1
|
Chaumet PC, Bon P, Maire G, Sentenac A, Baffou G. Quantitative phase microscopies: accuracy comparison. LIGHT, SCIENCE & APPLICATIONS 2024; 13:288. [PMID: 39394163 PMCID: PMC11470049 DOI: 10.1038/s41377-024-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 08/02/2024] [Accepted: 09/01/2024] [Indexed: 10/13/2024]
Abstract
Quantitative phase microscopies (QPMs) play a pivotal role in bio-imaging, offering unique insights that complement fluorescence imaging. They provide essential data on mass distribution and transport, inaccessible to fluorescence techniques. Additionally, QPMs are label-free, eliminating concerns of photobleaching and phototoxicity. However, navigating through the array of available QPM techniques can be complex, making it challenging to select the most suitable one for a particular application. This tutorial review presents a thorough comparison of the main QPM techniques, focusing on their accuracy in terms of measurement precision and trueness. We focus on 8 techniques, namely digital holographic microscopy (DHM), cross-grating wavefront microscopy (CGM), which is based on QLSI (quadriwave lateral shearing interferometry), diffraction phase microscopy (DPM), differential phase-contrast (DPC) microscopy, phase-shifting interferometry (PSI) imaging, Fourier phase microscopy (FPM), spatial light interference microscopy (SLIM), and transport-of-intensity equation (TIE) imaging. For this purpose, we used a home-made numerical toolbox based on discrete dipole approximation (IF-DDA). This toolbox is designed to compute the electromagnetic field at the sample plane of a microscope, irrespective of the object's complexity or the illumination conditions. We upgraded this toolbox to enable it to model any type of QPM, and to take into account shot noise. In a nutshell, the results show that DHM and PSI are inherently free from artefacts and rather suffer from coherent noise; In CGM, DPC, DPM and TIE, there is a trade-off between precision and trueness, which can be balanced by varying one experimental parameter; FPM and SLIM suffer from inherent artefacts that cannot be discarded experimentally in most cases, making the techniques not quantitative especially for large objects covering a large part of the field of view, such as eukaryotic cells.
Collapse
Affiliation(s)
- Patrick C Chaumet
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Pierre Bon
- Université de Limoges, CNRS, XLIM, UMR 7252, F-87000, Limoges, France
| | - Guillaume Maire
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Anne Sentenac
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.
- Neurotechnology Center, Department of Biological Sciences, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
2
|
Navratil J, Kratochvilova M, Raudenska M, Balvan J, Vicar T, Petrlakova K, Suzuki K, Jadrna L, Bursa J, Kräter M, Kim K, Masarik M, Gumulec J. Long-term zinc treatment alters the mechanical properties and metabolism of prostate cancer cells. Cancer Cell Int 2024; 24:313. [PMID: 39261823 PMCID: PMC11389562 DOI: 10.1186/s12935-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The failure of intracellular zinc accumulation is a key process in prostate carcinogenesis. Although prostate cancer cells can accumulate zinc after long-term exposure, chronic zinc oversupply may accelerate prostate carcinogenesis or chemoresistance. Because cancer progression is associated with energetically demanding cytoskeletal rearrangements, we investigated the effect of long-term zinc presence on biophysical parameters, ATP production, and EMT characteristics of two prostate cancer cell lines (PC-3, 22Rv1). Prolonged exposure to zinc increased ATP production, spare respiratory capacity, and induced a response in PC-3 cells, characterized by remodeling of vimentin and a shift of cell dry mass density and caveolin-1 to the perinuclear region. This zinc-induced remodeling correlated with a greater tendency to maintain actin architecture despite inhibition of actin polymerization by cytochalasin. Zinc partially restored epithelial characteristics in PC-3 cells by decreasing vimentin expression and increasing E-cadherin. Nevertheless, the expression of E-cadherin remained lower than that observed in predominantly oxidative, low-invasive 22Rv1 cells. Following long-term zinc exposure, we observed an increase in cell stiffness associated with an increased refractive index in the perinuclear region and an increased mitochondrial content. The findings of the computational simulations indicate that the mechanical response cannot be attributed exclusively to alterations in cytoskeletal composition. This observation suggests the potential involvement of an additional, as yet unidentified, mechanical contributor. These findings indicate that long-term zinc exposure alters a group of cellular parameters towards an invasive phenotype, including an increase in mitochondrial number, ATP production, and cytochalasin resistance. Ultimately, these alterations are manifested in the biomechanical properties of the cells.
Collapse
Affiliation(s)
- Jiri Navratil
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Monika Kratochvilova
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Martina Raudenska
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jan Balvan
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomas Vicar
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Katerina Petrlakova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Kanako Suzuki
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Lucie Jadrna
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Jiri Bursa
- Department of Biomechanics, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2, 61669, Brno, Czech Republic
| | - Martin Kräter
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
- Rivercyte GmbH, Henkestraße 91, 91052, Erlangen, Germany
| | - Kyoohyun Kim
- Max Planck Institute for the Science of Light, and Max-Planck-Zentrum für Physik Und Medizin, Staudtstraße 2, 91058, Erlangen, Germany
| | - Michal Masarik
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- BIOCEV, First Faculty of Medicine, Charles University, Prumyslova 595, 252 50, Vestec, Czech Republic
| | - Jaromir Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Gentner C, Rogez B, Robert HML, Aggoun A, Tessier G, Bon P, Berto P. Enhanced Quantitative Wavefront Imaging for Nano-Object Characterization. ACS NANO 2024; 18:19247-19256. [PMID: 38981602 PMCID: PMC11271181 DOI: 10.1021/acsnano.4c05152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024]
Abstract
Quantitative phase imaging enables precise and label-free characterizations of individual nano-objects within a large volume, without a priori knowledge of the sample or imaging system. While emerging common path implementations are simple enough to promise a broad dissemination, their phase sensitivity still falls short of precisely estimating the mass or polarizability of vesicles, viruses, or nanoparticles in single-shot acquisitions. In this paper, we revisit the Zernike filtering concept, originally crafted for intensity-only detectors, with the aim of adapting it to wavefront imaging. We demonstrate, through numerical simulation and experiments based on high-resolution wavefront sensing, that a simple Fourier-plane add-on can significantly enhance phase sensitivity for subdiffraction objects─achieving over an order of magnitude increase (×12)─while allowing the quantitative retrieval of both intensity and phase. This advancement allows for more precise nano-object detection and metrology.
Collapse
Affiliation(s)
- Clémence Gentner
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Benoit Rogez
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
- L2n,
Université de technologie de Troyes, CNRS-UMR 7076, Troyes 10004, France
| | - Hadrien M. L. Robert
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Anis Aggoun
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Gilles Tessier
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
| | - Pierre Bon
- Université
de Limoges, CNRS, XLIM, UMR 7252, Limoges 87000, France
| | - Pascal Berto
- Institut
de la Vision, Sorbonne Université, CNRS-UMR 7210, Inserm-UMR
S968, Paris 75012, France
- Université
Paris Cité, Paris 75006, France
- Institut
Universitaire de France (IUF), Paris 75231, France
| |
Collapse
|
4
|
Nguyen MC, Bonnaud P, Dibsy R, Maucort G, Lyonnais S, Muriaux D, Bon P. Label-Free Single Nanoparticle Identification and Characterization in Demanding Environment, Including Infectious Emergent Virus. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304564. [PMID: 38009767 DOI: 10.1002/smll.202304564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 10/02/2023] [Indexed: 11/29/2023]
Abstract
Unknown particle screening-including virus and nanoparticles-are keys in medicine, industry, and also in water pollutant determination. Here, RYtov MIcroscopy for Nanoparticles Identification (RYMINI) is introduced, a staining-free, non-invasive, and non-destructive optical approach that is merging holographic label-free 3D tracking with high-sensitivity quantitative phase imaging into a compact optical setup. Dedicated to the identification and then characterization of single nano-object in solution, it is compatible with highly demanding environments, such as level 3 biological laboratories, with high resilience to external source of mechanical and optical noise. Metrological characterization is performed at the level of each single particle on both absorbing and transparent particles as well as on immature and infectious HIV, SARS-CoV-2 and extracellular vesicles in solution. The capability of RYMINI to determine the nature, concentration, size, complex refractive index and mass of each single particle without knowledge or model of the particles' response is demonstrated. The system surpasses 90% accuracy for automatic identification between dielectric/metallic/biological nanoparticles and ≈80% for intraclass chemical determination of metallic and dielectric. It falls down to 50-70% for type determination inside the biological nanoparticle's class.
Collapse
Affiliation(s)
- Minh-Chau Nguyen
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| | - Peter Bonnaud
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| | - Rayane Dibsy
- UMR 9004 CNRS, IRIM (Institut de Recherche en Infectiologie de Montpellier), Université de Montpellier, Montpellier, F-34293, France
| | - Guillaume Maucort
- Laboratoire Photonique Numérique et Nanosciences, University of Bordeaux, Talence, F-33400, France
- LP2N UMR 5298, Institut d'Optique Graduate School, CNRS, Talence, F-33400, France
| | - Sébastien Lyonnais
- UAR 3725 CNRS, CEMIPAI, Université de Montpellier, Montpellier, F-34000, France
| | - Delphine Muriaux
- UMR 9004 CNRS, IRIM (Institut de Recherche en Infectiologie de Montpellier), Université de Montpellier, Montpellier, F-34293, France
- UAR 3725 CNRS, CEMIPAI, Université de Montpellier, Montpellier, F-34000, France
| | - Pierre Bon
- UMR 7252, CNRS, XLIM, Université de Limoges, Limoges, F-87000, France
| |
Collapse
|
5
|
Fluks M, Collier R, Walewska A, Bruce AW, Ajduk A. How great thou ART: biomechanical properties of oocytes and embryos as indicators of quality in assisted reproductive technologies. Front Cell Dev Biol 2024; 12:1342905. [PMID: 38425501 PMCID: PMC10902081 DOI: 10.3389/fcell.2024.1342905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Assisted Reproductive Technologies (ART) have revolutionized infertility treatment and animal breeding, but their success largely depends on selecting high-quality oocytes for fertilization and embryos for transfer. During preimplantation development, embryos undergo complex morphogenetic processes, such as compaction and cavitation, driven by cellular forces dependent on cytoskeletal dynamics and cell-cell interactions. These processes are pivotal in dictating an embryo's capacity to implant and progress to full-term development. Hence, a comprehensive grasp of the biomechanical attributes characterizing healthy oocytes and embryos is essential for selecting those with higher developmental potential. Various noninvasive techniques have emerged as valuable tools for assessing biomechanical properties without disturbing the oocyte or embryo physiological state, including morphokinetics, analysis of cytoplasmic movement velocity, or quantification of cortical tension and elasticity using microaspiration. By shedding light on the cytoskeletal processes involved in chromosome segregation, cytokinesis, cellular trafficking, and cell adhesion, underlying oogenesis, and embryonic development, this review explores the significance of embryo biomechanics in ART and its potential implications for improving clinical IVF outcomes, offering valuable insights and research directions to enhance oocyte and embryo selection procedures.
Collapse
Affiliation(s)
- Monika Fluks
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Rebecca Collier
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Agnieszka Walewska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alexander W. Bruce
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Anna Ajduk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
6
|
Marthy B, Bénéfice M, Baffou G. Single-shot quantitative phase-fluorescence imaging using cross-grating wavefront microscopy. Sci Rep 2024; 14:2142. [PMID: 38273005 PMCID: PMC10810858 DOI: 10.1038/s41598-024-52510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
The article introduces an optical microscopy technique capable of simultaneously acquiring quantitative fluorescence and phase (or equivalently wavefront) images with a single camera sensor, avoiding any delay between both images, or registration of images acquired separately. The method is based on the use of a 2-dimensional diffraction grating (aka cross-grating) positioned at a millimeter distance from a 2-color camera. Fluorescence and wavefront images are extracted from the two color channels of the camera, and retrieved by image demodulation. The applicability of the method is illustrated on various samples, namely fluorescent micro-beads, bacteria and mammalian cells.
Collapse
Affiliation(s)
- Baptiste Marthy
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Maëlle Bénéfice
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France
| | - Guillaume Baffou
- Institut Fresnel, CNRS, Aix Marseille Univ, Centrale Med, Marseille, France.
| |
Collapse
|
7
|
Phillips TA, Marcotti S, Cox S, Parsons M. Imaging actin organisation and dynamics in 3D. J Cell Sci 2024; 137:jcs261389. [PMID: 38236161 PMCID: PMC10906668 DOI: 10.1242/jcs.261389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024] Open
Abstract
The actin cytoskeleton plays a critical role in cell architecture and the control of fundamental processes including cell division, migration and survival. The dynamics and organisation of F-actin have been widely studied in a breadth of cell types on classical two-dimensional (2D) surfaces. Recent advances in optical microscopy have enabled interrogation of these cytoskeletal networks in cells within three-dimensional (3D) scaffolds, tissues and in vivo. Emerging studies indicate that the dimensionality experienced by cells has a profound impact on the structure and function of the cytoskeleton, with cells in 3D environments exhibiting cytoskeletal arrangements that differ to cells in 2D environments. However, the addition of a third (and fourth, with time) dimension leads to challenges in sample preparation, imaging and analysis, necessitating additional considerations to achieve the required signal-to-noise ratio and spatial and temporal resolution. Here, we summarise the current tools for imaging actin in a 3D context and highlight examples of the importance of this in understanding cytoskeletal biology and the challenges and opportunities in this domain.
Collapse
Affiliation(s)
- Thomas A. Phillips
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Stefania Marcotti
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
- Microscopy Innovation Centre, King's College London, Guys Campus, London SE1 1UL, UK
| | - Susan Cox
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| | - Maddy Parsons
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunts House, Guys Campus, London SE1 1UL, UK
| |
Collapse
|
8
|
Baričević Z, Ayar Z, Leitao SM, Mladinic M, Fantner GE, Ban J. Label-Free Long-Term Methods for Live Cell Imaging of Neurons: New Opportunities. BIOSENSORS 2023; 13:404. [PMID: 36979616 PMCID: PMC10046152 DOI: 10.3390/bios13030404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
Time-lapse light microscopy combined with in vitro neuronal cultures has provided a significant contribution to the field of Developmental Neuroscience. The establishment of the neuronal polarity, i.e., formation of axons and dendrites, key structures responsible for inter-neuronal signaling, was described in 1988 by Dotti, Sullivan and Banker in a milestone paper that continues to be cited 30 years later. In the following decades, numerous fluorescently labeled tags and dyes were developed for live cell imaging, providing tremendous advancements in terms of resolution, acquisition speed and the ability to track specific cell structures. However, long-term recordings with fluorescence-based approaches remain challenging because of light-induced phototoxicity and/or interference of tags with cell physiology (e.g., perturbed cytoskeletal dynamics) resulting in compromised cell viability leading to cell death. Therefore, a label-free approach remains the most desirable method in long-term imaging of living neurons. In this paper we will focus on label-free high-resolution methods that can be successfully used over a prolonged period. We propose novel tools such as scanning ion conductance microscopy (SICM) or digital holography microscopy (DHM) that could provide new insights into live cell dynamics during neuronal development and regeneration after injury.
Collapse
Affiliation(s)
- Zrinko Baričević
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Zahra Ayar
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Samuel M. Leitao
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| | - Georg E. Fantner
- Laboratory for Bio- and Nano-Instrumentation, Institute of Bioengineering, School of Engineering, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland; (Z.A.); (S.M.L.)
| | - Jelena Ban
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia; (Z.B.); (M.M.)
| |
Collapse
|
9
|
Abbessi R, Verrier N, Taddese AM, Laroche S, Debailleul M, Lo M, Courbot J, Haeberlé O. Multimodal image reconstruction from tomographic diffraction microscopy data. J Microsc 2022; 288:193-206. [PMID: 35775607 PMCID: PMC10286756 DOI: 10.1111/jmi.13131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022]
Abstract
Tomographic diffraction microscopy (TDM) is a tool of choice for high-resolution, marker-less 3D imaging of biological samples. Based on a generalization of digital holographic microscopy with full control of the sample's illumination, TDM measures, from many illumination directions, the diffracted fields in both phase and amplitude. Photon budget associated to TDM imaging is low. Therefore, TDM is not limited by phototoxicity issues. The recorded information makes it possible to reconstruct 3D refractive index distribution (with both refraction and absorption contributions) of the object under scrutiny, without any staining. In this contribution, we show an alternate use of this information. A tutorial for multimodal image reconstruction is proposed. Both intensity contrasts and phase contrasts are proposed, from the image formation model to the final reconstruction with both 2D and 3D rendering, turning TDM into a kind of 'universal' digital microscope.
Collapse
Affiliation(s)
- Riadh Abbessi
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Nicolas Verrier
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Asemare Mengistie Taddese
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Steve Laroche
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Matthieu Debailleul
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Mohamed Lo
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Jean‐Baptiste Courbot
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| | - Olivier Haeberlé
- Institut Recherche en Informatique, Mathématiques, Automatique et Signal (IRIMAS UR UHA 7499)Université de Haute‐AlsaceMulhouse CedexFrance
| |
Collapse
|
10
|
Bon P, Cognet L. On Some Current Challenges in High-Resolution Optical Bioimaging. ACS PHOTONICS 2022; 9:2538-2546. [PMID: 35996373 PMCID: PMC9389608 DOI: 10.1021/acsphotonics.2c00606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In this Perspective we propose our current point of view and a suggestive roadmap on the field of high-resolution optical microscopy dedicated to bioimaging. Motivated by biological applications, researchers have indeed devised an impressive amount of strategies to address the diverse constraints of imaging and studying biological matter down to the molecular scale, making this interdisciplinary research field a vibrant forum for creativity. Throughout the discussion, we highlight several striking recent successes in this quest. We also identify some next challenges still ahead to apprehend biological questions in increasingly complex living organisms for integrative studies in a minimally invasive manner.
Collapse
Affiliation(s)
- Pierre Bon
- Laboratoire
Photonique Numérique et Nanosciences, University of Bordeaux, F-33400 Talence, France
- LP2N
UMR 5298, Institut d’Optique Graduate
School, CNRS, F-33400 Talence, France
| | - Laurent Cognet
- Laboratoire
Photonique Numérique et Nanosciences, University of Bordeaux, F-33400 Talence, France
- LP2N
UMR 5298, Institut d’Optique Graduate
School, CNRS, F-33400 Talence, France
| |
Collapse
|
11
|
Spontaneous circulation of active microtubules confined by optical traps. J Biol Phys 2021; 47:237-251. [PMID: 34495477 PMCID: PMC8452819 DOI: 10.1007/s10867-021-09578-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/16/2021] [Indexed: 11/29/2022] Open
Abstract
We propose an experiment to demonstrate spontaneous ordering and symmetry breaking of kinesin-driven microtubules confined to an optical trap. Calculations involving the feasibility of such an experiment are first performed which analyze the power needed to confine microtubules and address heating concerns. We then present the results of first-principles simulations of active microtubules confined in such a trap and analyze the types of motion observed by the microtubules as well as the velocity of the surrounding fluid, both near the trap and in the far-field. We find three distinct phases characterized by breaking of distinct symmetries and also analyze the power spectrum of the angular momenta of polymers to further quantify the differences between these phases. Under the correct conditions, microtubules were found to spontaneously align with one another and circle the trap in one direction.
Collapse
|
12
|
Biswas A, Kim K, Cojoc G, Guck J, Reber S. The Xenopus spindle is as dense as the surrounding cytoplasm. Dev Cell 2021; 56:967-975.e5. [PMID: 33823135 DOI: 10.1016/j.devcel.2021.03.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/11/2021] [Accepted: 03/08/2021] [Indexed: 12/22/2022]
Abstract
The mitotic spindle is a self-organizing molecular machine, where hundreds of different molecules continuously interact to maintain a dynamic steady state. While our understanding of key molecular players in spindle assembly is significant, it is still largely unknown how the spindle's material properties emerge from molecular interactions. Here, we use correlative fluorescence imaging and label-free three-dimensional optical diffraction tomography (ODT) to measure the Xenopus spindle's mass density distribution. While the spindle has been commonly referred to as a denser phase of the cytoplasm, we find that it has the same density as its surrounding, which makes it neutrally buoyant. Molecular perturbations suggest that spindle mass density can be modulated by tuning microtubule nucleation and dynamics. Together, ODT provides direct, unbiased, and quantitative information of the spindle's emergent physical properties-essential to advance predictive frameworks of spindle assembly and function.
Collapse
Affiliation(s)
- Abin Biswas
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany
| | - Kyoohyun Kim
- Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany; BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany
| | - Gheorghe Cojoc
- BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max-Planck-Institute for the Science of Light, 91058 Erlangen, Germany; BIOTEC, Technische Universität Dresden, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, Technische Universität Dresden, 01307 Dresden, Germany
| | - Simone Reber
- IRI Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany; University of Applied Sciences Berlin, 13353 Berlin, Germany.
| |
Collapse
|
13
|
Chen X, Kandel ME, Popescu G. Spatial light interference microscopy: principle and applications to biomedicine. ADVANCES IN OPTICS AND PHOTONICS 2021; 13:353-425. [PMID: 35494404 PMCID: PMC9048520 DOI: 10.1364/aop.417837] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this paper, we review spatial light interference microscopy (SLIM), a common-path, phase-shifting interferometer, built onto a phase-contrast microscope, with white-light illumination. As one of the most sensitive quantitative phase imaging (QPI) methods, SLIM allows for speckle-free phase reconstruction with sub-nanometer path-length stability. We first review image formation in QPI, scattering, and full-field methods. Then, we outline SLIM imaging from theory and instrumentation to diffraction tomography. Zernike's phase-contrast microscopy, phase retrieval in SLIM, and halo removal algorithms are discussed. Next, we discuss the requirements for operation, with a focus on software developed in-house for SLIM that enables high-throughput acquisition, whole slide scanning, mosaic tile registration, and imaging with a color camera. We introduce two methods for solving the inverse problem using SLIM, white-light tomography, and Wolf phase tomography. Lastly, we review the applications of SLIM in basic science and clinical studies. SLIM can study cell dynamics, cell growth and proliferation, cell migration, mass transport, etc. In clinical settings, SLIM can assist with cancer studies, reproductive technology, blood testing, etc. Finally, we review an emerging trend, where SLIM imaging in conjunction with artificial intelligence brings computational specificity and, in turn, offers new solutions to outstanding challenges in cell biology and pathology.
Collapse
|
14
|
Zheng Y, Montague SJ, Lim YJ, Xu T, Xu T, Gardiner EE, Lee WM. Label-free multimodal quantitative imaging flow assay for intrathrombus formation in vitro. Biophys J 2021; 120:791-804. [PMID: 33513336 DOI: 10.1016/j.bpj.2021.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/17/2020] [Accepted: 01/13/2021] [Indexed: 10/22/2022] Open
Abstract
Microfluidics in vitro assays recapitulate a blood vessel microenvironment using surface-immobilized agonists under biofluidic flows. However, these assays do not quantify intrathrombus mass and activities of adhesive platelets at the agonist margin and use fluorescence labeling, therefore limiting clinical translation potential. Here, we describe a label-free multimodal quantitative imaging flow assay that combines rotating optical coherent scattering microscopy and quantitative phase microscopy. The combined imaging platform enables real-time evaluation of membrane fluctuations of adhesive-only platelets and total intrathrombus mass under physiological flow rates in vitro. We call this multimodal quantitative imaging flow assay coherent optical scattering and phase interferometry (COSI). COSI records intrathrombus mass to picogram accuracy and shape changes to a platelet membrane with high spatial-temporal resolution (0.4 μm/s) under physiological and pathophysiological fluid shear stress (1800 and 7500 s-1). With COSI, we generate an axial slice of 4 μm from the coverslip surface, approximately equivalent to the thickness of a single platelet, which permits nanoscale quantification of membrane fluctuation (activity) of adhesive platelets during initial adhesion, spreading, and recruitment into a developing thrombus (mass). Under fluid shear, pretreatment with a broad range metalloproteinase inhibitor (250 μM GM6001) blocked shedding of platelet adhesion receptors that shown elevated adhesive platelet activity at average of 42.1 μm/s and minimal change in intrathrombus mass.
Collapse
Affiliation(s)
- Yujie Zheng
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Samantha J Montague
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Yean J Lim
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy
| | - Tao Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Tienan Xu
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Elizabeth E Gardiner
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research
| | - Woei Ming Lee
- ACRF Department of Cancer Biology and Therapeutics, John Curtin School of Medical Research; ACRF Centre for Intravital Imaging of Niches for Cancer Immune Therapy; The ARC Centre of Excellence in Advanced Molecular Imaging, The Australian National University, Canberra, Australia.
| |
Collapse
|
15
|
Llinares J, Cantereau A, Froux L, Becq F. Quantitative phase imaging to study transmembrane water fluxes regulated by CFTR and AQP3 in living human airway epithelial CFBE cells and CHO cells. PLoS One 2020; 15:e0233439. [PMID: 32469934 PMCID: PMC7259668 DOI: 10.1371/journal.pone.0233439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 05/05/2020] [Indexed: 11/22/2022] Open
Abstract
In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR. We were able to detect phase variations during osmotic challenges and confirmed that cellular volume changes reflecting water fluxes can be detected with QWLSI. Forskolin stimulation activated a phase increase in all CFBE and CHO cell types. This phase variation was due to cellular volume decrease and intracellular refractive index increase and was completely blocked by mercury, suggesting an activation of a cAMP-dependent water efflux mediated by an endogenous aquaporin (AQP). AQP3 mRNAs, not AQP1, AQP4 and AQP5 mRNAs, were detected by RT-PCR in CFBE cells. Readdressing the F508del-CFTR protein to the cell surface with VX-809 increased the detected water efflux in CHO but not in CFBE cells. However, VX-770, a potentiator of CFTR function, failed to further increase the water flux in either G551D-CFTR or VX-809-corrected F508del-CFTR expressing cells. Our results show that QWLSI could be a suitable technique to study water transport in living cells. We identified a CFTR and cAMP-dependent, mercury-sensitive water transport in airway epithelial and CHO cells that might be due to AQP3. This water transport appears to be affected when CFTR is mutated and independent of the chloride channel function of CFTR.
Collapse
Affiliation(s)
- Jodie Llinares
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Anne Cantereau
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Lionel Froux
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
16
|
Stassen SV, Siu DMD, Lee KCM, Ho JWK, So HKH, Tsia KK. PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells. Bioinformatics 2020; 36:2778-2786. [PMID: 31971583 PMCID: PMC7203756 DOI: 10.1093/bioinformatics/btaa042] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/24/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
MOTIVATION New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity. RESULTS We introduce a highly scalable graph-based clustering algorithm PARC-Phenotyping by Accelerated Refined Community-partitioning-for large-scale, high-dimensional single-cell data (>1 million cells). Using large single-cell flow and mass cytometry, RNA-seq and imaging-based biophysical data, we demonstrate that PARC consistently outperforms state-of-the-art clustering algorithms without subsampling of cells, including Phenograph, FlowSOM and Flock, in terms of both speed and ability to robustly detect rare cell populations. For example, PARC can cluster a single-cell dataset of 1.1 million cells within 13 min, compared with >2 h for the next fastest graph-clustering algorithm. Our work presents a scalable algorithm to cope with increasingly large-scale single-cell analysis. AVAILABILITY AND IMPLEMENTATION https://github.com/ShobiStassen/PARC. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | | | | | - Joshua W K Ho
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | | | - Kevin K Tsia
- Department of Electrical and Electronic Engineering
| |
Collapse
|
17
|
Bao Y, Gaylord TK. Two improved defocus quantitative phase imaging methods: discussion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2019; 36:2104-2114. [PMID: 31873385 DOI: 10.1364/josaa.36.002104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/25/2019] [Indexed: 06/10/2023]
Abstract
Multifilter phase imaging with partially coherent light (MFPI-PC) and phase optical transfer function recovery (POTFR) are two viable defocus-based, two-dimensional quantitative phase imaging (QPI) methods. While both methods use transfer function inversion, MFPI-PC is based on the in-focus intensity derivative, while POTFR is based on the intensity difference between symmetrically defocused images. This paper compares and contrasts MFPI-PC and POTFR. Six disadvantages (five in MFPI-PC and one in POTFR) are identified. Improvement strategies to overcome each of the six shortcomings are identified and implemented, and both methods are shown to be clearly improved. The revised MFPI-PC is shown to be more accurate than the original MFPI-PC and generally more accurate than the revised POTFR. The revised POTFR is shown to be inherently faster than the original POTFR and also slightly faster than the revised MFPI-PC.
Collapse
|
18
|
Ma Y, Guo S, Pan Y, Fan R, Smith ZJ, Lane S, Chu K. Quantitative phase microscopy with enhanced contrast and improved resolution through ultra-oblique illumination (UO-QPM). JOURNAL OF BIOPHOTONICS 2019; 12:e201900011. [PMID: 31184803 DOI: 10.1002/jbio.201900011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
Recent developments in phase contrast microscopy have enabled the label-free visualization of certain organelles due to their distinct morphological features, making this method an attractive alternative in the study of cellular dynamics. However tubular structures such as endoplasmic reticulum (ER) networks and complex dynamics such as the fusion and fission of mitochondria, due to their low phase contrast, still need fluorescent labeling to be adequately imaged. In this article, we report a quantitative phase microscope with ultra-oblique illumination that enables us to see those structures and their dynamics with high contrast for the first time without labeling. The imaging capability was validated through comparison to the fluorescence images with the same field-of-view. The high image resolution (~270 nm) was validated using both beads and cellular structures. Furthermore, we were able to record the vibration of ER networks at a frame rate of 250 Hz. We additionally show complex cellular processes such as remodeling of the mitochondria networks through fusion and fission and vesicle transportation along the ER without labels. Our high spatial and temporal resolution allowed us to observe mitochondria "spinning", which has not been reported before, further demonstrating the advantages of the proposed method.
Collapse
Affiliation(s)
- Ying Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Siyue Guo
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Yang Pan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
| | - Rong Fan
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
| | - Zachary J Smith
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| | - Stephen Lane
- Center for Biophotonics, University of California, Davis, Sacramento, California
| | - Kaiqin Chu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Anhui, Hefei, China
- University of Science and Technology of China, Department of Precision Machinery and Precision Instrumentation, Anhui, Hefei, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Anhui, Hefei, China
| |
Collapse
|
19
|
Didier MEP, Macias-Romero C, Teulon C, Jourdain P, Roke S. Mapping of real-time morphological changes in the neuronal cytoskeleton with label-free wide-field second-harmonic imaging: a case study of nocodazole. NEUROPHOTONICS 2019; 6:045006. [PMID: 31720311 PMCID: PMC6835049 DOI: 10.1117/1.nph.6.4.045006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate the use of wide-field high-throughput second-harmonic (SH) microscopy for investigating cytoskeletal morphological changes on the single-cell level. The method allows for real-time, in vitro, label-free measurements of cytoskeletal changes that can, under certain conditions, be quantified in terms of orientational distribution or in terms of changes in the number of microtubules. As SH generation is intrinsically sensitive to noncentrosymmetrically structured microtubules, but not to isotropic or centrosymmetric materials, we use it to probe the microtubule structure in the cytoskeleton when it undergoes dynamic changes induced by the application of nocodazole, a well-known microtubule-destabilizing drug that reversibly depolymerizes microtubules. In addition, the orientational directionality of microtubules in neurites and cell bodies is determined label-free using SH polarimetry measurements. Finally, we use spatiotemporal SH imaging to show label-free, real-time nocodazole-induced morphological changes in neurons of different age and in a single axon.
Collapse
Affiliation(s)
- Marie E. P. Didier
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Carlos Macias-Romero
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Claire Teulon
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| | - Pascal Jourdain
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Laboratory of Neuroenergetics and Cellular Dynamics, CH 1015, Lausanne, Switzerland
| | - Sylvie Roke
- Institute of Bioengineering, and Institute of Materials Science, School of Engineering, and Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne, Laboratory for fundamental BioPhotonics, CH 1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Feng Q, Lee SS, Kornmann B. A Toolbox for Organelle Mechanobiology Research-Current Needs and Challenges. MICROMACHINES 2019; 10:E538. [PMID: 31426349 PMCID: PMC6723503 DOI: 10.3390/mi10080538] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/04/2019] [Accepted: 08/09/2019] [Indexed: 02/07/2023]
Abstract
Mechanobiology studies from the last decades have brought significant insights into many domains of biological research, from development to cellular signaling. However, mechano-regulation of subcellular components, especially membranous organelles, are only beginning to be unraveled. In this paper, we take mitochondrial mechanobiology as an example to discuss recent advances and current technical challenges in this field. In addition, we discuss the needs for future toolbox development for mechanobiological research of intracellular organelles.
Collapse
Affiliation(s)
- Qian Feng
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zurich, Switzerland.
| | - Sung Sik Lee
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland.
- Scientific Center for Optical and Electron Microscopy (ScopeM), ETH Zurich, 8093 Zurich, Switzerland.
| | - Benoît Kornmann
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| |
Collapse
|
21
|
Guzman-Sepulveda JR, Wu R, Kalra AP, Aminpour M, Tuszynski JA, Dogariu A. Tubulin Polarizability in Aqueous Suspensions. ACS OMEGA 2019; 4:9144-9149. [PMID: 31460002 PMCID: PMC6648103 DOI: 10.1021/acsomega.9b00137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 05/13/2019] [Indexed: 05/10/2023]
Abstract
We report accurate optical measurements of tubulin polarizability in aqueous suspensions. We determined the dependence of polarizability on tubulin concentration and on the suspension's pH, providing benchmark numbers for quantifying the optical response of this protein in various artificial and cellular environments. We compare our measurement data with a few estimates found in the previous literature and also with our simplified model estimations.
Collapse
Affiliation(s)
| | - Ruitao Wu
- CREOL,
The College of Optics and Photonics, University
of Central Florida, Orlando 32816, United States
| | - Aarat P. Kalra
- Department of Physics and Department of Oncology, University
of Alberta, Edmonton T6G 2R3, Canada
| | - Maral Aminpour
- Department of Physics and Department of Oncology, University
of Alberta, Edmonton T6G 2R3, Canada
| | - Jack A. Tuszynski
- Department of Physics and Department of Oncology, University
of Alberta, Edmonton T6G 2R3, Canada
- Department
of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin 10129, Italy
| | - Aristide Dogariu
- CREOL,
The College of Optics and Photonics, University
of Central Florida, Orlando 32816, United States
- E-mail:
| |
Collapse
|
22
|
Canales-Benavides A, Zhuo Y, Amitrano AM, Kim M, Hernandez-Aranda RI, Carney PS, Schnell M. Accessible quantitative phase imaging in confocal microscopy with sinusoidal-phase synthetic optical holography. APPLIED OPTICS 2019; 58:A55-A64. [PMID: 30873960 DOI: 10.1364/ao.58.000a55] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vibration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples. Our technique has the potential to extend fluorescence imaging applications in confocal microscopy by providing label-free cell finding, monitoring cell morphology, as well as non-perturbing long-time observation of live cells based on quantitative phase contrast.
Collapse
|
23
|
Macias-Romero C, Teulon C, Didier M, Roke S. Endogenous SHG and 2PEF coherence imaging of substructures in neurons in 3D. OPTICS EXPRESS 2019; 27:2235-2247. [PMID: 30732263 DOI: 10.1364/oe.27.002235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Neuronal morphology, long-distance transport and signalling critically depend on the organization of microtubules in the cytoskeleton. Second harmonic generation (SHG) imaging has been recognized as a potentially powerful tool for in situ label-free neuroimaging with specific sensitivity to microtubules. We study here the structural organization of microtubules in living neurons using a wide-field multiphoton microscope that performs 3D imaging using a structured illumination. This microscope allows label-free high throughput imaging of living mammalian neurons. We show that we can image structural correlations by taking advantage of the structured illumination and the coherence of the emitted light. The result allows us to study the microtubule organization throughout the development of the neuron and to differentiate between the regions of the cytoskeleton in the matured neuron.
Collapse
|
24
|
Bao Y, Dong GC, Gaylord TK. Weighted-least-squares multi-filter phase imaging with partially coherent light: characteristics of annular illumination. APPLIED OPTICS 2019; 58:137-146. [PMID: 30645520 DOI: 10.1364/ao.58.000137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Multi-filter phase imaging with partially coherent light (MFPI-PC) is a promising microscopic quantitative phase imaging (QPI) method that measures the phase of a transparent object. In the present work, a weighted-least-squares version is developed and applied to the important case of annular illumination. The resulting improved algorithms have largely solved the noise magnification problem associated with the original MFPI-PC in annular illumination. Simulation and microlens experiments are used to validate the new QPI method for the case of annular illumination.
Collapse
|
25
|
Berto P, Guillon M, Bon P. Wrapping-free numerical refocusing of scalar electromagnetic fields. APPLIED OPTICS 2018; 57:6582-6586. [PMID: 30117899 DOI: 10.1364/ao.57.006582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Numerical refocusing in any plane is one powerful feature granted by measuring both the amplitude and the phase of a coherent light beam. Here, we introduce a method based on the first Rytov approximation of scalar electromagnetic fields that (i) allows numerical propagation without requiring phase unwrapping after propagation and (ii) limits the effect of artificial phase singularities that appear upon numerical defocusing when the measurement noise is mixing with the signal. We demonstrate the feasibility of this method with both scalar electromagnetic field simulations and real acquisitions of microscopic biological samples imaged at high numerical aperture.
Collapse
|
26
|
Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat Methods 2018; 15:449-454. [PMID: 29713082 DOI: 10.1038/s41592-018-0005-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/27/2018] [Indexed: 11/08/2022]
Abstract
Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues.
Collapse
|
27
|
Bao Y, Gaylord TK. Clarification and unification of the obliquity factor in diffraction and scattering theories: discussion. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2017; 34:1738-1745. [PMID: 29036043 DOI: 10.1364/josaa.34.001738] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Two-dimensional (2D) and three-dimensional (3D) diffraction theories form the underlying basis of quantitative phase imaging. This paper reviews how 2D and 3D diffraction theories are developed based on thin and thick object requirements. However, some previously reported work has mixed 2D and 3D theories. This discussion shows that it is possible to enable consistent mixed use of 2D and 3D theories by applying appropriate obliquity factor (OF) modifications. The discussion is concluded with an overall unifying representation for the usage of the OF modifications in 2D and 3D diffraction theories as applied to both thin and thick objects.
Collapse
|
28
|
Bao Y, Gaylord TK. Quantitative phase imaging method based on an analytical nonparaxial partially coherent phase optical transfer function. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2016; 33:2125-2136. [PMID: 27857437 DOI: 10.1364/josaa.33.002125] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Multifilter phase imaging with partially coherent light (MFPI-PC) is a promising new quantitative phase imaging method. However, the existing MFPI-PC method is based on the paraxial approximation. In the present work, an analytical nonparaxial partially coherent phase optical transfer function is derived. This enables the MFPI-PC to be extended to the realistic nonparaxial case. Simulations over a wide range of test phase objects as well as experimental measurements on a microlens array verify higher levels of imaging accuracy compared to the paraxial method. Unlike the paraxial version, the nonparaxial MFPI-PC with obliquity factor correction exhibits no systematic error. In addition, due to its analytical expression, the increase in computation time compared to the paraxial version is negligible.
Collapse
|
29
|
Jenkins MH, Gaylord TK. Quantitative phase microscopy via optimized inversion of the phase optical transfer function. APPLIED OPTICS 2015; 54:8566-79. [PMID: 26479636 DOI: 10.1364/ao.54.008566] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Although the field of quantitative phase imaging (QPI) has wide-ranging biomedical applicability, many QPI methods are not well-suited for such applications due to their reliance on coherent illumination and specialized hardware. By contrast, methods utilizing partially coherent illumination have the potential to promote the widespread adoption of QPI due to their compatibility with microscopy, which is ubiquitous in the biomedical community. Described herein is a new defocus-based reconstruction method that utilizes a small number of efficiently sampled micrographs to optimally invert the partially coherent phase optical transfer function under assumptions of weak absorption and slowly varying phase. Simulation results are provided that compare the performance of this method with similar algorithms and demonstrate compatibility with large phase objects. The accuracy of the method is validated experimentally using a microlens array as a test phase object. Lastly, time-lapse images of live adherent cells are obtained with an off-the-shelf microscope, thus demonstrating the new method's potential for extending QPI capability widely in the biomedical community.
Collapse
|
30
|
Abstract
To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy.
Collapse
Affiliation(s)
- Paul C Montgomery
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube), Unistra-CNRS, Strasbourg, France
| | - Audrey Leong-Hoi
- Laboratoire des Sciences de l'Ingénieur, de l'Informatique et de l'Imagerie (ICube), Unistra-CNRS, Strasbourg, France
| |
Collapse
|
31
|
Bon P, Bourg N, Lécart S, Monneret S, Fort E, Wenger J, Lévêque-Fort S. Three-dimensional nanometre localization of nanoparticles to enhance super-resolution microscopy. Nat Commun 2015. [PMID: 26212705 PMCID: PMC4525210 DOI: 10.1038/ncomms8764] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Meeting the nanometre resolution promised by super-resolution microscopy techniques (pointillist: PALM, STORM, scanning: STED) requires stabilizing the sample drifts in real time during the whole acquisition process. Metal nanoparticles are excellent probes to track the lateral drifts as they provide crisp and photostable information. However, achieving nanometre axial super-localization is still a major challenge, as diffraction imposes large depths-of-fields. Here we demonstrate fast full three-dimensional nanometre super-localization of gold nanoparticles through simultaneous intensity and phase imaging with a wavefront-sensing camera based on quadriwave lateral shearing interferometry. We show how to combine the intensity and phase information to provide the key to the third axial dimension. Presently, we demonstrate even in the occurrence of large three-dimensional fluctuations of several microns, unprecedented sub-nanometre localization accuracies down to 0.7 nm in lateral and 2.7 nm in axial directions at 50 frames per second. We demonstrate that nanoscale stabilization greatly enhances the image quality and resolution in direct stochastic optical reconstruction microscopy imaging.
Collapse
Affiliation(s)
- Pierre Bon
- Laboratoire Photonique Numérique et Nanosciences (LP2N), CNRS UMR5298, Institut d'Optique Graduate School, Bordeaux University, Rue Francois Mitterand, 33400 Talence, France.,Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, PSL Research University, 1 rue Jussieu, Paris 75238, France.,Institut des Sciences Moléculaires d'Orsay (ISMO), University Paris-Sud, CNRS UMR 8214, Orsay 91405, France
| | - Nicolas Bourg
- Institut des Sciences Moléculaires d'Orsay (ISMO), University Paris-Sud, CNRS UMR 8214, Orsay 91405, France
| | - Sandrine Lécart
- Centre de photonique Biomédicale (CPBM/CLUPS/LUMAT) FR2764, University Paris-Sud, Orsay 91405, France
| | - Serge Monneret
- CNRS, Aix Marseille Université, Ecole Centrale Marseille, Institut Fresnel UMR7249, 13013 Marseille, France
| | - Emmanuel Fort
- Institut Langevin, ESPCI ParisTech, CNRS UMR 7587, PSL Research University, 1 rue Jussieu, Paris 75238, France
| | - Jérôme Wenger
- CNRS, Aix Marseille Université, Ecole Centrale Marseille, Institut Fresnel UMR7249, 13013 Marseille, France
| | - Sandrine Lévêque-Fort
- Institut des Sciences Moléculaires d'Orsay (ISMO), University Paris-Sud, CNRS UMR 8214, Orsay 91405, France
| |
Collapse
|
32
|
Aknoun S, Bon P, Savatier J, Wattellier B, Monneret S. Quantitative retardance imaging of biological samples using quadriwave lateral shearing interferometry. OPTICS EXPRESS 2015; 23:16383-406. [PMID: 26193611 DOI: 10.1364/oe.23.016383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
We describe a new technique based on the use of a high-resolution quadri-wave lateral shearing interferometer to perform quantitative linear retardance and birefringence measurements on biological samples. The system combines quantitative phase images with varying polarization excitation to create retardance images. This technique is compatible with living samples and gives information about the local retardance and structure of their anisotropic components. We applied our approach to collagen fibers leading to a birefringence value of (3.4 ± 0.3) · 10(-3) and to living cells, showing that cytoskeleton can be imaged label-free.
Collapse
|
33
|
Aknoun S, Savatier J, Bon P, Galland F, Abdeladim L, Wattellier B, Monneret S. Living cell dry mass measurement using quantitative phase imaging with quadriwave lateral shearing interferometry: an accuracy and sensitivity discussion. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:126009. [PMID: 26720876 DOI: 10.1117/1.jbo.20.12.126009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 11/23/2015] [Indexed: 05/12/2023]
Abstract
Single-cell dry mass measurement is used in biology to follow cell cycle, to address effects of drugs, or to investigate cell metabolism. Quantitative phase imaging technique with quadriwave lateral shearing interferometry (QWLSI) allows measuring cell dry mass. The technique is very simple to set up, as it is integrated in a camera-like instrument. It simply plugs onto a standard microscope and uses a white light illumination source. Its working principle is first explained, from image acquisition to automated segmentation algorithm and dry mass quantification. Metrology of the whole process, including its sensitivity, repeatability, reliability, sources of error, over different kinds of samples and under different experimental conditions, is developed. We show that there is no influence of magnification or spatial light coherence on dry mass measurement; effect of defocus is more critical but can be calibrated. As a consequence, QWLSI is a well-suited technique for fast, simple, and reliable cell dry mass study, especially for live cells.
Collapse
Affiliation(s)
- Sherazade Aknoun
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, FrancebPHASICS S.A., Parc technologique de Saint Aubin, Route de l'Orme des Merisiers, 91190 Saint Aubin, France
| | - Julien Savatier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Pierre Bon
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Frédéric Galland
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Lamiae Abdeladim
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| | - Benoit Wattellier
- PHASICS S.A., Parc technologique de Saint Aubin, Route de l'Orme des Merisiers, 91190 Saint Aubin, France
| | - Serge Monneret
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Centrale Marseille, Institut Fresnel UMR 7249, 13013 Marseille, France
| |
Collapse
|