1
|
Rivero-Hernández AL, Hervis YP, Valdés-Tresanco ME, Escalona-Rodríguez FA, Cancelliere R, Relova-Hernández E, Romero-Hernández G, Pérez-Rivera E, Torres-Palacios Y, Cartaya-Quintero P, Ros U, Porchetta A, Micheli L, Fernández LE, Laborde R, Álvarez C, Sagan S, Lanio ME, Pazos Santos IF. Decoupling immunomodulatory properties from lipid binding in the α-pore-forming toxin Sticholysin II. Int J Biol Macromol 2024; 280:136244. [PMID: 39368578 DOI: 10.1016/j.ijbiomac.2024.136244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Sticholysin II (StII), a pore-forming toxin from the marine anemone Stichodactyla helianthus, enhances an antigen-specific cytotoxic T lymphocyte (CTL) response when co-encapsulated in liposomes with a model antigen. This capacity does not depend exclusively on its pore-forming activity and is partially supported by its ability to activate Toll-like receptor 4 (TLR4) in dendritic cells, presumably by interacting with this receptor or by triggering signaling cascades upon binding to lipid membrane. In order to investigate whether the lipid binding capacity of StII is required for immunomodulation, we designed a mutant in which the aromatic amino acids from the interfacial binding site Trp110, Tyr111 and Trp114 were substituted by Ala. In the present work, we demonstrated that StII3A keeps the secondary structure composition and global folding of StII, while it loses its lipid binding and permeabilization abilities. Despite this, StII3A upregulates dendritic cells maturation markers, enhances an antigen-specific effector CD8+ T cells response and confers antitumor protection in a preventive scenario in C57BL/6 mice. Our results indicate that a mechanism independent of its lipid binding ability is involved in the immunomodulatory capacity of StII, pointing to StII3A as a promising candidate to improve the reliability of the Sts-based vaccine platform.
Collapse
Affiliation(s)
- Ada L Rivero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Yadira P Hervis
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France
| | - Mario E Valdés-Tresanco
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; Center for Molecular Simulations and Department of Biological Sciences, University of Calgary, Alberta T2N 1N4, Canada.
| | - Felipe A Escalona-Rodríguez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Rocco Cancelliere
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Glenda Romero-Hernández
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Eric Pérez-Rivera
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Yusniel Torres-Palacios
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Patricia Cartaya-Quintero
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany.
| | - Alessandro Porchetta
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | - Laura Micheli
- Department of Chemical Sciences and Technologies, University of Rome Tor Vergata, Via della Ricerca Scientifica 1, Rome 00133, Italy.
| | | | - Rady Laborde
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Carlos Álvarez
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Sandrine Sagan
- Sorbonne Université, École normale supérieure, PSL University, CNRS, Laboratoire des Biomolécules, LBM, 75005 Paris, France.
| | - Maria Eliana Lanio
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| | - Isabel F Pazos Santos
- Center for Protein Studies/Department of Biochemistry, Faculty of Biology, University of Havana, Havana 10400, Cuba; NanoCancer, Center of Molecular Immunology (CIM), Havana 11600, Cuba.
| |
Collapse
|
2
|
Li M, Li J, Lu X, Schroder R, Chandramohan A, Wuelfing WP, Templeton AC, Xu W, Gindy M, Kesisoglou F, Ling J, Sawyer T, Verma CS, Partridge AW, Su Y. Molecular Mechanism of P53 Peptide Permeation through Lipid Membranes from Solid-State NMR Spectroscopy and Molecular Dynamics Simulations. J Am Chem Soc 2024; 146:23075-23091. [PMID: 39110018 DOI: 10.1021/jacs.4c04230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Macrocyclic peptides show promise in targeting high-value therapeutically relevant binding sites due to their high affinity and specificity. However, their clinical application is often hindered by low membrane permeability, which limits their effectiveness against intracellular targets. Previous studies focused on peptide conformations in various solvents, leaving a gap in understanding their interactions with and translocation through lipid bilayers. Addressing this, our study explores the membrane interactions of stapled peptides, a subclass of macrocyclic peptides, using solid-state nuclear magnetic resonance (ssNMR) spectroscopy and molecular dynamics (MD) simulations. We conducted ssNMR measurements on ATSP-7041M, a prototypical stapled peptide, to understand its interaction with lipid membranes, leading to an MD-informed model for peptide membrane permeation. Our findings reveal that ATSP-7041M adopts a stable α-helical structure upon membrane binding, facilitated by a cation-π interaction between its phenylalanine side chain and the lipid headgroup. This interaction makes the membrane-bound state energetically favorable, facilitating membrane affinity and insertion. The bound peptide displayed asymmetric insertion depths, with the C-terminus penetrating deeper (approximately 9 Å) than the N-terminus (approximately 4.3 Å) relative to the lipid headgroups. Contrary to expectations, peptide dynamics was not hindered by membrane binding and exhibited rapid motions similar to cell-penetrating peptides. These dynamic interactions and peptide-lipid affinity appear to be crucial for membrane permeation. MD simulations indicated a thermodynamically stable transmembrane conformation of ATSP-7041M, reducing the energy barrier for translocation. Our study offers an in silico view of ATSP-7041M's translocation from the extracellular to the intracellular region, highlighting the significance of peptide-lipid interactions and dynamics in enabling peptide transit through membranes.
Collapse
Affiliation(s)
- Mingyue Li
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jianguo Li
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Singapore Eye Research Institute, 20 College Road Discovery Tower, Singapore 169856, Singapore
| | - Xingyu Lu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
- Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, Zhejiang 310024, China
| | - Ryan Schroder
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - W Peter Wuelfing
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Allen C Templeton
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Wei Xu
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Marian Gindy
- Small Molecule Science and Technology, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Filippos Kesisoglou
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Ling
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Tomi Sawyer
- Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Chandra S Verma
- Bioinformatics Institute at A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, Singapore 637551, Singapore
| | | | - Yongchao Su
- Pharmaceutical Sciences and Clinical Supply, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
3
|
Talandashti R, Moqadam M, Reuter N. Model Mechanism for Lipid Uptake by the Human STARD2/PC-TP Phosphatidylcholine Transfer Protein. J Phys Chem Lett 2024; 15:8287-8295. [PMID: 39143857 PMCID: PMC11331517 DOI: 10.1021/acs.jpclett.4c01743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/16/2024]
Abstract
The human StAR-related lipid transfer domain protein 2 (STARD2), also known as phosphatidylcholine (PC) transfer protein, is a single-domain lipid transfer protein thought to transfer PC lipids between intracellular membranes. We performed extensive μs-long molecular dynamics simulations of STARD2 of its apo and holo forms in the presence or absence of complex lipid bilayers. The simulations in water reveal ligand-dependent conformational changes. In the 2 μs-long simulations of apo STARD2 in the presence of a lipid bilayer, we observed spontaneous reproducible PC lipid uptake into the protein hydrophobic cavity. We propose that the lipid extraction mechanism involves one to two metastable states stabilized by choline-tyrosine or choline-tryptophane cation-π interactions. Using free energy perturbation, we evaluate that PC-tyrosine cation-π interactions contribute 1.8 and 2.5 kcal/mol to the affinity of a PC-STARD2 metastable state, thus potentially providing a significant decrease of the energy barrier required for lipid desorption.
Collapse
Affiliation(s)
- Reza Talandashti
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Mahmoud Moqadam
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| | - Nathalie Reuter
- Department
of Chemistry, University of Bergen, Bergen 5020, Norway
- Computational
Biology Unit, Department of Informatics, University of Bergen, Bergen 5020, Norway
| |
Collapse
|
4
|
Mori T, Niki T, Uchida Y, Mukai K, Kuchitsu Y, Kishimoto T, Sakai S, Makino A, Kobayashi T, Arai H, Yokota Y, Taguchi T, Suzuki KGN. A non-toxic equinatoxin-II reveals the dynamics and distribution of sphingomyelin in the cytosolic leaflet of the plasma membrane. Sci Rep 2024; 14:16872. [PMID: 39043900 PMCID: PMC11266560 DOI: 10.1038/s41598-024-67803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Sphingomyelin (SM) is a major sphingolipid in mammalian cells. SM is enriched in the extracellular leaflet of the plasma membrane (PM). Besides this localization, recent electron microscopic and biochemical studies suggest the presence of SM in the cytosolic leaflet of the PM. In the present study, we generated a non-toxic SM-binding variant (NT-EqtII) based on equinatoxin-II (EqtII) from the sea anemone Actinia equina, and examined the dynamics of SM in the cytosolic leaflet of living cell PMs. NT-EqtII with two point mutations (Leu26Ala and Pro81Ala) had essentially the same specificity and affinity to SM as wild-type EqtII. NT-EqtII expressed in the cytosol was recruited to the PM in various cell lines. Super-resolution microscopic observation revealed that NT-EqtII formed tiny domains that were significantly colocalized with cholesterol and N-terminal Lyn. Meanwhile, single molecule observation at high resolutions down to 1 ms revealed that all the examined lipid probes including NT-EqtII underwent apparent fast simple Brownian diffusion, exhibiting that SM and other lipids in the cytosolic leaflet rapidly moved in and out of domains. Thus, the novel SM-binding probe demonstrated the presence of the raft-like domain in the cytosolic leaflet of living cell PMs.
Collapse
Affiliation(s)
- Toshiki Mori
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Takahiro Niki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunori Uchida
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Kojiro Mukai
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yoshihiko Kuchitsu
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takuma Kishimoto
- Division of Molecular Interaction, Institute for Genetic Medicine, Hokkaido University Graduate School of Life Science, Sapporo, Hokkaido, Japan
| | - Shota Sakai
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Asami Makino
- Lipid Biology Laboratory, RIKEN, Wako, Saitama, Japan
| | | | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Yasunari Yokota
- Department of EECE, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Tomohiko Taguchi
- Laboratory of Organelle Pathophysiology, Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Kenichi G N Suzuki
- United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.
- Institute for Glyco-Core Research (iGCORE), Gifu University, Gifu, Japan.
- Division of Advanced Bioimaging, National Cancer Center Research Institute (NCCRI), Tokyo, Japan.
| |
Collapse
|
5
|
Palacios-Ortega J, Amigot-Sánchez R, García-Montoya C, Gorše A, Heras-Márquez D, García-Linares S, Martínez-del-Pozo Á, Slotte JP. Determination of the boundary lipids of sticholysins using tryptophan quenching. Sci Rep 2022; 12:17328. [PMID: 36243747 PMCID: PMC9569322 DOI: 10.1038/s41598-022-21750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Sticholysins are α-pore-forming toxins produced by the sea-anemone Stichodactyla helianthus. These toxins exert their activity by forming pores on sphingomyelin-containing membranes. Recognition of sphingomyelin by sticholysins is required to start the process of pore formation. Sphingomyelin recognition is coupled with membrane binding and followed by membrane penetration and oligomerization. Many features of these processes are known. However, the extent of contact with each of the different kinds of lipids present in the membrane has received little attention. To delve into this question, we have used a phosphatidylcholine analogue labeled at one of its acyl chains with a doxyl moiety, a known quencher of tryptophan emission. Here we present evidence for the contact of sticholysins with phosphatidylcholine lipids in the sticholysin oligomer, and for how each sticholysin isotoxin is affected differently by the inclusion of cholesterol in the membrane. Furthermore, using phosphatidylcholine analogs that were labeled at different positions of their structure (acyl chains and headgroup) in combination with a variety of sticholysin mutants, we also investigated the depth of the tryptophan residues of sticholysins in the bilayer. Our results indicate that the position of the tryptophan residues relative to the membrane normal is deeper when cholesterol is absent from the membrane.
Collapse
Affiliation(s)
- Juan Palacios-Ortega
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland ,grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Rafael Amigot-Sánchez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Carmen García-Montoya
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Ana Gorše
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Diego Heras-Márquez
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Sara García-Linares
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - Álvaro Martínez-del-Pozo
- grid.4795.f0000 0001 2157 7667Departamento de Bioquímica y Biología Molecular, Universidad Complutense, Madrid, Spain
| | - J. Peter Slotte
- grid.13797.3b0000 0001 2235 8415Biochemistry Department, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| |
Collapse
|
6
|
Roberts MF, Gershenson A, Reuter N. Phosphatidylcholine Cation—Tyrosine π Complexes: Motifs for Membrane Binding by a Bacterial Phospholipase C. Molecules 2022; 27:molecules27196184. [PMID: 36234717 PMCID: PMC9572076 DOI: 10.3390/molecules27196184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 10/27/2022] Open
Abstract
Phosphatidylinositol-specific phospholipase C (PI-PLC) enzymes are a virulence factor in many Gram-positive organisms. The specific activity of the Bacillus thuringiensis PI-PLC is significantly increased by adding phosphatidylcholine (PC) to vesicles composed of the substrate phosphatidylinositol, in part because the inclusion of PC reduces the apparent Kd for the vesicle binding by as much as 1000-fold when comparing PC-rich vesicles to PI vesicles. This review summarizes (i) the experimental work that localized a site on BtPI-PLC where PC is bound as a PC choline cation—Tyr-π complex and (ii) the computational work (including all-atom molecular dynamics simulations) that refined the original complex and found a second persistent PC cation—Tyr-π complex. Both complexes are critical for vesicle binding. These results have led to a model for PC functioning as an allosteric effector of the enzyme by altering the protein dynamics and stabilizing an ‘open’ active site conformation.
Collapse
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
- Correspondence: ; Tel.: +1-617-460-5194
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics and Chemistry, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
7
|
Šolinc G, Švigelj T, Omersa N, Snoj T, Pirc K, Žnidaršič N, Yamaji-Hasegawa A, Kobayashi T, Anderluh G, Podobnik M. Pore-forming moss protein bryoporin is structurally and mechanistically related to actinoporins from evolutionarily distant cnidarians. J Biol Chem 2022; 298:102455. [PMID: 36063994 PMCID: PMC9526159 DOI: 10.1016/j.jbc.2022.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/26/2022] Open
Abstract
Pore-forming proteins perforate lipid membranes and consequently affect their integrity and cell fitness. Therefore, it is not surprising that many of these proteins from bacteria, fungi, or certain animals act as toxins. While pore-forming proteins have also been found in plants, there is little information on their molecular structure and mode of action. Bryoporin is a protein from the moss Physcomitrium patens, and its corresponding gene was found to be upregulated by various abiotic stresses, especially dehydration, as well as upon fungal infection. Based on the amino acid sequence, it was suggested that bryoporin was related to the actinoporin family of pore-forming proteins, originally discovered in sea anemones. Here, we provide the first detailed structural and functional analysis of this plant cytolysin. The crystal structure of the monomeric bryoporin is highly similar to those of actinoporins. Our cryo-EM analysis of its pores showed an actinoporin-like octameric structure, thereby revealing a close kinship of proteins from evolutionarily distant organisms. This was further confirmed by our observation of bryoporin's preferential binding to and formation of pores in membranes containing animal sphingolipids, such as sphingomyelin and ceramide phosphoethanolamine; however, its binding affinity was weaker than that of actinoporin equinatoxin II. We determined bryoporin did not bind to major sphingolipids found in fungi or plants, and its membrane-binding and pore-forming activity were enhanced by various sterols. Our results suggest that bryoporin could represent a part of the moss defense arsenal, acting as a pore-forming toxin against membranes of potential animal pathogens, parasites, or predators.
Collapse
Affiliation(s)
- Gašper Šolinc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tomaž Švigelj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Neža Omersa
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Tina Snoj
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Katja Pirc
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Nada Žnidaršič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | | | - Toshihide Kobayashi
- Lipid Biology Laboratory, RIKEN, 2-1, Hirosawa, Wako-shi, Saitama 351-0198, Japan; UMR 7021 CNRS, Université de Strasbourg, Illkirch, France
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, Ljubljana, Slovenia.
| |
Collapse
|
8
|
Tarenzi T, Lattanzi G, Potestio R. Membrane binding of pore-forming γ-hemolysin components studied at different lipid compositions. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183970. [PMID: 35605647 DOI: 10.1016/j.bbamem.2022.183970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Methicillin-resistant Staphylococcus aureus is among those pathogens currently posing the highest threat to public health. Its host immune evasion strategy is mediated by pore-forming toxins (PFTs), among which the bi-component γ-hemolysin is one of the most common. The complexity of the porogenesis mechanism by γ-hemolysin poses difficulties in the development of antivirulence therapies targeting PFTs from S. aureus, and sparse and apparently contrasting experimental data have been produced. Here, through a large set of molecular dynamics simulations at different levels of resolution, we investigate the first step of pore formation, and in particular the effect of membrane composition on the ability of γ-hemolysin components, LukF and Hlg2, to steadily adhere to the lipid bilayer in the absence of proteinaceous receptors. Our simulations are in agreement with experimental data of γ-hemolysin pore formation on model membranes, which are here explained on the basis of the bilayer properties. Our computational investigation suggests a possible rationale to explain experimental data on phospholipid binding to the LukF component, and to hypothesise a mechanism by which, on purely lipidic bilayers, the stable anchoring of LukF to the cell surface facilitates Hlg2 binding, through the exposure of its N-terminal region. We expect that further insights on the mechanism of transition between soluble and membrane bound-forms and on the role played by the lipid molecules will contribute to the design of antivirulence agents with enhanced efficacy against methicillin-resistant S. aureus infections.
Collapse
Affiliation(s)
- Thomas Tarenzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Gianluca Lattanzi
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| | - Raffaello Potestio
- Department of Physics, University of Trento, Via Sommarive 14, Povo (TN) 38123, Italy; INFN-TIFPA, Trento Institute for Fundamental Physics and Applications, Via Sommarive 14, Povo (TN) 38123, Italy.
| |
Collapse
|
9
|
Moutoussamy EE, Waheed Q, Binford GJ, Khan HM, Moran SM, Eitel AR, Cordes MHJ, Reuter N. Specificity of Loxosceles α clade phospholipase D enzymes for choline-containing lipids: Role of a conserved aromatic cage. PLoS Comput Biol 2022; 18:e1009871. [PMID: 35180220 PMCID: PMC8893692 DOI: 10.1371/journal.pcbi.1009871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 03/03/2022] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the β clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in β clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_βIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the β clade, St_βIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_βIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and β clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments. Envenomation following bites from recluse spiders (Loxosceles) causes loxoscelism, a necrotic tissue breakdown in mammals, and leads to skin degeneration and systemic reactions in the worst case. Recluse spiders belong to the Sicariidae family which also includes six-eyed sand spiders in the genera Sicarius and Hexopthalma. While sicariid spiders are found natively on all continents except Australia, treatments of loxoscelism are typically antibody based and available in some regions of the Americas. Sphingomyelinase D/phospholipase D enzymes are one of the major toxins in venom of sicariid spiders, and have been divided in two clades called α and β. The activity of α and β clades toxins differs; most α clade toxins present high activity against lipids with choline headgroups (-N (CH3)3+) such as sphingomyelin, while activities in β clade toxins vary and include preference for substrates containing ethanolamine headgroups (-NH3+). When comparing the structures of two α clade toxins and one β clade toxin, we noticed the presence in the α clade toxins only of a cage consisting of three aromatic amino acids. In this work we used numerical molecular simulations to probe the role of this cage in the preference of α clade toxins for choline head groups over ethanolamine head groups.
Collapse
Affiliation(s)
- Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Qaiser Waheed
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Greta J. Binford
- Department of Biology, Lewis and Clark College, Portland, Oregon, United States
| | - Hanif M. Khan
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Shane M. Moran
- Department of Chemistry and Biochemistry, University of Arizona, Arizona, United States
| | - Anna R. Eitel
- Department of Chemistry and Biochemistry, University of Arizona, Arizona, United States
| | - Matthew H. J. Cordes
- Department of Chemistry and Biochemistry, University of Arizona, Arizona, United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Chemistry, University of Bergen, Bergen, Norway
- * E-mail:
| |
Collapse
|
10
|
Lipid interactions of an actinoporin pore-forming oligomer. Biophys J 2021; 120:1357-1366. [PMID: 33617834 DOI: 10.1016/j.bpj.2021.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/16/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
The actinoporins are cytolytic toxins produced by sea anemones. Upon encountering a membrane, preferably containing sphingomyelin, they oligomerize and insert their N-terminal helix into the membrane, forming a pore. Whether sphingomyelin is specifically recognized by the protein or simply induces phase coexistence in the membrane has been debated. Here, we perform multi-microsecond molecular dynamics simulations of an octamer of fragaceatoxin C, a member of the actinoporin family, in lipid bilayers containing either pure 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) or a 1:1 mixture of DOPC and palmitoyl sphingomyelin (PSM). The complex is highly stable in both environments, with only slight fraying of the inserted helices near their N-termini. Analyzing the structural parameters of the mixed membrane in the course of the simulation, we see signs of a phase transition for PSM in the inner leaflet of the bilayer. In both leaflets, cross-interactions between lipids of different type decrease over time. Surprisingly, the aromatic loop thought to be responsible for sphingomyelin recognition interacts more with DOPC than PSM by the end of the simulation. These results support the notion that the key membrane property that actinoporins recognize is lipid phase coexistence.
Collapse
|
11
|
Moqadam M, Tubiana T, Moutoussamy EE, Reuter N. Membrane models for molecular simulations of peripheral membrane proteins. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1932589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Mahmoud Moqadam
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Thibault Tubiana
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Emmanuel E. Moutoussamy
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Nathalie Reuter
- Department of Chemistry, University of Bergen, Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
12
|
Khan HM, Souza PCT, Thallmair S, Barnoud J, de Vries AH, Marrink SJ, Reuter N. Capturing Choline-Aromatics Cation-π Interactions in the MARTINI Force Field. J Chem Theory Comput 2020; 16:2550-2560. [PMID: 32096995 PMCID: PMC7175457 DOI: 10.1021/acs.jctc.9b01194] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Cation−π
interactions play an important
role in biomolecular recognition, including interactions between membrane
phosphatidylcholine lipids and aromatic amino acids of peripheral
proteins. While molecular mechanics coarse grain (CG) force fields
are particularly well suited to simulate membrane proteins in general,
they are not parameterized to explicitly reproduce cation−π
interactions. We here propose a modification of the polarizable MARTINI
coarse grain (CG) model enabling it to model membrane binding events
of peripheral proteins whose aromatic amino acid interactions with
choline headgroups are crucial for their membrane binding. For this
purpose, we first collected and curated a dataset of eight peripheral
proteins from different families. We find that the MARTINI CG model
expectedly underestimates aromatics–choline interactions and
is unable to reproduce membrane binding of the peripheral proteins
in our dataset. Adjustments of the relevant interactions in the polarizable
MARTINI force field yield significant improvements in the observed
binding events. The orientation of each membrane-bound protein is
comparable to reference data from all-atom simulations and experimental
binding data. We also use negative controls to ensure that choline–aromatics
interactions are not overestimated. We finally check that membrane
properties, transmembrane proteins, and membrane translocation potential
of mean force (PMF) of aromatic amino acid side-chain analogues are
not affected by the new parameter set. This new version “MARTINI
2.3P” is a significant improvement over its predecessors and
is suitable for modeling membrane proteins including peripheral membrane
binding of peptides and proteins.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences, University of Bergen, N-5020 Bergen, Norway.,Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Jonathan Barnoud
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Alex H de Vries
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics, University of Bergen, N-5020 Bergen, Norway.,Department of Chemistry, University of Bergen, N-5020 Bergen, Norway
| |
Collapse
|
13
|
Pore-forming toxins from sea anemones: from protein-membrane interaction to its implications for developing biomedical applications. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2020. [DOI: 10.1016/bs.abl.2020.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Waheed Q, Khan HM, He T, Roberts M, Gershenson A, Reuter N. Interfacial Aromatics Mediating Cation-π Interactions with Choline-Containing Lipids Can Contribute as Much to Peripheral Protein Affinity for Membranes as Aromatics Inserted below the Phosphates. J Phys Chem Lett 2019; 10:3972-3977. [PMID: 31246477 DOI: 10.1021/acs.jpclett.9b01639] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Membrane-binding interfaces of peripheral proteins are restricted to a small part of their exposed surface, so the ability to engage in strong selective interactions with membrane lipids at various depths in the interface, both below and above the phosphates, is an advantage. Driven by their hydrophobicity, aromatic amino acids preferentially partition into membrane interfaces, often below the phosphates, yet enthalpically favorable interactions with the lipid headgroups, above the phosphate plane, are likely to further stabilize high interfacial positions. Using free-energy perturbation, we calculate the energetic cost of alanine substitution for 11 interfacial aromatic amino acids from 3 peripheral proteins. We show that the involvement in cation-π interactions with the headgroups (i) increases the ΔΔGtransfer as compared with insertion at the same depth without cation-π stabilization and (ii) can contribute at least as much as deeper insertion below the phosphates, highlighting the multiple roles of aromatics in peripheral membrane protein affinity.
Collapse
Affiliation(s)
- Qaiser Waheed
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Hanif M Khan
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Tao He
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Mary Roberts
- Department of Chemistry , Boston College , Chestnut Hill , Massachusetts 02467 , United States
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
- Molecular and Cellular Biology Graduate Program , University of Massachusetts Amherst , Amherst , Massachusetts 01003 , United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
- Department of Chemistry , University of Bergen , N-5020 Bergen , Norway
| |
Collapse
|
15
|
Khan HM, MacKerell AD, Reuter N. Cation-π Interactions between Methylated Ammonium Groups and Tryptophan in the CHARMM36 Additive Force Field. J Chem Theory Comput 2018; 15:7-12. [PMID: 30562013 DOI: 10.1021/acs.jctc.8b00839] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cation-π interactions between tryptophan and choline or trimethylated lysines are vital for many biological processes. The performance of the additive CHARMM36 force field against target quantum mechanical data is shown to reproduce QM equilibrium geometries but required modified Lennard-Jones potentials to accurately reproduce the QM interaction energies. The modified parameter set allows accurate modeling, including free energies, of cation-π indole-choline and indole-trimethylated lysines interactions relevant for protein-ligand, protein-membrane, and protein-protein interfaces.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Biological Sciences , University of Bergen , N-5020 Bergen , Norway.,Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences , University of Maryland School of Pharmacy , Baltimore , Maryland 21201 , United States
| | - Nathalie Reuter
- Computational Biology Unit, Department of Informatics , University of Bergen , N-5020 Bergen , Norway.,Department of Chemistry , University of Bergen , N-5020 Bergen , Norway
| |
Collapse
|
16
|
Roberts MF, Khan HM, Goldstein R, Reuter N, Gershenson A. Search and Subvert: Minimalist Bacterial Phosphatidylinositol-Specific Phospholipase C Enzymes. Chem Rev 2018; 118:8435-8473. [DOI: 10.1021/acs.chemrev.8b00208] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mary F. Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Rebecca Goldstein
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | | | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
17
|
Barnaba C, Ramamoorthy A. Picturing the Membrane-assisted Choreography of Cytochrome P450 with Lipid Nanodiscs. Chemphyschem 2018; 19:2603-2613. [DOI: 10.1002/cphc.201800444] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor, MI 48109-1055 USA
| |
Collapse
|
18
|
Chipot C, Dehez F, Schnell JR, Zitzmann N, Pebay-Peyroula E, Catoire LJ, Miroux B, Kunji ERS, Veglia G, Cross TA, Schanda P. Perturbations of Native Membrane Protein Structure in Alkyl Phosphocholine Detergents: A Critical Assessment of NMR and Biophysical Studies. Chem Rev 2018; 118:3559-3607. [PMID: 29488756 PMCID: PMC5896743 DOI: 10.1021/acs.chemrev.7b00570] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Indexed: 12/25/2022]
Abstract
Membrane proteins perform a host of vital cellular functions. Deciphering the molecular mechanisms whereby they fulfill these functions requires detailed biophysical and structural investigations. Detergents have proven pivotal to extract the protein from its native surroundings. Yet, they provide a milieu that departs significantly from that of the biological membrane, to the extent that the structure, the dynamics, and the interactions of membrane proteins in detergents may considerably vary, as compared to the native environment. Understanding the impact of detergents on membrane proteins is, therefore, crucial to assess the biological relevance of results obtained in detergents. Here, we review the strengths and weaknesses of alkyl phosphocholines (or foscholines), the most widely used detergent in solution-NMR studies of membrane proteins. While this class of detergents is often successful for membrane protein solubilization, a growing list of examples points to destabilizing and denaturing properties, in particular for α-helical membrane proteins. Our comprehensive analysis stresses the importance of stringent controls when working with this class of detergents and when analyzing the structure and dynamics of membrane proteins in alkyl phosphocholine detergents.
Collapse
Affiliation(s)
- Christophe Chipot
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
- Department
of Physics, University of Illinois at Urbana−Champaign, 1110 West Green Street, Urbana, Illinois 61801, United States
| | - François Dehez
- SRSMC, UMR 7019 Université de Lorraine CNRS, Vandoeuvre-les-Nancy F-54500, France
- Laboratoire
International Associé CNRS and University of Illinois at Urbana−Champaign, Vandoeuvre-les-Nancy F-54506, France
| | - Jason R. Schnell
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Nicole Zitzmann
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | | | - Laurent J. Catoire
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Bruno Miroux
- Laboratory
of Biology and Physico-Chemistry of Membrane Proteins, Institut de Biologie Physico-Chimique (IBPC), UMR
7099 CNRS, Paris 75005, France
- University
Paris Diderot, Paris 75005, France
- PSL
Research University, Paris 75005, France
| | - Edmund R. S. Kunji
- Medical
Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gianluigi Veglia
- Department
of Biochemistry, Molecular Biology, and Biophysics, and Department
of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy A. Cross
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Paul Schanda
- Université
Grenoble Alpes, CEA, CNRS, IBS, Grenoble F-38000, France
| |
Collapse
|
19
|
Barnaba C, Sahoo BR, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Cytochrome-P450-Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Bikash Ranjan Sahoo
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Thirupathi Ravula
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| | - Ilce G. Medina-Meza
- Department of Biosystems and Agricultural Engineering; Michigan State University; East Lansing MI 48824-1323 USA
| | - Sang-Choul Im
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105-1055 USA
| | | | - Lucy Waskell
- Department of Anesthesiology; University of Michigan and VA Medical Center; Ann Arbor MI 48105-1055 USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry; University of Michigan; Ann Arbor MI 48109-1055 USA
| |
Collapse
|
20
|
Barnaba C, Sahoo BR, Ravula T, Medina-Meza IG, Im SC, Anantharamaiah GM, Waskell L, Ramamoorthy A. Cytochrome-P450-Induced Ordering of Microsomal Membranes Modulates Affinity for Drugs. Angew Chem Int Ed Engl 2018; 57:3391-3395. [PMID: 29385304 DOI: 10.1002/anie.201713167] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/16/2018] [Indexed: 11/08/2022]
Abstract
Although membrane environment is known to boost drug metabolism by mammalian cytochrome P450s, the factors that stabilize the structural folding and enhance protein function are unclear. In this study, we use peptide-based lipid nanodiscs to "trap" the lipid boundaries of microsomal cytochrome P450 2B4. We report the first evidence that CYP2B4 is able to induce the formation of raft domains in a biomimetic compound of the endoplasmic reticulum. NMR experiments were used to identify and quantitatively determine the lipids present in nanodiscs. A combination of biophysical experiments and molecular dynamics simulations revealed a sphingomyelin binding region in CYP2B4. The protein-induced lipid raft formation increased the thermal stability of P450 and dramatically altered ligand binding kinetics of the hydrophilic ligand BHT. These results unveil membrane/protein dynamics that contribute to the delicate mechanism of redox catalysis in lipid membrane.
Collapse
Affiliation(s)
- Carlo Barnaba
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Bikash Ranjan Sahoo
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Thirupathi Ravula
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Ilce G Medina-Meza
- Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI, 48824-1323, USA
| | - Sang-Choul Im
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - G M Anantharamaiah
- Department of Medicine, UAB Medical Center, Birmingham, Alabama, 35294, USA
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan and VA Medical Center, Ann Arbor, MI, 48105-1055, USA
| | - Ayyalusamy Ramamoorthy
- Biophysics and Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| |
Collapse
|
21
|
Ben-Ari H, Paz M, Sher D. The chemical armament of reef-building corals: inter- and intra-specific variation and the identification of an unusual actinoporin in Stylophora pistilata. Sci Rep 2018; 8:251. [PMID: 29321526 PMCID: PMC5762905 DOI: 10.1038/s41598-017-18355-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 12/04/2017] [Indexed: 01/20/2023] Open
Abstract
Corals, like other cnidarians, are venomous animals that rely on stinging cells (nematocytes) and their toxins to catch prey and defend themselves against predators. However, little is known about the chemical arsenal employed by stony corals, despite their ecological importance. Here, we show large differences in the density of nematocysts and whole-body hemolytic activity between different species of reef-building corals. In the branched coral Stylophora pistillata, the tips of the branches exhibited a greater hemolytic activity than the bases. Hemolytic activity and nematocyst density were significantly lower in Stylophora that were maintained for close to a year in captivity compared to corals collected from the wild. A cysteine-containing actinoporin was identified in Stylophora following partial purification and tandem mass spectrometry. This toxin, named Δ-Pocilopotoxin-Spi1 (Δ-PCTX-Spi1) is the first hemolytic toxin to be partially isolated and characterized in true reef-building corals. Loss of hemolytic activity during chromatography suggests that this actinoporin is only one of potentially several hemolytic molecules. These results suggest that the capacity to employ offensive and defensive chemicals by corals is a dynamic trait within and between coral species, and provide a first step towards identifying the molecular components of the coral chemical armament.
Collapse
Affiliation(s)
- Hanit Ben-Ari
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.,The Interuniversity Institute for Marine Sciences, Eilat, Israel
| | - Moran Paz
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - Daniel Sher
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
22
|
Pore-forming toxins in Cnidaria. Semin Cell Dev Biol 2017; 72:133-141. [DOI: 10.1016/j.semcdb.2017.07.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 01/05/2023]
|
23
|
Soto C, del Valle A, Valiente PA, Ros U, Lanio ME, Hernández AM, Alvarez C. Differential binding and activity of the pore-forming toxin sticholysin II in model membranes containing diverse ceramide-derived lipids. Biochimie 2017; 138:20-31. [DOI: 10.1016/j.biochi.2017.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 04/04/2017] [Indexed: 01/07/2023]
|
24
|
Karas JA, Sani MA, Separovic F. Chemical Synthesis and Characterization of an Equinatoxin II(1-85) Analogue. Molecules 2017; 22:E559. [PMID: 28358312 PMCID: PMC6153748 DOI: 10.3390/molecules22040559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 03/29/2017] [Accepted: 03/29/2017] [Indexed: 11/17/2022] Open
Abstract
The chemical synthesis of an 85 residue analogue of the pore-forming protein, Equinatoxin II (EqtII), was achieved. Peptide precursors with over 40 residues were assembled by solid phase synthesis. The EqtII(1-46) fragment was modified to the reactive C-terminal thioester and native chemical ligation was performed with the A47C mutated EqtII(47-85) peptide to form the EqtII(1-85) analogue. Circular dichroism spectroscopy indicated that the N-terminal domain of EqtII(1-46) and EqtII(1-85) maintains predominantly an α-helical structure in solution and also in the presence of lipid micelles. This demonstrates the feasibility of assembling the full 179 residue protein EqtII via chemical means. Site-specific isotopic labels could be incorporated for structural studies in membranes by solid-state NMR spectroscopy.
Collapse
Affiliation(s)
- John A Karas
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Marc-Antoine Sani
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
25
|
Laborde RJ, Sanchez-Ferras O, Luzardo MC, Cruz-Leal Y, Fernández A, Mesa C, Oliver L, Canet L, Abreu-Butin L, Nogueira CV, Tejuca M, Pazos F, Álvarez C, Alonso ME, Longo-Maugéri IM, Starnbach MN, Higgins DE, Fernández LE, Lanio ME. Novel Adjuvant Based on the Pore-Forming Protein Sticholysin II Encapsulated into Liposomes Effectively Enhances the Antigen-Specific CTL-Mediated Immune Response. THE JOURNAL OF IMMUNOLOGY 2017; 198:2772-2784. [PMID: 28258198 DOI: 10.4049/jimmunol.1600310] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 01/18/2017] [Indexed: 12/21/2022]
Abstract
Vaccine strategies to enhance CD8+ CTL responses remain a current challenge because they should overcome the plasmatic and endosomal membranes for favoring exogenous Ag access to the cytosol of APCs. As a way to avoid this hurdle, sticholysin (St) II, a pore-forming protein from the Caribbean Sea anemone Stichodactyla helianthus, was encapsulated with OVA into liposomes (Lp/OVA/StII) to assess their efficacy to induce a CTL response. OVA-specific CD8+ T cells transferred to mice immunized with Lp/OVA/StII experienced a greater expansion than when the recipients were injected with the vesicles without St, mostly exhibiting a memory phenotype. Consequently, Lp/OVA/StII induced a more potent effector function, as shown by CTLs, in vivo assays. Furthermore, treatment of E.G7-OVA tumor-bearing mice with Lp/OVA/StII significantly reduced tumor growth being more noticeable in the preventive assay. The contribution of CD4+ and CD8+ T cells to CTL and antitumor activity, respectively, was elucidated. Interestingly, the irreversibly inactive variant of the StI mutant StI W111C, encapsulated with OVA into Lp, elicited a similar OVA-specific CTL response to that observed with Lp/OVA/StII or vesicles encapsulating recombinant StI or the reversibly inactive StI W111C dimer. These findings suggest the relative independence between StII pore-forming activity and its immunomodulatory properties. In addition, StII-induced in vitro maturation of dendritic cells might be supporting these properties. These results are the first evidence, to our knowledge, that StII, a pore-forming protein from a marine eukaryotic organism, encapsulated into Lp functions as an adjuvant to induce a robust specific CTL response.
Collapse
Affiliation(s)
- Rady J Laborde
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Oraly Sanchez-Ferras
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María C Luzardo
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Yoelys Cruz-Leal
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Audry Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Circe Mesa
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liliana Oliver
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba
| | - Liem Canet
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Liane Abreu-Butin
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Catarina V Nogueira
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Mayra Tejuca
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Fabiola Pazos
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Carlos Álvarez
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - María E Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ieda M Longo-Maugéri
- Discipline of Immunology, Department of Microbiology, Immunology, and Parasitology, Paulista Medical School, Federal University of São Paulo, São Paulo 04023-900, Brazil; and
| | - Michael N Starnbach
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Darren E Higgins
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115
| | - Luis E Fernández
- Immunobiology Division, Center of Molecular Immunology, Havana 11600, Cuba;
| | - María E Lanio
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana 10400, Cuba;
| |
Collapse
|
26
|
García-Linares S, Rivera-de-Torre E, Palacios-Ortega J, Gavilanes JG, Martínez-del-Pozo Á. The Metamorphic Transformation of a Water-Soluble Monomeric Protein Into an Oligomeric Transmembrane Pore. ADVANCES IN BIOMEMBRANES AND LIPID SELF-ASSEMBLY 2017. [DOI: 10.1016/bs.abl.2017.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Khan HM, He T, Fuglebakk E, Grauffel C, Yang B, Roberts MF, Gershenson A, Reuter N. A Role for Weak Electrostatic Interactions in Peripheral Membrane Protein Binding. Biophys J 2016; 110:1367-78. [PMID: 27028646 PMCID: PMC4816757 DOI: 10.1016/j.bpj.2016.02.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/08/2016] [Accepted: 02/02/2016] [Indexed: 12/01/2022] Open
Abstract
Bacillus thuringiensis phosphatidylinositol-specific phospholipase C (BtPI-PLC) is a secreted virulence factor that binds specifically to phosphatidylcholine (PC) bilayers containing negatively charged phospholipids. BtPI-PLC carries a negative net charge and its interfacial binding site has no obvious cluster of basic residues. Continuum electrostatic calculations show that, as expected, nonspecific electrostatic interactions between BtPI-PLC and membranes vary as a function of the fraction of anionic lipids present in the bilayers. Yet they are strikingly weak, with a calculated ΔGel below 1 kcal/mol, largely due to a single lysine (K44). When K44 is mutated to alanine, the equilibrium dissociation constant for small unilamellar vesicles increases more than 50 times (∼2.4 kcal/mol), suggesting that interactions between K44 and lipids are not merely electrostatic. Comparisons of molecular-dynamics simulations performed using different lipid compositions reveal that the bilayer composition does not affect either hydrogen bonds or hydrophobic contacts between the protein interfacial binding site and bilayers. However, the occupancies of cation-π interactions between PC choline headgroups and protein tyrosines vary as a function of PC content. The overall contribution of basic residues to binding affinity is also context dependent and cannot be approximated by a rule-of-thumb value because these residues can contribute to both nonspecific electrostatic and short-range protein-lipid interactions. Additionally, statistics on the distribution of basic amino acids in a data set of membrane-binding domains reveal that weak electrostatics, as observed for BtPI-PLC, might be a less unusual mechanism for peripheral membrane binding than is generally thought.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Tao He
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Edvin Fuglebakk
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Cédric Grauffel
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Boqian Yang
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts; Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Mary F Roberts
- Department of Chemistry, Boston College, Chestnut Hill, Massachusetts
| | - Anne Gershenson
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen, Bergen, Norway; Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway.
| |
Collapse
|
28
|
Evolution of the Cytolytic Pore-Forming Proteins (Actinoporins) in Sea Anemones. Toxins (Basel) 2016; 8:toxins8120368. [PMID: 27941639 PMCID: PMC5198562 DOI: 10.3390/toxins8120368] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 12/27/2022] Open
Abstract
Sea anemones (Cnidaria, Anthozoa, and Actiniaria) use toxic peptides to incapacitate and immobilize prey and to deter potential predators. Their toxin arsenal is complex, targeting a variety of functionally important protein complexes and macromolecules involved in cellular homeostasis. Among these, actinoporins are one of the better characterized toxins; these venom proteins form a pore in cellular membranes containing sphingomyelin. We used a combined bioinformatic and phylogenetic approach to investigate how actinoporins have evolved across three superfamilies of sea anemones (Actinioidea, Metridioidea, and Actinostoloidea). Our analysis identified 90 candidate actinoporins across 20 species. We also found clusters of six actinoporin-like genes in five species of sea anemone (Nematostella vectensis, Stomphia coccinea, Epiactis japonica, Heteractis crispa, and Diadumene leucolena); these actinoporin-like sequences resembled actinoporins but have a higher sequence similarity with toxins from fungi, cone snails, and Hydra. Comparative analysis of the candidate actinoporins highlighted variable and conserved regions within actinoporins that may pertain to functional variation. Although multiple residues are involved in initiating sphingomyelin recognition and membrane binding, there is a high rate of replacement for a specific tryptophan with leucine (W112L) and other hydrophobic residues. Residues thought to be involved with oligomerization were variable, while those forming the phosphocholine (POC) binding site and the N-terminal region involved with cell membrane penetration were highly conserved.
Collapse
|
29
|
García-Linares S, Maula T, Rivera-de-Torre E, Gavilanes JG, Slotte JP, Martínez-Del-Pozo Á. Role of the Tryptophan Residues in the Specific Interaction of the Sea Anemone Stichodactyla helianthus's Actinoporin Sticholysin II with Biological Membranes. Biochemistry 2016; 55:6406-6420. [PMID: 27933775 DOI: 10.1021/acs.biochem.6b00935] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Actinoporins are pore-forming toxins from sea anemones. Upon interaction with sphingomyelin-containing bilayers, they become integral oligomeric membrane structures that form a pore. Sticholysin II from Stichodactyla helianthus contains five tryptophans located at strategic positions; its role has now been studied using different mutants. Results show that W43 and W115 play a determinant role in maintaining the high thermostability of the protein, while W146 provides specific interactions for protomer-protomer assembly. W110 and W114 sustain the hydrophobic effect, which is one of the major driving forces for membrane binding in the presence of Chol. However, in its absence, additional interactions with sphingomyelin are required. These conclusions were confirmed with two sphingomyelin analogues, one of which had impaired hydrogen bonding properties. The results obtained support actinoporins' Trp residues playing a major role in membrane recognition and binding, but their residues have an only minor influence on the diffusion and oligomerization steps needed to assemble a functional pore.
Collapse
Affiliation(s)
- Sara García-Linares
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid, Spain.,Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | - Terhi Maula
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | | | - José G Gavilanes
- Departamento de Bioquímica y Biología Molecular I, Universidad Complutense , Madrid, Spain
| | - J Peter Slotte
- Biochemistry, Faculty of Science and Engineering, Åbo Akademi University , Turku, Finland
| | | |
Collapse
|
30
|
Khan HM, Grauffel C, Broer R, MacKerell AD, Havenith RWA, Reuter N. Improving the Force Field Description of Tyrosine-Choline Cation-π Interactions: QM Investigation of Phenol-N(Me) 4+ Interactions. J Chem Theory Comput 2016; 12:5585-5595. [PMID: 27682345 PMCID: PMC5148683 DOI: 10.1021/acs.jctc.6b00654] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cation-π interactions between tyrosine amino acids and compounds containing N,N,N-trimethylethanolammonium (N(CH3)3) are involved in the recognition of histone tails by chromodomains and in the recognition of phosphatidylcholine (PC) phospholipids by membrane-binding proteins. Yet, the lack of explicit polarization or charge transfer effects in molecular mechanics force fields raises questions about the reliability of the representation of these interactions in biomolecular simulations. Here, we investigate the nature of phenol-tetramethylammonium (TMA) interactions using quantum mechanical (QM) calculations, which we also use to evaluate the accuracy of the additive CHARMM36 and Drude polarizable force fields in modeling tyrosine-choline interactions. We show that the potential energy surface (PES) obtained using SAPT2+/aug-cc-pVDZ compares well with the large basis-set CCSD(T) PES when TMA approaches the phenol ring perpendicularly. Furthermore, the SAPT energy decomposition reveals comparable contributions from electrostatics and dispersion in phenol-TMA interactions. We then compared the SAPT2+/aug-cc-pVDZ PES obtained along various approach directions to the corresponding PES obtained with CHARMM, and we show that the force field accurately reproduces the minimum distances while the interaction energies are underestimated. The use of the Drude polarizable force field significantly improves the interaction energies but decreases the agreement on distances at energy minima. The best agreement between force field and QM PES is obtained by modifying the Lennard-Jones terms for atom pairs involved in the phenol-TMA cation-π interactions. This is further shown to improve the correlation between the occupancy of tyrosine-choline cation-π interactions obtained from molecular dynamics simulations of a bilayer-bound bacterial phospholipase and experimental affinity data of the wild-type protein and selected mutants.
Collapse
Affiliation(s)
- Hanif M Khan
- Department of Molecular Biology, University of Bergen , N-5020 Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen , N-5020 Bergen, Norway
| | - Cédric Grauffel
- Institute of Biomedical Sciences, Academia Sinica , Taipei 11529, Taiwan
| | | | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy , Baltimore, Maryland 21201, United States
| | - Remco W A Havenith
- Ghent Quantum Chemistry Group, Department of Inorganic and Physical Chemistry, Ghent University , 9000 Ghent, Belgium
| | - Nathalie Reuter
- Department of Molecular Biology, University of Bergen , N-5020 Bergen, Norway
- Computational Biology Unit, Department of Informatics, University of Bergen , N-5020 Bergen, Norway
| |
Collapse
|
31
|
Probing phosphoethanolamine-containing lipids in membranes with duramycin/cinnamycin and aegerolysin proteins. Biochimie 2016; 130:81-90. [DOI: 10.1016/j.biochi.2016.09.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023]
|
32
|
Sphingomyelin is sorted at the trans Golgi network into a distinct class of secretory vesicle. Proc Natl Acad Sci U S A 2016; 113:6677-82. [PMID: 27247384 DOI: 10.1073/pnas.1602875113] [Citation(s) in RCA: 243] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the principal functions of the trans Golgi network (TGN) is the sorting of proteins into distinct vesicular transport carriers that mediate secretion and interorganelle trafficking. Are lipids also sorted into distinct TGN-derived carriers? The Golgi is the principal site of the synthesis of sphingomyelin (SM), an abundant sphingolipid that is transported. To address the specificity of SM transport to the plasma membrane, we engineered a natural SM-binding pore-forming toxin, equinatoxin II (Eqt), into a nontoxic reporter termed Eqt-SM and used it to monitor intracellular trafficking of SM. Using quantitative live cell imaging, we found that Eqt-SM is enriched in a subset of TGN-derived secretory vesicles that are also enriched in a glycophosphatidylinositol-anchored protein. In contrast, an integral membrane secretory protein (CD8α) is not enriched in these carriers. Our results demonstrate the sorting of native SM at the TGN and its transport to the plasma membrane by specific carriers.
Collapse
|
33
|
Wang CK, King GJ, Conibear AC, Ramos MC, Chaousis S, Henriques ST, Craik DJ. Mirror Images of Antimicrobial Peptides Provide Reflections on Their Functions and Amyloidogenic Properties. J Am Chem Soc 2016; 138:5706-13. [PMID: 27064294 DOI: 10.1021/jacs.6b02575] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enantiomeric forms of BTD-2, PG-1, and PM-1 were synthesized to delineate the structure and function of these β-sheet antimicrobial peptides. Activity and lipid-binding assays confirm that these peptides act via a receptor-independent mechanism involving membrane interaction. The racemic crystal structure of BTD-2 solved at 1.45 Å revealed a novel oligomeric form of β-sheet antimicrobial peptides within the unit cell: an antiparallel trimer, which we suggest might be related to its membrane-active form. The BTD-2 oligomer extends into a larger supramolecular state that spans the crystal lattice, featuring a steric-zipper motif that is common in structures of amyloid-forming peptides. The supramolecular structure of BTD-2 thus represents a new mode of fibril-like assembly not previously observed for antimicrobial peptides, providing structural evidence linking antimicrobial and amyloid peptides.
Collapse
Affiliation(s)
- Conan K Wang
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Gordon J King
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Anne C Conibear
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Mariana C Ramos
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Stephanie Chaousis
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| |
Collapse
|
34
|
Tanaka K, Caaveiro JMM, Tsumoto K. Bidirectional Transformation of a Metamorphic Protein between the Water-Soluble and Transmembrane Native States. Biochemistry 2015; 54:6863-6. [DOI: 10.1021/acs.biochem.5b01112] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Koji Tanaka
- Department of Chemistry and Biotechnology and ‡Department of
Bioengineering, School
of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Jose M. M. Caaveiro
- Department of Chemistry and Biotechnology and ‡Department of
Bioengineering, School
of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology and ‡Department of
Bioengineering, School
of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
35
|
Rojko N, Dalla Serra M, Maček P, Anderluh G. Pore formation by actinoporins, cytolysins from sea anemones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:446-56. [PMID: 26351738 DOI: 10.1016/j.bbamem.2015.09.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 08/31/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Actinoporins (APs) from sea anemones are ~20 kDa pore forming toxins with a β-sandwich structure flanked by two α-helices. The molecular mechanism of APs pore formation is composed of several well-defined steps. APs bind to membrane by interfacial binding site composed of several aromatic amino acid residues that allow binding to phosphatidylcholine and specific recognition of sphingomyelin. Subsequently, the N-terminal α-helix from the β-sandwich has to be inserted into the lipid/water interphase in order to form a functional pore. Functional studies and single molecule imaging revealed that only several monomers, 3-4, oligomerise to form a functional pore. In this model the α-helices and surrounding lipid molecules build toroidal pore. In agreement, AP pores are transient and electrically heterogeneous. On the contrary, crystallized oligomers of actinoporin fragaceatoxin C were found to be composed of eight monomers with no lipids present between the adjacent α-helices. This article is part of a Special Issue entitled: Pore-Forming Toxins edited by Maur Dalla Serra and Franco Gambale.
Collapse
Affiliation(s)
- Nejc Rojko
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Mauro Dalla Serra
- Istituto di Biofisica, Consiglio Nazionale delle Ricerche & Fondazione Bruno Kessler, via alla Cascata 56/C, 38123 Trento, Italy
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia; Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia.
| |
Collapse
|
36
|
Bhat HB, Ishitsuka R, Inaba T, Murate M, Abe M, Makino A, Kohyama-Koganeya A, Nagao K, Kurahashi A, Kishimoto T, Tahara M, Yamano A, Nagamune K, Hirabayashi Y, Juni N, Umeda M, Fujimori F, Nishibori K, Yamaji-Hasegawa A, Greimel P, Kobayashi T. Evaluation of aegerolysins as novel tools to detect and visualize ceramide phosphoethanolamine, a major sphingolipid in invertebrates. FASEB J 2015; 29:3920-34. [PMID: 26060215 DOI: 10.1096/fj.15-272112] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022]
Abstract
Ceramide phosphoethanolamine (CPE), a sphingomyelin analog, is a major sphingolipid in invertebrates and parasites, whereas only trace amounts are present in mammalian cells. In this study, mushroom-derived proteins of the aegerolysin family—pleurotolysin A2 (PlyA2; K(D) = 12 nM), ostreolysin (Oly; K(D) = 1.3 nM), and erylysin A (EryA; K(D) = 1.3 nM)—strongly associated with CPE/cholesterol (Chol)-containing membranes, whereas their low affinity to sphingomyelin/Chol precluded establishment of the binding kinetics. Binding specificity was determined by multilamellar liposome binding assays, supported bilayer assays, and solid-phase studies against a series of neutral and negatively charged lipid classes mixed 1:1 with Chol or phosphatidylcholine. No cross-reactivity was detected with phosphatidylethanolamine. Only PlyA2 also associated with CPE, independent of Chol content (K(D) = 41 μM), rendering it a suitable tool for visualizing CPE in lipid-blotting experiments and biologic samples from sterol auxotrophic organisms. Visualization of CPE enrichment in the CNS of Drosophila larvae (by PlyA2) and in the bloodstream form of the parasite Trypanosoma brucei (by EryA) by fluorescence imaging demonstrated the versatility of aegerolysin family proteins as efficient tools for detecting and visualizing CPE.
Collapse
Affiliation(s)
- Hema Balakrishna Bhat
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Reiko Ishitsuka
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Takehiko Inaba
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Motohide Murate
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Mitsuhiro Abe
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Asami Makino
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Ayako Kohyama-Koganeya
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Kohjiro Nagao
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Atsushi Kurahashi
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Takuma Kishimoto
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Michiru Tahara
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Akinori Yamano
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Kisaburo Nagamune
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Yoshio Hirabayashi
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Naoto Juni
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Masato Umeda
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Fumihiro Fujimori
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Kozo Nishibori
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Akiko Yamaji-Hasegawa
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Peter Greimel
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| | - Toshihide Kobayashi
- *Lipid Biology Laboratory, RIKEN, and Laboratory of Molecular Membrane Neuroscience, Brain Science Institute, RIKEN, Saitama, Japan; Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan; Yukiguni Maitake Co. Ltd., Niigata, Japan; Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan; Graduate School of Life and Environmental Sciences and Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; **Department of Environmental Science and Education, Faculty of Human Life Science, Tokyo Kasei University, Tokyo, Japan; and Institut National de la Santé et de la Recherche Médicale Unité 1060, Université Lyon 1, Villeurbanne, France
| |
Collapse
|