1
|
Bruns H, Czajka TS, Sztucki M, Brandenburg S, Salditt T. Sarcomere, troponin, and myosin X-ray diffraction signals can be resolved in single cardiomyocytes. Biophys J 2024; 123:3024-3037. [PMID: 38956875 PMCID: PMC11427778 DOI: 10.1016/j.bpj.2024.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024] Open
Abstract
Cardiac function relies on the autonomous molecular contraction mechanisms in the ventricular wall. Contraction is driven by ordered motor proteins acting in parallel to generate a macroscopic force. The averaged structure can be investigated by diffraction from model tissues such as trabecular and papillary cardiac muscle using collimated synchrotron beams, offering high resolution in reciprocal space. In the ventricular wall, however, the muscle tissue is compartmentalized into smaller branched cardiomyocytes, with a higher degree of disorder. We show that X-ray diffraction is now also capable of resolving the structural organization of actomyosin in single isolated cardiomyocytes of the ventricular wall. In addition to the hexagonal arrangement of thick and thin filaments, the diffraction signal of the hydrated and fixated cardiomyocytes was sufficient to reveal the myosin motor repeat (M3), the troponin complex repeat (Tn), and the sarcomere length. The sarcomere length signal comprised up to 13 diffraction orders, which were used to compute the sarcomere density profile based on Fourier synthesis. The Tn and M3 spacings were found in the same range as previously reported for other muscle types. The approach opens up a pathway to record the structural dynamics of living cells during the contraction cycle, toward a more complete understanding of cardiac muscle function.
Collapse
Affiliation(s)
| | | | - Michael Sztucki
- ESRF - European Synchrotron Radiation Facility, Grenoble, France
| | - Sören Brandenburg
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-ray Physics, Göttingen, Germany.
| |
Collapse
|
2
|
Building a Cell House from Cellulose: The Case of the Soil Acidobacterium Acidisarcina polymorpha SBC82T. Microorganisms 2022; 10:microorganisms10112253. [DOI: 10.3390/microorganisms10112253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Acidisarcina polymorpha SBC82T is a recently described representative of the phylum Acidobacteriota from lichen-covered tundra soil. Cells of this bacterium occur within unusual saccular chambers, with the chamber envelope formed by tightly packed fibrils. These extracellular structures were most pronounced in old cultures of strain SBC82T and were organized in cluster-like aggregates. The latter were efficiently destroyed by incubating cell suspensions with cellulase, thus suggesting that they were composed of cellulose. The diffraction pattern obtained for 45-day-old cultures of strain SBC82T by using small angle X-ray scattering was similar to those reported earlier for mature wood samples. The genome analysis revealed the presence of a cellulose biosynthesis locus bcs. Cellulose synthase key subunits A and B were encoded by the bcsAB gene whose close homologs are found in genomes of many members of the order Acidobacteriales. More distant homologs of the acidobacterial bcsAB occurred in representatives of the Proteobacteria. A unique feature of bcs locus in strain SBC82T was the non-orthologous displacement of the bcsZ gene, which encodes the GH8 family glycosidase with a GH5 family gene. Presumably, these cellulose-made extracellular structures produced by A. polymorpha have a protective function and ensure the survival of this acidobacterium in habitats with harsh environmental conditions.
Collapse
|
3
|
X-Ray Structural Analysis of Single Adult Cardiomyocytes: Tomographic Imaging and Microdiffraction. Biophys J 2020; 119:1309-1323. [PMID: 32937109 PMCID: PMC7567981 DOI: 10.1016/j.bpj.2020.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
We present a multiscale imaging approach to characterize the structure of isolated adult murine cardiomyocytes based on a combination of full-field three-dimensional coherent x-ray imaging and scanning x-ray diffraction. Using these modalities, we probe the structure from the molecular to the cellular scale. Holographic projection images on freeze-dried cells have been recorded using highly coherent and divergent x-ray waveguide radiation. Phase retrieval and tomographic reconstruction then yield the three-dimensional electron density distribution with a voxel size below 50 nm. In the reconstruction volume, myofibrils, sarcomeric organization, and mitochondria can be visualized and quantified within a single cell without sectioning. Next, we use microfocusing optics by compound refractive lenses to probe the diffraction signal of the actomyosin lattice. Comparison between recordings of chemically fixed and untreated, living cells indicate that the characteristic lattice distances shrink by ∼10% upon fixation.
Collapse
|
4
|
Cassini C, Wittmeier A, Brehm G, Denz M, Burghammer M, Köster S. Large field-of-view scanning small-angle X-ray scattering of mammalian cells. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:1059-1068. [PMID: 33566016 PMCID: PMC7336178 DOI: 10.1107/s1600577520006864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 05/21/2020] [Indexed: 06/12/2023]
Abstract
X-ray imaging is a complementary method to electron and fluorescence microscopy for studying biological cells. In particular, scanning small-angle X-ray scattering provides overview images of whole cells in real space as well as local, high-resolution reciprocal space information, rendering it suitable to investigate subcellular nanostructures in unsliced cells. One persisting challenge in cell studies is achieving high throughput in reasonable times. To this end, a fast scanning mode is used to image hundreds of cells in a single scan. A way of dealing with the vast amount of data thus collected is suggested, including a segmentation procedure and three complementary kinds of analysis, i.e. characterization of the cell population as a whole, of single cells and of different parts of the same cell. The results show that short exposure times, which enable faster scans and reduce radiation damage, still yield information in agreement with longer exposure times.
Collapse
Affiliation(s)
- Chiara Cassini
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Germany
| | - Andrew Wittmeier
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Gerrit Brehm
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Germany
| | - Manuela Denz
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)’, University of Göttingen, Germany
| |
Collapse
|
5
|
Bernhardt M, Nicolas JD, Osterhoff M, Mittelstädt H, Reuss M, Harke B, Wittmeier A, Sprung M, Köster S, Salditt T. A beamline-compatible STED microscope for combined visible-light and X-ray studies of biological matter. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1144-1151. [PMID: 31274438 DOI: 10.1107/s1600577519004089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
A dedicated stimulated emission depletion (STED) microscope had been designed and implemented into the Göttingen Instrument for Nano-Imaging with X-rays (GINIX) at the synchrotron beamline P10 of the PETRA III storage ring (DESY, Hamburg). The microscope was installed on the same optical table used for X-ray holography and scanning small-angle X-ray scattering (SAXS). Scanning SAXS was implemented with the Kirkpatrick-Baez (KB) nano-focusing optics of GINIX, while X-ray holography used a combined KB and X-ray waveguide optical system for full-field projection recordings at a defocus position of the object. The STED optical axis was aligned (anti-)parallel to the focused synchrotron beam and was laterally displaced from the KB focus. This close proximity between the STED and the X-ray probe enabled in situ combined recordings on the same biological cell, tissue or any other biomolecular sample, using the same environment and mounting. Here, the instrumentation and experimental details of this correlative microscopy approach are described, as first published in our preceding work [Bernhardt et al. (2018), Nat. Commun. 9, 3641], and the capabilities of correlative STED microscopy, X-ray holography and scanning SAXS are illustrated by presenting additional datasets on cardiac tissue cells with labeled actin cytoskeleton.
Collapse
Affiliation(s)
- Marten Bernhardt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan David Nicolas
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Haugen Mittelstädt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
| | - Matthias Reuss
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
| | - Benjamin Harke
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077 Göttingen, Germany
| | - Andrew Wittmeier
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Michael Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 47c, D-22607 Hamburg, Germany
| | - Sarah Köster
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
6
|
Kamprad N, Witt H, Schröder M, Kreis CT, Bäumchen O, Janshoff A, Tarantola M. Adhesion strategies of Dictyostelium discoideum- a force spectroscopy study. NANOSCALE 2018; 10:22504-22519. [PMID: 30480299 DOI: 10.1039/c8nr07107a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Biological adhesion is essential for all motile cells and generally limits locomotion to suitably functionalized substrates displaying a compatible surface chemistry. However, organisms that face vastly varying environmental challenges require a different strategy. The model organism Dictyostelium discoideum (D.d.), a slime mould dwelling in the soil, faces the challenge of overcoming variable chemistry by employing the fundamental forces of colloid science. To understand the origin of D.d. adhesion, we realized and modified a variety of conditions for the amoeba comprising the absence and presence of the specific adhesion protein Substrate Adhesion A (sadA), glycolytic degradation, ionic strength, surface hydrophobicity and strength of van der Waals interactions by generating tailored model substrates. By employing AFM-based single cell force spectroscopy we could show that experimental force curves upon retraction exhibit two regimes. The first part up to the critical adhesion force can be described in terms of a continuum model, while the second regime of the curve beyond the critical adhesion force is governed by stochastic unbinding of individual binding partners and bond clusters. We found that D.d. relies on adhesive interactions based on EDL-DLVO (Electrical Double Layer-Derjaguin-Landau-Verwey-Overbeek) forces and contributions from the glycocalix and specialized adhesion molecules like sadA. This versatile mechanism allows the cells to adhere to a large variety of natural surfaces under various conditions.
Collapse
Affiliation(s)
- Nadine Kamprad
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg 17, 37077 Göttingen, Germany.
| | | | | | | | | | | | | |
Collapse
|
7
|
Ando T, Bhamidimarri SP, Brending N, Colin-York H, Collinson L, De Jonge N, de Pablo PJ, Debroye E, Eggeling C, Franck C, Fritzsche M, Gerritsen H, Giepmans BNG, Grunewald K, Hofkens J, Hoogenboom JP, Janssen KPF, Kaufman R, Klumpermann J, Kurniawan N, Kusch J, Liv N, Parekh V, Peckys DB, Rehfeldt F, Reutens DC, Roeffaers MBJ, Salditt T, Schaap IAT, Schwarz US, Verkade P, Vogel MW, Wagner R, Winterhalter M, Yuan H, Zifarelli G. The 2018 correlative microscopy techniques roadmap. JOURNAL OF PHYSICS D: APPLIED PHYSICS 2018; 51:443001. [PMID: 30799880 PMCID: PMC6372154 DOI: 10.1088/1361-6463/aad055] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 06/14/2018] [Accepted: 07/01/2018] [Indexed: 05/19/2023]
Abstract
Developments in microscopy have been instrumental to progress in the life sciences, and many new techniques have been introduced and led to new discoveries throughout the last century. A wide and diverse range of methodologies is now available, including electron microscopy, atomic force microscopy, magnetic resonance imaging, small-angle x-ray scattering and multiple super-resolution fluorescence techniques, and each of these methods provides valuable read-outs to meet the demands set by the samples under study. Yet, the investigation of cell development requires a multi-parametric approach to address both the structure and spatio-temporal organization of organelles, and also the transduction of chemical signals and forces involved in cell-cell interactions. Although the microscopy technologies for observing each of these characteristics are well developed, none of them can offer read-out of all characteristics simultaneously, which limits the information content of a measurement. For example, while electron microscopy is able to disclose the structural layout of cells and the macromolecular arrangement of proteins, it cannot directly follow dynamics in living cells. The latter can be achieved with fluorescence microscopy which, however, requires labelling and lacks spatial resolution. A remedy is to combine and correlate different readouts from the same specimen, which opens new avenues to understand structure-function relations in biomedical research. At the same time, such correlative approaches pose new challenges concerning sample preparation, instrument stability, region of interest retrieval, and data analysis. Because the field of correlative microscopy is relatively young, the capabilities of the various approaches have yet to be fully explored, and uncertainties remain when considering the best choice of strategy and workflow for the correlative experiment. With this in mind, the Journal of Physics D: Applied Physics presents a special roadmap on the correlative microscopy techniques, giving a comprehensive overview from various leading scientists in this field, via a collection of multiple short viewpoints.
Collapse
Affiliation(s)
- Toshio Ando
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | | | | | - H Colin-York
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
| | | | - Niels De Jonge
- INM-Leibniz Institute for New Materials, 66123 Saarbrücken, Germany
- Saarland University, 66123 Saarbrücken, Germany
| | - P J de Pablo
- Dpto. Física de la Materia Condensada Universidad Autónoma de Madrid 28049, Madrid, Spain
- Instituto de Física de la Materia Condensada IFIMAC, Universidad Autónoma de Madrid 28049, Madrid, Spain
| | - Elke Debroye
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Institute of Applied Optics, Friedrich-Schiller University, Jena, Germany
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - Christian Franck
- Department of Mechanical Engineering, University of Wisconsin-Madison, 1513 University Ave, Madison, WI 53706, United States of America
| | - Marco Fritzsche
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, OX3 9DS Oxford, United Kingdom
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Hans Gerritsen
- Debye Institute, Utrecht University, Utrecht, Netherlands
| | - Ben N G Giepmans
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Kay Grunewald
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Heinrich-Pette-Institute, Leibniz Institute of Virology, Hamburg, Germany
| | - Johan Hofkens
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | | | | | - Rainer Kaufman
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Centre of Structural Systems Biology Hamburg and University of Hamburg, Hamburg, Germany
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Judith Klumpermann
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Nyoman Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Nalan Liv
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584CX Utrecht, Netherlands
| | - Viha Parekh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Diana B Peckys
- Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Florian Rehfeldt
- University of Göttingen, Third Institute of Physics-Biophysics, 37077 Göttingen, Germany
| | - David C Reutens
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | | | - Tim Salditt
- University of Göttingen, Institute for X-Ray Physics, 37077 Göttingen, Germany
| | - Iwan A T Schaap
- SmarAct GmbH, Schütte-Lanz-Str. 9, D-26135 Oldenburg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Heidelberg, Germany
| | - Paul Verkade
- School of Biochemistry, University of Bristol, Bristol, United Kingdom
| | - Michael W Vogel
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard Wagner
- Department of Life Sciences & Chemistry, Jacobs University, Bremen, Germany
| | | | - Haifeng Yuan
- KU Leuven, Department of Chemistry, B-3001 Heverlee, Belgium
| | - Giovanni Zifarelli
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Bernhardt M, Nicolas JD, Osterhoff M, Mittelstädt H, Reuss M, Harke B, Wittmeier A, Sprung M, Köster S, Salditt T. Correlative microscopy approach for biology using X-ray holography, X-ray scanning diffraction and STED microscopy. Nat Commun 2018; 9:3641. [PMID: 30194418 PMCID: PMC6128893 DOI: 10.1038/s41467-018-05885-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/30/2018] [Indexed: 12/31/2022] Open
Abstract
We present a correlative microscopy approach for biology based on holographic X-ray imaging, X-ray scanning diffraction, and stimulated emission depletion (STED) microscopy. All modalities are combined into the same synchrotron endstation. In this way, labeled and unlabeled structures in cells are visualized in a complementary manner. We map out the fluorescently labeled actin cytoskeleton in heart tissue cells and superimpose the data with phase maps from X-ray holography. Furthermore, an array of local far-field diffraction patterns is recorded in the regime of small-angle X-ray scattering (scanning SAXS), which can be interpreted in terms of biomolecular shape and spatial correlations of all contributing scattering constituents. We find that principal directions of anisotropic diffraction patterns coincide to a certain degree with the actin fiber directions and that actin stands out in the phase maps from holographic recordings. In situ STED recordings are proposed to formulate models for diffraction data based on co-localization constraints.
Collapse
Affiliation(s)
- M Bernhardt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - J-D Nicolas
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - H Mittelstädt
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - M Reuss
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - B Harke
- Abberior Instruments, Hans-Adolf-Krebs-Weg 1, D-37077, Göttingen, Germany
| | - A Wittmeier
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - M Sprung
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 47c, D-22607, Hamburg, Germany
| | - S Köster
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany
| | - T Salditt
- Institut für Röntgenphysik, Universität Göttingen, Friedrich-Hund-Platz 1, D-37077, Göttingen, Germany.
| |
Collapse
|
9
|
Nicolas JD, Bernhardt M, Schlick SF, Tiburcy M, Zimmermann WH, Khan A, Markus A, Alves F, Toischer K, Salditt T. X-ray diffraction imaging of cardiac cells and tissue. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 144:151-165. [PMID: 29914693 DOI: 10.1016/j.pbiomolbio.2018.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/25/2018] [Indexed: 12/30/2022]
Abstract
With the development of advanced focusing optics for x-rays, we can now use x-ray beams with spot sizes in the micro- or nanometer range to scan cells and large areas of tissues and continuously record the diffraction signals. From this data, x-ray scattering maps or so-called x-ray darkfield images are computed showing how different types of cells or regions of tissues differ in their diffraction intensity. At the same time a diffraction pattern is available for each scan point which encodes the local nanostructure, averaged over many contributing constituents illuminated by the beam. In this work we have exploited these new capabilities of scanning x-ray diffraction to investigate cardiac muscle cells as well as cardiac tissue. We give examples of how cardiac cells, especially living, cultured cells, can be prepared to be compatible with the instrumentation constraints of nano- or micro-diffraction instruments. Furthermore, we show how the developmental stage, ranging from neonatal to adult cells, as well as the final preparation state of the cardiomyocytes influences the recorded scattering signal and how these diffraction signals compare to the structure of a fully developed cardiac muscle.
Collapse
Affiliation(s)
- Jan-David Nicolas
- Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Marten Bernhardt
- Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Susanne F Schlick
- Universitätsmedizin Göttingen, Institut für Pharmakologie und Toxikologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Malte Tiburcy
- Universitätsmedizin Göttingen, Institut für Pharmakologie und Toxikologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Wolfram-Hubertus Zimmermann
- Universitätsmedizin Göttingen, Institut für Pharmakologie und Toxikologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Oudenarder Straße 16, 13347 Berlin, Germany
| | - Amara Khan
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany; Universitätsmedizin Göttingen, Institut für Diagnostische und Interventionelle Radiologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Andrea Markus
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany
| | - Frauke Alves
- Max-Planck-Institut für Experimentelle Medizin, Hermann-Rein-Straße 3, 37075 Göttingen, Germany; Universitätsmedizin Göttingen, Institut für Diagnostische und Interventionelle Radiologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Karl Toischer
- Universitätsmedizin Göttingen, Klinik für Kardiologie und Pneumologie, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Tim Salditt
- Universität Göttingen, Institut für Röntgenphysik, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
10
|
Hémonnot CYJ, Köster S. Imaging of Biological Materials and Cells by X-ray Scattering and Diffraction. ACS NANO 2017; 11:8542-8559. [PMID: 28787573 DOI: 10.1021/acsnano.7b03447] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Cells and biological materials are large objects in comparison to the size of internal components such as organelles and proteins. An understanding of the functions of these nanoscale elements is key to elucidating cellular function. In this review, we describe the advances in X-ray scattering and diffraction techniques for imaging biological systems at the nanoscale. We present a number of principal technological advances in X-ray optics and development of sample environments. We identify radiation damage as one of the most severe challenges in the field, thus rendering the dose an important parameter when putting different X-ray methods in perspective. Furthermore, we describe different successful approaches, including scanning and full-field techniques, along with prominent examples. Finally, we present a few recent studies that combined several techniques in one experiment in order to collect highly complementary data for a multidimensional sample characterization.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Northwestern Argonne Institute of Science and Engineering, Northwestern University , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
- Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60439, United States
| | - Sarah Köster
- Institute for X-Ray Physics, University of Goettingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Nicolas JD, Bernhardt M, Krenkel M, Richter C, Luther S, Salditt T. Combined scanning X-ray diffraction and holographic imaging of cardiomyocytes. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576717003351] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This article presents scanning small-angle X-ray scattering (SAXS) experiments on the actomyosin assemblies in freeze-dried neo-natal rat cardiac muscle cells. By scanning the cells through a sub-micrometre focused beam, the local structure and filament orientation can be probed and quantified. To this end, SAXS data were recorded and analyzed directly in reciprocal space to generate maps of different structural parameters (scanning SAXS). The scanning SAXS experiments were complemented by full-field holographic imaging of the projected electron density, following a slight rearrangement of the instrumental setup. It is shown that X-ray holography is ideally suited to complete missing scattering data at low momentum transfer in the structure factor, extending the covered range of spatial frequencies by two orders of magnitude. Regions of interest for scanning can be easily selected on the basis of the electron density maps. Finally, the combination of scanning SAXS and holography allows for a direct verification of possible radiation-induced structural changes in the cell.
Collapse
|
12
|
Narayanan T, Wacklin H, Konovalov O, Lund R. Recent applications of synchrotron radiation and neutrons in the study of soft matter. CRYSTALLOGR REV 2017. [DOI: 10.1080/0889311x.2016.1277212] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hanna Wacklin
- European Spallation Source ERIC, Lund, Sweden
- Physical Chemistry, Lund University, Lund, Sweden
| | | | - Reidar Lund
- Department of Chemistry, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
13
|
X-Ray Micro- and Nanodiffraction Imaging on Human Mesenchymal Stem Cells and Differentiated Cells. Biophys J 2017; 110:680-690. [PMID: 26840732 PMCID: PMC4744168 DOI: 10.1016/j.bpj.2015.12.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 11/09/2015] [Accepted: 12/07/2015] [Indexed: 01/09/2023] Open
Abstract
Adult human mesenchymal stem cells show structural rearrangements of their cytoskeletal network during mechanically induced differentiation toward various cell types. In particular, the alignment of acto-myosin fibers is cell fate-dependent and can serve as an early morphological marker of differentiation. Quantification of such nanostructures on a mesoscopic scale requires high-resolution imaging techniques. Here, we use small- angle x-ray scattering with a spot size in the micro- and submicrometer range as a high-resolution and label-free imaging technique to reveal structural details of stem cells and differentiated cell types. We include principal component analysis into an automated empirical analysis scheme that allows the local characterization of oriented structures. Results on freeze-dried samples lead to quantitative structural information for all cell lines tested: differentiated cells reveal pronounced structural orientation and a relatively intense overall diffraction signal, whereas naive human mesenchymal stem cells lack these features. Our data support the hypothesis of stem cells establishing ordered structures along their differentiation process.
Collapse
|
14
|
Hémonnot CYJ, Ranke C, Saldanha O, Graceffa R, Hagemann J, Köster S. Following DNA Compaction During the Cell Cycle by X-ray Nanodiffraction. ACS NANO 2016; 10:10661-10670. [PMID: 28024349 DOI: 10.1021/acsnano.6b05034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
X-ray imaging of intact biological cells is emerging as a complementary method to visible light or electron microscopy. Owing to the high penetration depth and small wavelength of X-rays, it is possible to resolve subcellular structures at a resolution of a few nanometers. Here, we apply scanning X-ray nanodiffraction in combination with time-lapse bright-field microscopy to nuclei of 3T3 fibroblasts and thus relate the observed structures to specific phases in the cell division cycle. We scan the sample at a step size of 250 nm and analyze the individual diffraction patterns according to a generalized Porod's law. Thus, we obtain information on the aggregation state of the nuclear DNA at a real space resolution on the order of the step size and in parallel structural information on the order of few nanometers. We are able to distinguish nucleoli, heterochromatin, and euchromatin in the nuclei and follow the compaction and decompaction during the cell division cycle.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Christiane Ranke
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Johannes Hagemann
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, Göttingen 37077, Germany
| |
Collapse
|
15
|
Abstract
AbstractIn 1912, Max von Laue and collaborators first observed diffraction spots from a millimeter-sized crystal of copper sulfate using an X-ray tube. Crystallography was born of this experiment, and since then, diffraction by both X-rays and electrons has revealed a myriad of inorganic and organic structures, including structures of complex protein assemblies. Advancements in X-ray sources have spurred a revolution in structure determination, facilitated by the development of new methods. This review explores some of the frontier methods that are shaping the future of X-ray diffraction, including coherent diffractive imaging, serial femtosecond X-ray crystallography and small-angle X-ray scattering. Collectively, these methods expand the current limits of structure determination in biological systems across multiple length and time scales.
Collapse
|
16
|
Combined in-situ imaging of structural organization and elemental composition of substantia nigra neurons in the elderly. Talanta 2016; 161:368-376. [DOI: 10.1016/j.talanta.2016.08.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/02/2016] [Accepted: 08/04/2016] [Indexed: 12/24/2022]
|
17
|
Hémonnot CYJ, Reinhardt J, Saldanha O, Patommel J, Graceffa R, Weinhausen B, Burghammer M, Schroer CG, Köster S. X-rays Reveal the Internal Structure of Keratin Bundles in Whole Cells. ACS NANO 2016; 10:3553-3561. [PMID: 26905642 DOI: 10.1021/acsnano.5b07871] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, X-ray imaging of biological cells has emerged as a complementary alternative to fluorescence and electron microscopy. Different techniques were established and successfully applied to macromolecular assemblies and structures in cells. However, while the resolution is reaching the nanometer scale, the dose is increasing. It is essential to develop strategies to overcome or reduce radiation damage. Here we approach this intrinsic problem by combing two different X-ray techniques, namely ptychography and nanodiffraction, in one experiment and on the same sample. We acquire low dose ptychography overview images of whole cells at a resolution of 65 nm. We subsequently record high-resolution nanodiffraction data from regions of interest. By comparing images from the two modalities, we can exclude strong effects of radiation damage on the specimen. From the diffraction data we retrieve quantitative structural information from intracellular bundles of keratin intermediate filaments such as a filament radius of 5 nm, hexagonal geometric arrangement with an interfilament distance of 14 nm and bundle diameters on the order of 70 nm. Thus, we present an appealing combined approach to answer a broad range of questions in soft-matter physics, biophysics and biology.
Collapse
Affiliation(s)
- Clément Y J Hémonnot
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Juliane Reinhardt
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
| | - Oliva Saldanha
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Jens Patommel
- Institute of Structural Physics, Technische Universität Dresden , Zellescher Weg 16, 01069 Dresden, Germany
| | - Rita Graceffa
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Britta Weinhausen
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 71, Avenue des Martyrs, 38043 Grenoble, France
- Department of Analytical Chemistry, Ghent University , Krijgslaan 281, 9000 Ghent, Belgium
| | - Christian G Schroer
- Deutsches Elektronen-Synchrotron , Notkestrasse 85, 22607 Hamburg, Germany
- Institute for Nanostructure and Solid State Physics, Department of Physics, University of Hamburg , Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Sarah Köster
- Institute for X-ray Physics, University of Göttingen , Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Actin bundles cross-linked with α-actinin studied by nanobeam X-ray diffraction. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:383-92. [PMID: 26715112 DOI: 10.1007/s00249-015-1107-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 10/22/2022]
Abstract
We have performed scanning nano-beam small-angle X-ray scattering (nano-SAXS) experiments on in vitro-formed actin filaments cross-linked with [Formula: see text]-actinin. The experimental method combines a high resolution in reciprocal space with a real space resolution as given by the spot-size of the nano-focused X-ray beam, and opens up new opportunities to study local super-molecular structures of actin filaments. In this first proof-of-concept, we show that the local orientation of actin bundles formed by the cross-linking can be visualized by the X-ray darkfield maps. The filament bundles give rise to highly anisotropic diffraction patterns showing distinct streaks perpendicular to the bundle axes. Interestingly, some diffraction patterns exhibit a fine structure in the form of intensity modulations allowing for a more detailed analysis of the order within the bundles. A first empirical quantification of these modulations is included in the present work.
Collapse
|
19
|
Salditt T, Osterhoff M, Krenkel M, Wilke RN, Priebe M, Bartels M, Kalbfleisch S, Sprung M. Compound focusing mirror and X-ray waveguide optics for coherent imaging and nano-diffraction. JOURNAL OF SYNCHROTRON RADIATION 2015; 22:867-78. [PMID: 26134789 DOI: 10.1107/s1600577515007742] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/20/2015] [Indexed: 05/23/2023]
Abstract
A compound optical system for coherent focusing and imaging at the nanoscale is reported, realised by high-gain fixed-curvature elliptical mirrors in combination with X-ray waveguide optics or different cleaning apertures. The key optical concepts are illustrated, as implemented at the Göttingen Instrument for Nano-Imaging with X-rays (GINIX), installed at the P10 coherence beamline of the PETRA III storage ring at DESY, Hamburg, and examples for typical applications in biological imaging are given. Characteristic beam configurations with the recently achieved values are also described, meeting the different requirements of the applications, such as spot size, coherence or bandwidth. The emphasis of this work is on the different beam shaping, filtering and characterization methods.
Collapse
Affiliation(s)
- Tim Salditt
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | - Markus Osterhoff
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | - Martin Krenkel
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | - Robin N Wilke
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | - Marius Priebe
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | - Matthias Bartels
- Institut für Röntgenphysik, Universität Göttingen, 37077 Göttingen, Germany
| | | | | |
Collapse
|
20
|
Strzalka J. Cellular diffraction: scanning x-ray nanodiffraction from living cells. Biophys J 2014; 107:2489. [PMID: 25468326 DOI: 10.1016/j.bpj.2014.10.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 10/16/2014] [Indexed: 11/15/2022] Open
Affiliation(s)
- Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois.
| |
Collapse
|