOI: 10.3390/pr11030874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
Cellular response to inflammatory stimuli leads to the production of eicosanoids—prostanoids (PRs) and leukotrienes (LTs)—and signaling molecules—cytokines and chemokines—by macrophages. Quantitative modeling of the inflammatory response is challenging owing to a lack of knowledge of the complex regulatory processes involved. Cybernetic models address these challenges by utilizing a well-defined cybernetic goal and optimizing a coarse-grained model toward this goal. We developed a cybernetic model to study arachidonic acid (AA) metabolism, which included two branches, PRs and LTs. We utilized a priori biological knowledge to define the branch-specific cybernetic goals for PR and LT branches as the maximization of TNFα and CCL2, respectively. We estimated the model parameters by fitting data from three experimental conditions. With these parameters, we were able to capture a novel fourth independent experimental condition as part of the model validation. The cybernetic model enhanced our understanding of enzyme dynamics by predicting their profiles. The success of the model implies that the cell regulates the synthesis and activity of the associated enzymes, through cybernetic control variables, to accomplish the chosen biological goal. The results indicated that the dominant metabolites are PGD2 (a PR) and LTB4 (an LT), aligning with their corresponding known prominent biological roles during inflammation. Using heuristic arguments, we also infer that eicosanoid overproduction can lead to increased secretion of cytokines/chemokines. This novel model integrates mechanistic knowledge, known biological understanding of signaling pathways, and data-driven methods to study the dynamics of eicosanoid metabolism.
Collapse
|
6
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
7
|
Brace N, Megson IL, Rossi AG, Doherty MK, Whitfield PD. SILAC-based quantitative proteomics to investigate the eicosanoid associated inflammatory response in activated macrophages. J Inflamm (Lond) 2022; 19:12. [PMID: 36050729 PMCID: PMC9438320 DOI: 10.1186/s12950-022-00309-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Macrophages play a central role in inflammation by phagocytosing invading pathogens, apoptotic cells and debris, as well as mediating repair of tissues damaged by trauma. In order to do this, these dynamic cells generate a variety of inflammatory mediators including eicosanoids such as prostaglandins, leukotrienes and hydroxyeicosatraenoic acids (HETEs) that are formed through the cyclooxygenase, lipoxygenase and cytochrome P450 pathways. The ability to examine the effects of eicosanoid production at the protein level is therefore critical to understanding the mechanisms associated with macrophage activation. RESULTS This study presents a stable isotope labelling with amino acids in cell culture (SILAC) -based proteomics strategy to quantify the changes in macrophage protein abundance following inflammatory stimulation with Kdo2-lipid A and ATP, with a focus on eicosanoid metabolism and regulation. Detailed gene ontology analysis, at the protein level, revealed several key pathways with a decrease in expression in response to macrophage activation, which included a promotion of macrophage polarisation and dynamic changes to energy requirements, transcription and translation. These findings suggest that, whilst there is evidence for the induction of a pro-inflammatory response in the form of prostaglandin secretion, there is also metabolic reprogramming along with a change in cell polarisation towards a reduced pro-inflammatory phenotype. CONCLUSIONS Advanced quantitative proteomics in conjunction with functional pathway network analysis is a useful tool to investigate the molecular pathways involved in inflammation.
Collapse
Affiliation(s)
- Nicole Brace
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Ian L Megson
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Adriano G Rossi
- Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Mary K Doherty
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK
| | - Phillip D Whitfield
- Division of Biomedical Sciences, University of the Highlands and Islands, Centre for Health Science, Old Perth Road, Inverness, IV2 3JH, UK.
- Present Address: Glasgow Polyomics, Garscube Campus, University of Glasgow, Glasgow, G61 1BD, UK.
| |
Collapse
|
8
|
Groth M, Skrzydlewska E, Dobrzyńska M, Pancewicz S, Moniuszko-Malinowska A. Redox Imbalance and Its Metabolic Consequences in Tick-Borne Diseases. Front Cell Infect Microbiol 2022; 12:870398. [PMID: 35937690 PMCID: PMC9353526 DOI: 10.3389/fcimb.2022.870398] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 06/13/2022] [Indexed: 11/21/2022] Open
Abstract
One of the growing global health problems are vector-borne diseases, including tick-borne diseases. The most common tick-borne diseases include Lyme disease, tick-borne encephalitis, human granulocytic anaplasmosis, and babesiosis. Taking into account the metabolic effects in the patient's body, tick-borne diseases are a significant problem from an epidemiological and clinical point of view. Inflammation and oxidative stress are key elements in the pathogenesis of infectious diseases, including tick-borne diseases. In consequence, this leads to oxidative modifications of the structure and function of phospholipids and proteins and results in qualitative and quantitative changes at the level of lipid mediators arising in both reactive oxygen species (ROS) and ROS enzyme-dependent reactions. These types of metabolic modifications affect the functioning of the cells and the host organism. Therefore, links between the severity of the disease state and redox imbalance and the level of phospholipid metabolites are being searched, hoping to find unambiguous diagnostic biomarkers. Assessment of molecular effects of oxidative stress may also enable the monitoring of the disease process and treatment efficacy.
Collapse
Affiliation(s)
- Monika Groth
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Skrzydlewska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Marta Dobrzyńska
- Department of Inorganic and Analytical Chemistry, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Pancewicz
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| | - Anna Moniuszko-Malinowska
- Department of Infectious Diseases and Neuroinfections, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
9
|
Jonnalagadda D, Wan D, Chun J, Hammock BD, Kihara Y. A Soluble Epoxide Hydrolase Inhibitor, 1-TrifluoromethoxyPhenyl-3-(1-Propionylpiperidin-4-yl) Urea, Ameliorates Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2021; 22:ijms22094650. [PMID: 33925035 PMCID: PMC8125305 DOI: 10.3390/ijms22094650] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are essential FAs for human health. Cytochrome P450 oxygenates PUFAs to produce anti-inflammatory and pain-resolving epoxy fatty acids (EpFAs) and other oxylipins whose epoxide ring is opened by the soluble epoxide hydrolase (sEH/Ephx2), resulting in the formation of toxic and pro-inflammatory vicinal diols (dihydroxy-FAs). Pharmacological inhibition of sEH is a promising strategy for the treatment of pain, inflammation, cardiovascular diseases, and other conditions. We tested the efficacy of a potent, selective sEH inhibitor, 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU), in an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). Prophylactic TPPU treatment significantly ameliorated EAE without affecting circulating white blood cell counts. TPPU accumulated in the spinal cords (SCs), which was correlated with plasma TPPU concentration. Targeted lipidomics in EAE SCs and plasma identified that TPPU blocked production of dihydroxy-FAs efficiently and increased some EpFA species including 12(13)-epoxy-octadecenoic acid (12(13)-EpOME) and 17(18)-epoxy-eicosatrienoic acid (17(18)-EpETE). TPPU did not alter levels of cyclooxygenase (COX-1/2) metabolites, while it increased 12-hydroxyeicosatetraenoic acid (12-HETE) and other 12/15-lipoxygenase metabolites. These analytical results are consistent with sEH inhibitors that reduce neuroinflammation and accelerate anti-inflammatory responses, providing the possibility that sEH inhibitors could be used as a disease modifying therapy, as well as for MS-associated pain relief.
Collapse
Affiliation(s)
- Deepa Jonnalagadda
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
| | - Debin Wan
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA; (D.W.); (B.D.H.)
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95817, USA; (D.W.); (B.D.H.)
| | - Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (D.J.); (J.C.)
- Correspondence:
| |
Collapse
|
10
|
Aboulmouna L, Raja R, Khanum S, Gupta S, Maurya MR, Grama A, Subramaniam S, Ramkrishna D. Cybernetic modeling of biological processes in mammalian systems. Curr Opin Chem Eng 2020. [DOI: 10.1016/j.coche.2020.100660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Cioccari L, Luethi N, Masoodi M. Lipid Mediators in Critically Ill Patients: A Step Towards Precision Medicine. Front Immunol 2020; 11:599853. [PMID: 33324417 PMCID: PMC7724037 DOI: 10.3389/fimmu.2020.599853] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
A dysregulated response to systemic inflammation is a common pathophysiological feature of most conditions encountered in the intensive care unit (ICU). Recent evidence indicates that a dysregulated inflammatory response is involved in the pathogenesis of various ICU-related disorders associated with high mortality, including sepsis, acute respiratory distress syndrome, cerebral and myocardial ischemia, and acute kidney injury. Moreover, persistent or non-resolving inflammation may lead to the syndrome of persistent critical illness, characterized by acquired immunosuppression, catabolism and poor long-term functional outcomes. Despite decades of research, management of many disorders in the ICU is mostly supportive, and current therapeutic strategies often do not take into account the heterogeneity of the patient population, underlying chronic conditions, nor the individual state of the immune response. Fatty acid-derived lipid mediators are recognized as key players in the generation and resolution of inflammation, and their signature provides specific information on patients' inflammatory status and immune response. Lipidomics is increasingly recognized as a powerful tool to assess lipid metabolism and the interaction between metabolic changes and the immune system via profiling lipid mediators in clinical studies. Within the concept of precision medicine, understanding and characterizing the individual immune response may allow for better stratification of critically ill patients as well as identification of diagnostic and prognostic biomarkers. In this review, we provide an overview of the role of fatty acid-derived lipid mediators as endogenous regulators of the inflammatory, anti-inflammatory and pro-resolving response and future directions for use of clinical lipidomics to identify lipid mediators as diagnostic and prognostic markers in critical illness.
Collapse
Affiliation(s)
- Luca Cioccari
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, Bern, Switzerland.,Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, VIC, Australia
| | - Nora Luethi
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Prahran, VIC, Australia.,Department of Emergency Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
12
|
Alarcón-Vila C, Pizzuto M, Pelegrín P. Purinergic receptors and the inflammatory response mediated by lipids. Curr Opin Pharmacol 2019; 47:90-96. [PMID: 30952060 DOI: 10.1016/j.coph.2019.02.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/15/2019] [Accepted: 02/18/2019] [Indexed: 02/07/2023]
Abstract
The inflammatory response is regulated by the production of different extracellular mediators, including lipids and extracellular nucleotides. In the extracellular environment, intermediate lipids activate specific G-protein-coupled receptors (GPCRs) in target cells and promote cell recruitment and activation. Extracellular nucleotides activate two types of receptors, the ionotropic purinergic P2X and the metabotropic purinergic P2Y receptors, inducing the release of cytokines and promoting cell recruitment. Several P2X receptors are associated with an increase in the production of immunoactive lipids mediators, which in turn are able to interfere with the activation of different P2Y receptors, establishing a tight signalling link between purinergic receptors and lipid mediators. In this review, we summarise recent studies indicating signalling crosstalk between purinergic P2X and P2Y receptor activation and lipid mediators with a focus on inflammatory diseases. Novel concepts arising from this crosstalk would result in the development of combinatorial therapies targeting lipid synthesis together with individual P2 receptors for the management of inflammatory diseases.
Collapse
Affiliation(s)
- Cristina Alarcón-Vila
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Malvina Pizzuto
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain.
| |
Collapse
|
13
|
Lucotti S, Cerutti C, Soyer M, Gil-Bernabé AM, Gomes AL, Allen PD, Smart S, Markelc B, Watson K, Armstrong PC, Mitchell JA, Warner TD, Ridley AJ, Muschel RJ. Aspirin blocks formation of metastatic intravascular niches by inhibiting platelet-derived COX-1/thromboxane A2. J Clin Invest 2019; 129:1845-1862. [PMID: 30907747 PMCID: PMC6486338 DOI: 10.1172/jci121985] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Because metastasis is associated with the majority of cancer-related deaths, its prevention is a clinical aspiration. Prostanoids are a large family of bioactive lipids derived from the activity of cyclooxygenase-1 (COX-1) and COX-2. Aspirin impairs the biosynthesis of all prostanoids through the irreversible inhibition of both COX isoforms. Long-term administration of aspirin leads to reduced distant metastases in murine models and clinical trials, but the COX isoform, downstream prostanoid, and cell compartment responsible for this effect are yet to be determined. Here, we have shown that aspirin dramatically reduced lung metastasis through inhibition of COX-1 while the cancer cells remained intravascular and that inhibition of platelet COX-1 alone was sufficient to impair metastasis. Thromboxane A2 (TXA2) was the prostanoid product of COX-1 responsible for this antimetastatic effect. Inhibition of the COX-1/TXA2 pathway in platelets decreased aggregation of platelets on tumor cells, endothelial activation, tumor cell adhesion to the endothelium, and recruitment of metastasis-promoting monocytes/macrophages, and diminished the formation of a premetastatic niche. Thus, platelet-derived TXA2 orchestrates the generation of a favorable intravascular metastatic niche that promotes tumor cell seeding and identifies COX-1/TXA2 signaling as a target for the prevention of metastasis.
Collapse
Affiliation(s)
- Serena Lucotti
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Camilla Cerutti
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Magali Soyer
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Ana M. Gil-Bernabé
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Ana L. Gomes
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Philip D. Allen
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Sean Smart
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Bostjan Markelc
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Karla Watson
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Paul C. Armstrong
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jane A. Mitchell
- Cardiothoracic Pharmacology, Vascular Biology, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Timothy D. Warner
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, New Hunt’s House, Guy’s Campus, London, United Kingdom
| | - Ruth J. Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Pharmacodynamics simulation of HOEC by a computational model of arachidonic acid metabolic network. QUANTITATIVE BIOLOGY 2019. [DOI: 10.1007/s40484-018-0163-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Kihara Y. Systematic Understanding of Bioactive Lipids in Neuro-Immune Interactions: Lessons from an Animal Model of Multiple Sclerosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1161:133-148. [PMID: 31562628 DOI: 10.1007/978-3-030-21735-8_13] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bioactive lipids, or lipid mediators, are utilized for intercellular communications. They are rapidly produced in response to various stimuli and exported to extracellular spaces followed by binding to cell surface G protein-coupled receptors (GPCRs) or nuclear receptors. Many drugs targeting lipid signaling such as non-steroidal anti-inflammatory drugs (NSAIDs), prostaglandins, and antagonists for lipid GPCRs are in use. For example, the sphingolipid analog, fingolimod (also known as FTY720), was the first oral disease-modifying therapy (DMT) for relapsing-remitting multiple sclerosis (MS), whose mechanisms of action (MOA) includes sequestration of pathogenic lymphocytes into secondary lymphoid organs, as well as astrocytic modulation, via down-regulation of the sphingosine 1-phosphate (S1P) receptor, S1P1, by in vivo-phosphorylated fingolimod. Though the cause of MS is still under debate, MS is considered to be an autoimmune demyelinating and neurodegenerative disease. This review summarizes the involvement of bioactive lipids (prostaglandins, leukotrienes, platelet-activating factors, lysophosphatidic acid, and S1P) in MS and the animal model, experimental autoimmune encephalomyelitis (EAE). Genetic ablation, along with pharmacological inhibition, of lipid metabolic enzymes and lipid GPCRs revealed that each bioactive lipid has a unique role in regulating immune and neural functions, including helper T cell (TH1 and TH17) differentiation and proliferation, immune cell migration, astrocyte responses, endothelium function, and microglial phagocytosis. A systematic understanding of bioactive lipids in MS and EAE dredges up information about understudied lipid signaling pathways, which should be clarified in the near future to better understand MS pathology and to develop novel DMTs.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
16
|
Phospholipase A 2 catalysis and lipid mediator lipidomics. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1864:766-771. [PMID: 30905345 DOI: 10.1016/j.bbalip.2018.08.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/10/2018] [Accepted: 08/16/2018] [Indexed: 01/09/2023]
Abstract
Phospholipase A2 (PLA2) enzymes are the upstream regulators of the eicosanoid pathway liberating free arachidonic acid from the sn-2 position of membrane phospholipids. Free intracellular arachidonic acid serves as a substrate for the eicosanoid biosynthetic enzymes including cyclooxygenases, lipoxygenases, and cytochrome P450s that lead to inflammation. The Group IVA cytosolic (cPLA2), Group VIA calcium-independent (iPLA2), and Group V secreted (sPLA2) are three well-characterized human enzymes that have been implicated in eicosanoid formation. In this review, we will introduce and summarize the regulation of catalytic activity and cellular localization, structural characteristics, interfacial activation and kinetics, substrate specificity, inhibitor binding and interactions, and the downstream implications for eicosanoid biosynthesis of these three important PLA2 enzymes.
Collapse
|
17
|
Yang W, Wang X, Xu L, Li H, Wang R. LOX inhibitor HOEC interfered arachidonic acid metabolic flux in collagen-induced arthritis rats. Am J Transl Res 2018; 10:2542-2554. [PMID: 30210691 PMCID: PMC6129533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Arachidonic acid (AA) metabolic network generates a variety of products that mediate or modulate inflammatory reactions. (+)-2-(1-hydroxyl-4-oxocyclohexyl) ethyl caffeate (HOEC), isolated from Incarvillea mairei var. granditlora (Wehrhahn) Grierson, was found as an inhibitor of 5-LOX and 15-LOX in vitro. When evaluated in collagen-induced arthritis (CIA) rats, however, lowdose of HOEC (1 mg/kg) showed better efficacy than that of high dose (10 mg/kg). To study how HOEC interfered the AA metabolic pathway, in this study, we dynamically observed the changes of plasma AA metabolites (LTB4, LTC4, 15-HETE, PGE2, TXB2 and PGD2) in the CIA rats treated with different doses of HOEC by using enzyme-linked immunosorbent assay (ELISA). The results showed that eicosanoids were elevated synchronously at three time points in different treated rats. The incidence of arthritis had a higher correlation with LOX pathway while the COX pathway might be more important in the severity of arthritis. HOEC in all doses could inhibit LOX pathway in the beginning of arthritis while highdose of HOEC could induce the increase of COX metabolites in the later stage of disease. These dynamic changes of eicosanoids, depending on the regulation of metabolic flux, can be interfered by HOEC and thus affect the output of efficacy.
Collapse
Affiliation(s)
- Wen Yang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Xia Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Liuxin Xu
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| | - Rui Wang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology Shanghai 200237, China
| |
Collapse
|
18
|
Abstract
The goal-oriented control policies of cybernetic models have been used to predict metabolic phenomena such as the behavior of gene knockout strains, complex substrate uptake patterns, and dynamic metabolic flux distributions. Cybernetic theory builds on the principle that metabolic regulation is driven towards attaining goals that correspond to an organism’s survival or displaying a specific phenotype in response to a stimulus. Here, we have modeled the prostaglandin (PG) metabolism in mouse bone marrow derived macrophage (BMDM) cells stimulated by Kdo2-Lipid A (KLA) and adenosine triphosphate (ATP), using cybernetic control variables. Prostaglandins are a well characterized set of inflammatory lipids derived from arachidonic acid. The transcriptomic and lipidomic data for prostaglandin biosynthesis and conversion were obtained from the LIPID MAPS database. The model parameters were estimated using a two-step hybrid optimization approach. A genetic algorithm was used to determine the population of near optimal parameter values, and a generalized constrained non-linear optimization employing a gradient search method was used to further refine the parameters. We validated our model by predicting an independent data set, the prostaglandin response of KLA primed ATP stimulated BMDM cells. We show that the cybernetic model captures the complex regulation of PG metabolism and provides a reliable description of PG formation.
Collapse
|
19
|
Chiurchiù V, Leuti A, Maccarrone M. Bioactive Lipids and Chronic Inflammation: Managing the Fire Within. Front Immunol 2018; 9:38. [PMID: 29434586 PMCID: PMC5797284 DOI: 10.3389/fimmu.2018.00038] [Citation(s) in RCA: 283] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022] Open
Abstract
Inflammation is an immune response that works as a contained fire that is pre-emptively sparked as a defensive process during infections or upon any kind of tissue insult, and that is spontaneously extinguished after elimination or termination of the damage. However, persistent and uncontrolled immune reactions act as a wildfire that promote chronic inflammation, unresolved tissue damage and, eventually, chronic diseases. A wide network of soluble mediators, among which endogenous bioactive lipids, governs all immune processes. They are secreted by basically all cells involved in inflammatory processes and constitute the crucial infrastructure that triggers, coordinates and confines inflammatory mechanisms. However, these molecules are also deeply involved in the detrimental transition from acute to chronic inflammation, be it for persistent or excessive action of pro-inflammatory lipids or for the impairment of the functions carried out by resolving ones. As a matter of fact, bioactive lipids have been linked, to date, to several chronic diseases, including rheumatoid arthritis, atherosclerosis, diabetes, cancer, inflammatory bowel disease, systemic lupus erythematosus, and multiple sclerosis. This review summarizes current knowledge on the involvement of the main classes of endogenous bioactive lipids—namely classical eicosanoids, pro-resolving lipid mediators, lysoglycerophospholipids/sphingolipids, and endocannabinoids—in the cellular and molecular mechanisms that lead to the pathogenesis of chronic disorders.
Collapse
Affiliation(s)
- Valerio Chiurchiù
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Alessandro Leuti
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| | - Mauro Maccarrone
- Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.,European Center for Brain Research (CERC), Santa Lucia Foundation (IRCCS), Rome, Italy
| |
Collapse
|
20
|
Shay AE, Diwakar BT, Guan BJ, Narayan V, Urban JF, Prabhu KS. IL-4 up-regulates cyclooxygenase-1 expression in macrophages. J Biol Chem 2017; 292:14544-14555. [PMID: 28684424 PMCID: PMC5582846 DOI: 10.1074/jbc.m117.785014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/30/2017] [Indexed: 12/11/2022] Open
Abstract
Macrophages use various cell-surface receptors to sense their environment and undergo polarized responses. The cytokines, interleukin (IL)-4 and IL-13, released from T-helper type 2 (Th2) cells, drive macrophage polarization toward an alternatively activated phenotype (M2). This phenotype is associated with the expression of potent pro-resolving mediators, such as the prostaglandin (PG) D2-derived cyclopentenone metabolite, 15d-PGJ2, produced by the cyclooxygenase (Ptgs; Cox) pathway. Interestingly, IL-4 treatment of bone marrow-derived macrophages (BMDMs) significantly down-regulates Cox-2 protein expression, whereas Cox-1 levels are significantly increased. This phenomenon not only challenges the dogma that Cox-1 is only developmentally regulated, but also demonstrates a novel mechanism in which IL-4-dependent regulation of Cox-1 involves the activation of the mechanistic target of rapamycin complex (mTORC). Using specific chemical inhibitors, we demonstrate here that IL-4-dependent Cox-1 up-regulation occurs at the post-transcriptional level via the Fes-Akt-mTORC axis. Activation of AMP-activated protein kinase (AMPK) by metformin, inhibition of mTORC by torin 1, or CRISPR/Cas9-mediated genetic knock-out of tuberous sclerosis complex-2 (Tsc2) blocked the IL-4-dependent expression of Cox-1 and the ability of macrophages to polarize to M2. However, use of 15d-PGJ2 partially rescued the effects of AMPK activation, suggesting the importance of Cox-1 in macrophage polarization as also observed in a model of gastrointestinal helminth clearance. In summary, these findings suggest a new paradigm where IL-4-dependent up-regulation of Cox-1 expression may play a key role in tissue homeostasis and wound healing during Th2-mediated immune responses, such as parasitic infections.
Collapse
Affiliation(s)
- Ashley E Shay
- From the Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bastihalli T Diwakar
- From the Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bo-Jhih Guan
- the Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106
| | - Vivek Narayan
- the Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, and
| | - Joseph F Urban
- the United States Department of Agriculture (USDA), Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, Maryland 20705
| | - K Sandeep Prabhu
- From the Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
21
|
Lipid Mediators of Allergic Disease: Pathways, Treatments, and Emerging Therapeutic Targets. Curr Allergy Asthma Rep 2017; 16:48. [PMID: 27333777 DOI: 10.1007/s11882-016-0628-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bioactive lipids are critical regulators of inflammation. Over the last 75 years, these diverse compounds have emerged as clinically-relevant mediators of allergic disease pathophysiology. Animal and human studies have demonstrated the importance of lipid mediators in the development of asthma, allergic rhinitis, urticaria, anaphylaxis, atopic dermatitis, and food allergy. Lipids are critical participants in cell signaling events which influence key physiologic (bronchoconstriction) and immune phenomena (degranulation, chemotaxis, sensitization). Lipid-mediated cellular mechanisms including: (1) formation of structural support platforms (lipid rafts) for receptor signaling complexes, (2) activation of a diverse family of G-protein coupled receptors, and (3) mediating intracellular signaling cascades by acting as second messengers. Here, we review four classes of bioactive lipids (platelet activating factor, the leukotrienes, the prostanoids, and the sphingolipids) with special emphasis on lipid synthesis pathways and signaling, atopic disease pathology, and the ongoing development of atopy treatments targeting lipid mediator pathways.
Collapse
|
22
|
Dennis EA. Liberating Chiral Lipid Mediators, Inflammatory Enzymes, and LIPID MAPS from Biological Grease. J Biol Chem 2016; 291:24431-24448. [PMID: 27555328 DOI: 10.1074/jbc.x116.723791] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In 1970, it was well accepted that the central role of lipids was in energy storage and metabolism, and it was assumed that amphipathic lipids simply served a passive structural role as the backbone of biological membranes. As a result, the scientific community was focused on nucleic acids, proteins, and carbohydrates as information-containing molecules. It took considerable effort until scientists accepted that lipids also "encode" specific and unique biological information and play a central role in cell signaling. Along with this realization came the recognition that the enzymes that act on lipid substrates residing in or on membranes and micelles must also have important signaling roles, spurring curiosity into their potentially unique modes of action differing from those acting on water-soluble substrates. This led to the creation of the concept of "surface dilution kinetics" for describing the mechanism of enzymes acting on lipid substrates, as well as the demonstration that lipid enzymes such as phospholipase A2 (PLA2) contain allosteric activator sites for specific phospholipids as well as for membranes. As our understanding of phospholipases advanced, so did the understanding that many of the lipids released by these enzymes are chiral information-containing signaling molecules; for example, PLA2 regulates the generation of precursors for the biosynthesis of eicosanoids and other bioactive lipid mediators of inflammation and resolution underlying disease progression. The creation of the LIPID MAPS initiative in 2003 and the ensuing development of the lipidomics field have revealed that lipid metabolites are central to human metabolism. Today lipids are recognized as key mediators of health and disease as we enter a new era of biomarkers and personalized medicine. This article is my personal "reflection" on these scientific advances.
Collapse
Affiliation(s)
- Edward A Dennis
- From the Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093-0601.
| |
Collapse
|
23
|
Gupta S, Kihara Y, Maurya MR, Norris PC, Dennis EA, Subramaniam S. Computational Modeling of Competitive Metabolism between ω3- and ω6-Polyunsaturated Fatty Acids in Inflammatory Macrophages. J Phys Chem B 2016; 120:8346-53. [PMID: 27063350 DOI: 10.1021/acs.jpcb.6b02036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Arachidonic acid (AA), a representative ω6-polyunsaturated fatty acid (PUFA), is a precursor of 2-series prostaglandins (PGs) that play important roles in inflammation, pain, fever, and related disorders including cardiovascular diseases. Eating fish or supplementation with the ω3-PUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) is widely assumed to be beneficial in preventing cardiovascular diseases. A proposed mechanism for a cardio-protective role of ω3-PUFAs assumes competition between AA and ω3-PUFAs for cyclooxygenases (COX), leading to reduced production of 2-series PGs. In this study, we have used a systems biology approach to integrate existing knowledge and novel high-throughput data that facilitates a quantitative understanding of the molecular mechanism of ω3- and ω6-PUFA metabolism in mammalian cells. We have developed a quantitative computational model of the competitive metabolism of AA and EPA via the COX pathway through a two-step matrix-based approach to estimate the rate constants. This model was developed by using lipidomic data sets that were experimentally obtained from EPA-supplemented ATP-stimulated RAW264.7 macrophages. The resulting model fits the experimental data well for all metabolites and demonstrates that the integrated metabolic and signaling networks and the experimental data are consistent with one another. The robustness of the model was validated through parametric sensitivity and uncertainty analysis. We also validated the model by predicting the results from other independent experiments involving AA- and DHA-supplemented ATP-stimulated RAW264.7 cells using the parameters estimated with EPA. Furthermore, we showed that the higher affinity of EPA binding to COX compared with AA was able to inhibit AA metabolism effectively. Thus, our model captures the essential features of competitive metabolism of ω3- and ω6-PUFAs.
Collapse
Affiliation(s)
- Shakti Gupta
- Department of Bioengineering and San Diego Supercomputer Center, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Yasuyuki Kihara
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0601, United States
| | - Mano R Maurya
- Department of Bioengineering and San Diego Supercomputer Center, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0412, United States
| | - Paul C Norris
- Department of Chemistry and Biochemistry and Pharmacology, School of Medicine, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0601, United States
| | - Edward A Dennis
- Departments of Computer Science and Engineering and Cellular and Molecular Medicine, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0651, United States
| | - Shankar Subramaniam
- Department of Bioengineering and San Diego Supercomputer Center, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0412, United States.,Departments of Computer Science and Engineering and Cellular and Molecular Medicine, University of California at San Diego , 9500 Gilman Drive, La Jolla, California 92093-0651, United States
| |
Collapse
|
24
|
Cheng J, Dackor RT, Bradbury JA, Li H, DeGraff LM, Hong LK, King D, Lih FB, Gruzdev A, Edin ML, Travlos GS, Flake GP, Tomer KB, Zeldin DC. Contribution of alveolar type II cell-derived cyclooxygenase-2 to basal airway function, lung inflammation, and lung fibrosis. FASEB J 2015; 30:160-73. [PMID: 26396235 DOI: 10.1096/fj.14-268458] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Cyclooxygenase (COX)-2 has been shown to be involved in regulating basal airway function, bacterial LPS-induced airway hyperresponsiveness (AHR) and lung inflammation, and bleomycin-induced lung fibrosis; however, the cellular source of COX-2 that underlies these effects is unknown. We generated mice with alveolar type II (ATII) cell-specific knockdown of COX-2 (AT2CC(-/-)), to examine the role of ATII cell-derived prostaglandins (PGs) in these processes. Specific knockdown of COX-2 was confirmed by real-time RT-PCR and Western blot analyses. LC/MS/MS analysis showed that ATII cells produced PGs. Basal airway responsiveness of AT2CC(-/-) mice was decreased compared to that of wild-type (WT) mice. LPS-induced hypothermic response, infiltration of inflammatory cells into the airway, and lung inflammation were enhanced in AT2CC(-/-) mice relative to WT controls; however, LPS-induced AHR and proinflammatory cytokine and chemokine expression were similar between the genotypes. After 21 d of bleomycin administration, AT2CC(-/-) mice behaved in a manner similar to WT mice. Thus, ATII cell-derived COX-2 plays an important role in regulating basal airway function and LPS-induced lung inflammation, but does not play a role in bleomycin-induced fibrosis. These findings provide insight into the cellular source of COX-2 related to these lung phenotypes.
Collapse
Affiliation(s)
- Jennifer Cheng
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Ryan T Dackor
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - J Alyce Bradbury
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Hong Li
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Laura M DeGraff
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Lee K Hong
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Debra King
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Fred B Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Artiom Gruzdev
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Matthew L Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gregory S Travlos
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Gordon P Flake
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Kenneth B Tomer
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| | - Darryl C Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA
| |
Collapse
|
25
|
Abstract
Controlled immune responses to infection and injury involve complex molecular signalling networks with coordinated and often opposing actions. Eicosanoids and related bioactive lipid mediators derived from polyunsaturated fatty acids constitute a major bioactive lipid network that is among the most complex and challenging pathways to map in a physiological context. Eicosanoid signalling, similar to cytokine signalling and inflammasome formation, has primarily been viewed as a pro-inflammatory component of the innate immune response; however, recent advances in lipidomics have helped to elucidate unique eicosanoids and related docosanoids with anti-inflammatory and pro-resolution functions. This has advanced our overall understanding of the inflammatory response and its therapeutic implications. The induction of a pro-inflammatory and anti-inflammatory eicosanoid storm through the activation of inflammatory receptors by infectious agents is reviewed here.
Collapse
Affiliation(s)
- Edward A Dennis
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Paul C Norris
- Department of Chemistry and Biochemistry and Department of Pharmacology, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
26
|
Astarita G, Kendall AC, Dennis EA, Nicolaou A. Targeted lipidomic strategies for oxygenated metabolites of polyunsaturated fatty acids. BIOCHIMICA ET BIOPHYSICA ACTA 2015; 1851:456-68. [PMID: 25486530 PMCID: PMC4323855 DOI: 10.1016/j.bbalip.2014.11.012] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/19/2014] [Accepted: 11/26/2014] [Indexed: 12/13/2022]
Abstract
Oxidation of polyunsaturated fatty acids (PUFA) through enzymatic or non-enzymatic free radical-mediated reactions can yield an array of lipid metabolites including eicosanoids, octadecanoids, docosanoids and related species. In mammals, these oxygenated PUFA mediators play prominent roles in the physiological and pathological regulation of many key biological processes in the cardiovascular, renal, reproductive and other systems including their pivotal contribution to inflammation. Mass spectrometry-based technology platforms have revolutionized our ability to analyze the complex mixture of lipid mediators found in biological samples, with increased numbers of metabolites that can be simultaneously quantified from a single sample in few analytical steps. The recent development of high-sensitivity and high-throughput analytical tools for lipid mediators affords a broader view of these oxygenated PUFA species, and facilitates research into their role in health and disease. In this review, we illustrate current analytical approaches for a high-throughput lipidomic analysis of eicosanoids and related mediators in biological samples. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance."
Collapse
Affiliation(s)
- Giuseppe Astarita
- Waters Corporation, Milford, MA, USA; Department of Biochemistry and Molecular & Cellular Biology, Georgetown University, Washington, DC, USA.
| | - Alexandra C Kendall
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | - Edward A Dennis
- Department of Chemistry/Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA; Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0601, USA
| | - Anna Nicolaou
- Manchester Pharmacy School, Faculty of Medical and Human Sciences, The University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
27
|
da Silva-Souza HA, de Lira MN, Patel NK, Spray DC, Persechini PM, Scemes E. Inhibitors of the 5-lipoxygenase pathway activate pannexin1 channels in macrophages via the thromboxane receptor. Am J Physiol Cell Physiol 2014; 307:C571-9. [PMID: 25080488 DOI: 10.1152/ajpcell.00087.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A multitude of environmental signaling molecules influence monocyte and macrophage innate and adaptive immune responses, including ATP and prostanoids. Interestingly, purinergic (P2) and eicosanoid receptor signaling interact such that the activation of P2 receptors leads to prostanoid production, which can then interfere with P2Y-mediated macrophage migration. Recent studies suggest that blockade of 5-lipoxygenase (5-LOX) in macrophages can activate a permeation pathway involved in the influx of dye and the release of ATP. Here, we provide evidence that pannexin1 (Panx1) is a component of this pathway and present the intracellular signaling molecules linking the thromboxane (TP) receptor to Panx1-mediated dye influx and ATP release. Using pharmacological tools and transgenic mice deficient in Panx1, we show that two 5-LOX pathway inhibitors induce ATP release and influx of dye in a Panx1-dependent manner. Electrophysiological recordings performed in wild-type and Panx1-deficient macrophages confirmed that these 5-LOX pathway inhibitors activate currents characteristic of Panx1 channels. We found that the mechanism by which Panx1 channels are activated under this condition involves activation of the TP receptor that is mediated by the cAMP/PKA pathway. This is to our knowledge the first evidence for the involvement of Panx1 in the TP receptor signaling pathway. Future studies aimed to clarify the contribution of this TP-Panx1 signaling network to macrophage immune responses are likely to be important for targeting inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Hercules A da Silva-Souza
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Maria Nathália de Lira
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Naman K Patel
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - David C Spray
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Pedro Muanis Persechini
- Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia de Pesquisa Translacional em Saúde e Ambiente da Região Amazônica-INPeTAm, Rio de Janeiro, Brazil; and
| | - Eliana Scemes
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
28
|
Pratt CL, Brown CR. The role of eicosanoids in experimental Lyme arthritis. Front Cell Infect Microbiol 2014; 4:69. [PMID: 24904842 PMCID: PMC4036060 DOI: 10.3389/fcimb.2014.00069] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/12/2014] [Indexed: 11/18/2022] Open
Abstract
Experimental Lyme arthritis is an inflammatory arthritis caused by infection of mice with the spirochete, Borrelia burgdorferi. It recapitulates many of the disease parameters seen in human patients with Lyme arthritis, and thus serves as a model system for the investigation of disease pathogenesis. While much progress has been made in defining components of the immune response to Borrelia infection, an overall understanding of the host response leading to arthritis resistance or susceptibility remains elusive. In this review, we will focus on recent advancements of our understanding of the roles of eicosanoids as inflammatory mediators in the regulation of experimental Lyme arthritis. Eicosanoids, such as PGE2 and LTB4, are powerful regulators of inflammatory responses and thus may be important mediators of Lyme arthritis.
Collapse
Affiliation(s)
- Carmela L Pratt
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| | - Charles R Brown
- Department of Veterinary Pathobiology, University of Missouri Columbia, MO, USA
| |
Collapse
|