1
|
Bensel BM, Previs SB, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. Kinesin-1-transported liposomes prefer to go straight in 3D microtubule intersections by a mechanism shared by other molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2407330121. [PMID: 38980901 PMCID: PMC11260143 DOI: 10.1073/pnas.2407330121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/24/2024] [Indexed: 07/11/2024] Open
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.
Collapse
Affiliation(s)
- Brandon M. Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Samantha Beck Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Kathleen M. Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| | - Sam Walcott
- Department of Mathematical Sciences, and Bioinformatics and Computational Biology, Worcester Polytechnic Institute, Worcester, MA01609
| | - David M. Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT05405
| |
Collapse
|
2
|
Nasrin SR, Yamashita T, Ikeguchi M, Torisawa T, Oiwa K, Sada K, Kakugo A. Tensile Stress on Microtubules Facilitates Dynein-Driven Cargo Transport. NANO LETTERS 2024. [PMID: 38916205 DOI: 10.1021/acs.nanolett.4c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mechanical stress significantly affects the physiological functions of cells, including tissue homeostasis, cytoskeletal alterations, and intracellular transport. As a major cytoskeletal component, microtubules respond to mechanical stimulation by altering their alignment and polymerization dynamics. Previously, we reported that microtubules may modulate cargo transport by one of the microtubule-associated motor proteins, dynein, under compressive mechanical stress. Despite the critical role of tensile stress in many biological functions, how tensile stress on microtubules regulates cargo transport is yet to be unveiled. The present study demonstrates that the low-level tensile stress-induced microtubule deformation facilitates dynein-driven transport. We validate our experimental findings using all-atom molecular dynamics simulation. Our study may provide important implications for developing new therapies for diseases that involve impaired intracellular transport.
Collapse
Affiliation(s)
- Syeda Rubaiya Nasrin
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| | - Takefumi Yamashita
- Department of Physical University, School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, 153-8904, Japan
| | - Mitsunori Ikeguchi
- Graduate School of Medical Life Science, Yokohama City University, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, 411-8540, Japan
| | - Kazuhiro Oiwa
- Advanced ICT Research Institute, National Institute of Information and Communications Technology, Kobe, Hyogo 651-2492, Japan
| | - Kazuki Sada
- Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Akira Kakugo
- Graduate School of Science, Department of Physics and Astronomy, Kyoto University, Kyoto, 606-8152, Japan
| |
Collapse
|
3
|
Wirth JO, Schentarra EM, Scheiderer L, Macarrón-Palacios V, Tarnawski M, Hell SW. Uncovering kinesin dynamics in neurites with MINFLUX. Commun Biol 2024; 7:661. [PMID: 38811803 PMCID: PMC11136979 DOI: 10.1038/s42003-024-06358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
Neurons grow neurites of several tens of micrometers in length, necessitating active transport from the cell body by motor proteins. By tracking fluorophores as minimally invasive labels, MINFLUX is able to quantify the motion of those proteins with nanometer/millisecond resolution. Here we study the substeps of a truncated kinesin-1 mutant in primary rat hippocampal neurons, which have so far been mainly observed on polymerized microtubules deposited onto glass coverslips. A gentle fixation protocol largely maintains the structure and surface modifications of the microtubules in the cell. By analyzing the time between the substeps, we identify the ATP-binding state of kinesin-1 and observe the associated rotation of the kinesin-1 head in neurites. We also observed kinesin-1 switching microtubules mid-walk, highlighting the potential of MINFLUX to study the details of active cellular transport.
Collapse
Affiliation(s)
- Jan Otto Wirth
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Eva-Maria Schentarra
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Victor Macarrón-Palacios
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Miroslaw Tarnawski
- Protein Expression and Characterization Facility, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, 69120, Heidelberg, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
| |
Collapse
|
4
|
Adams JM, Sawe C, Rogers S, Reid J, Dasari R, Engelke MF. Characterization of the disease-causing mechanism of KIF3B mutations from ciliopathy patients. Front Mol Biosci 2024; 11:1327963. [PMID: 38665936 PMCID: PMC11043552 DOI: 10.3389/fmolb.2024.1327963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024] Open
Abstract
The heterodimeric kinesin-2 motor (KIF3A/KIF3B with accessory protein KAP3) drives intraflagellar transport, essential for ciliogenesis and ciliary function. Three point mutations in the KIF3B subunit have recently been linked to disease in humans (E250Q and L523P) and Bengal cats (A334T) (Cogné et al., Am. J. Hum. Genet., 2020, 106, 893-904). Patients display retinal atrophy and, in some cases, other ciliopathy phenotypes. However, the molecular mechanism leading to disease is currently unknown. Here, we used Kif3a -/- ;Kif3b -/- (knockout) 3T3 cells, which cannot make cilia, to characterize these mutations. While reexpression of KIF3B(E250Q) and KIF3B(L523P) did not rescue ciliogenesis, reexpression of wildtype or KIF3B(A334T) restored ciliogenesis to wildtype levels. Fluorescent tagging revealed that the E250Q mutant decorated microtubules and thus is a rigor mutation. The L523P mutation, in the alpha-helical stalk domain, surprisingly did not affect formation of the KIF3A/KIF3B/KAP3 complex but instead impaired motility along microtubules. Lastly, expression of the A334T motor was reduced in comparison to all other motors, and this motor displayed an impaired ability to disperse the Golgi complex when artificially linked to this high-load cargo. In summary, this work uses cell-based assays to elucidate the molecular effects of disease-causing mutations in the KIF3B subunit on the kinesin-2 holoenzyme.
Collapse
Affiliation(s)
| | | | | | | | | | - Martin F. Engelke
- School of Biological Sciences, Cell Physiology, Illinois State University, Normal, IL, United States
| |
Collapse
|
5
|
Scheiderer L, von der Emde H, Hesselink M, Weber M, Hell SW. MINSTED tracking of single biomolecules. Nat Methods 2024; 21:569-573. [PMID: 38480903 PMCID: PMC11009101 DOI: 10.1038/s41592-024-02209-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/13/2024] [Indexed: 04/13/2024]
Abstract
Here we show that MINSTED localization, a method whereby the position of a fluorophore is identified with precisely controlled beams of a STED microscope, tracks fluorophores and hence labeled biomolecules with nanometer/millisecond spatiotemporal precision. By updating the position for each detected photon, MINSTED recognizes fluorophore steps of 16 nm within <250 μs using about 13 photons. The power of MINSTED tracking is demonstrated by resolving the stepping of the motor protein kinesin-1 walking on microtubules and switching protofilaments.
Collapse
Affiliation(s)
- Lukas Scheiderer
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Henrik von der Emde
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mira Hesselink
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Michael Weber
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research, Heidelberg, Germany.
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Sen A, Chowdhury D, Kunwar A. Coordination, cooperation, competition, crowding and congestion of molecular motors: Theoretical models and computer simulations. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:563-650. [PMID: 38960486 DOI: 10.1016/bs.apcsb.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Cytoskeletal motor proteins are biological nanomachines that convert chemical energy into mechanical work to carry out various functions such as cell division, cell motility, cargo transport, muscle contraction, beating of cilia and flagella, and ciliogenesis. Most of these processes are driven by the collective operation of several motors in the crowded viscous intracellular environment. Imaging and manipulation of the motors with powerful experimental probes have been complemented by mathematical analysis and computer simulations of the corresponding theoretical models. In this article, we illustrate some of the key theoretical approaches used to understand how coordination, cooperation and competition of multiple motors in the crowded intra-cellular environment drive the processes that are essential for biological function of a cell. In spite of the focus on theory, experimentalists will also find this article as an useful summary of the progress made so far in understanding multiple motor systems.
Collapse
Affiliation(s)
- Aritra Sen
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India
| | - Debashish Chowdhury
- Department of Physics, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ambarish Kunwar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|
7
|
Bensel BM, Previs S, Bookwalter C, Trybus KM, Walcott S, Warshaw DM. "Spatial Relationships Matter: Kinesin-1 Molecular Motors Transport Liposome Cargo Through 3D Microtubule Intersections In Vitro". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.01.569616. [PMID: 38076816 PMCID: PMC10705568 DOI: 10.1101/2023.12.01.569616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.
Collapse
Affiliation(s)
- Brandon M Bensel
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Samantha Previs
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Carol Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| | - Sam Walcott
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA 01609
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT 05405
| |
Collapse
|
8
|
Xie P. Molecular mechanism of interaction between kinesin motors affecting their residence times on microtubule lattice and end. J Theor Biol 2023; 571:111556. [PMID: 37301429 DOI: 10.1016/j.jtbi.2023.111556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 03/05/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Kinesin superfamily can be classified into 14 subfamilies. Some families of kinesin motors such as kinesin-1 are responsible for long-distance intracellular transports and thus the motors are required to reside on the microtubule (MT) lattice for a longer time than at the end. Some families such as kinesin-8 Kip3 and kinesin-5 Eg5 are responsible for the regulation of MT length by depolymerizing or polymerizing the MT from the plus end and thus the motors are required to reside at the MT end for a long time. Under the crowded condition of the motors, it was found experimentally that the residence times of the kinesin-8 Kip3 and kinesin-5 Eg5 at the MT end are reduced greatly compared to the single-motor case. However, the underlying mechanism of different families of kinesin motors having different MT-end residence times is unknown. The molecular mechanism by which the interaction between the two motors greatly reduces the residence time of the motor at the MT end is elusive. In addition, during the processive stepping on the MT lattice, when two kinesin motors meet it is unknown how the interaction between them affects their dissociation rates. To address the above unclear issues, here we make a consistent and theoretical study of the residence times of the kinesin-1, kinesin-8 Kip3 and kinesin-5 Eg5 motors on the MT lattice and at the end under both the single-motor condition and multiple-motors or crowded condition.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Science, Beijing 100190, China.
| |
Collapse
|
9
|
Fukumoto K, Miyazono Y, Ueda T, Harada Y, Tadakuma H. Evaluating the effect of two-dimensional molecular layout on DNA origami-based transporters. NANOSCALE ADVANCES 2023; 5:2590-2601. [PMID: 37143804 PMCID: PMC10153088 DOI: 10.1039/d3na00088e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/09/2023] [Indexed: 05/06/2023]
Abstract
Cellular transport systems are sophisticated and efficient. Hence, one of the ultimate goals of nanotechnology is to design artificial transport systems rationally. However, the design principle has been elusive, because how motor layout affects motile activity has not been established, partially owing to the difficulty in achieving a precise layout of the motile elements. Here, we employed a DNA origami platform to evaluate the two-dimensional (2D) layout effect of kinesin motor proteins on transporter motility. We succeeded in accelerating the integration speed of the protein of interest (POI) to the DNA origami transporter by up to 700 times by introducing a positively charged poly-lysine tag (Lys-tag) into the POI (kinesin motor protein). This Lys-tag approach allowed us to construct and purify a transporter with high motor density, allowing a precise evaluation on the 2D layout effect. Our single-molecule imaging showed that the densely packed layout of kinesin decreased the run length of the transporter, although its velocity was moderately affected. These results indicate that steric hindrance is a critical parameter to be considered in the design of transport systems.
Collapse
Affiliation(s)
- Kodai Fukumoto
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University Osaka 560-0043 Japan
| | - Yuya Miyazono
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
| | - Takuya Ueda
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
- Graduate School of Science and Engineering, Waseda University Tokyo 162-8480 Japan
| | - Yoshie Harada
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Center for Quantum Information and Quantum Biology, Osaka University Osaka 560-0043 Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University Osaka 565-0871 Japan
| | - Hisashi Tadakuma
- Institute for Protein Research, Osaka University Osaka 565-0871 Japan
- Graduate School of Frontier Science, The University of Tokyo Chiba 277-8562 Japan
- School of Life Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University Shanghai 201210 People's Republic of China
| |
Collapse
|
10
|
Banks RA, Galstyan V, Lee HJ, Hirokawa S, Ierokomos A, Ross TD, Bryant Z, Thomson M, Phillips R. Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies. eLife 2023; 12:e79402. [PMID: 36752605 PMCID: PMC10014072 DOI: 10.7554/elife.79402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, processivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi-one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.
Collapse
Affiliation(s)
- Rachel A Banks
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Vahe Galstyan
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | - Soichi Hirokawa
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | | | - Tyler D Ross
- Department of Computing and Mathematical Science, California Institute of TechnologyPasadenaUnited States
| | - Zev Bryant
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
11
|
Striebel M, Brauns F, Frey E. Length Regulation Drives Self-Organization in Filament-Motor Mixtures. PHYSICAL REVIEW LETTERS 2022; 129:238102. [PMID: 36563230 DOI: 10.1103/physrevlett.129.238102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
Collapse
Affiliation(s)
- Moritz Striebel
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
12
|
Fernandez Bessone I, Navarro J, Martinez E, Karmirian K, Holubiec M, Alloatti M, Goto-Silva L, Arnaiz Yepez C, Martins-de-Souza D, Minardi Nascimento J, Bruno L, Saez TM, Rehen SK, Falzone TL. DYRK1A Regulates the Bidirectional Axonal Transport of APP in Human-Derived Neurons. J Neurosci 2022; 42:6344-6358. [PMID: 35803734 PMCID: PMC9398544 DOI: 10.1523/jneurosci.2551-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Dyrk1a triplication in Down's syndrome and its overexpression in Alzheimer's disease suggest a role for increased DYRK1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of Alzheimer's disease, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speed transitions, suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in Down's syndrome and Alzheimer's disease.SIGNIFICANCE STATEMENT Axonal transport defects are early events in the progression of neurodegenerative diseases, such as Alzheimer's disease. However, the molecular mechanisms underlying transport defects remain elusive. Dyrk1a kinase is triplicated in Down's syndrome and overexpressed in Alzheimer's disease, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of APP. Further, single-particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism, supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Jordi Navarro
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Emanuel Martinez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Karina Karmirian
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Mariana Holubiec
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Livia Goto-Silva
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
| | - Cayetana Arnaiz Yepez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Daniel Martins-de-Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Laboratory of Neuroproteomics, University of Campinas Campinas, Brasil, SP, 13083-970
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brasil, SP, 13083-970
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brasil, SP, 13083-970
| | | | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina C1428EGA
| | - Trinidad M Saez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Stevens K Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina C1425FQD
| |
Collapse
|
13
|
Ferro LS, Fang Q, Eshun-Wilson L, Fernandes J, Jack A, Farrell DP, Golcuk M, Huijben T, Costa K, Gur M, DiMaio F, Nogales E, Yildiz A. Structural and functional insight into regulation of kinesin-1 by microtubule-associated protein MAP7. Science 2022; 375:326-331. [PMID: 35050657 PMCID: PMC8985661 DOI: 10.1126/science.abf6154] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microtubule (MT)-associated protein 7 (MAP7) is a required cofactor for kinesin-1-driven transport of intracellular cargoes. Using cryo-electron microscopy and single-molecule imaging, we investigated how MAP7 binds MTs and facilitates kinesin-1 motility. The MT-binding domain (MTBD) of MAP7 bound MTs as an extended α helix between the protofilament ridge and the site of lateral contact. Unexpectedly, the MTBD partially overlapped with the binding site of kinesin-1 and inhibited its motility. However, by tethering kinesin-1 to the MT, the projection domain of MAP7 prevented dissociation of the motor and facilitated its binding to available neighboring sites. The inhibitory effect of the MTBD dominated as MTs became saturated with MAP7. Our results reveal biphasic regulation of kinesin-1 by MAP7 in the context of their competitive binding to MTs.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Qianglin Fang
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | - Lisa Eshun-Wilson
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
| | | | - Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley CA, USA
| | - Daniel P Farrell
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Mert Golcuk
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Teun Huijben
- Department of Imaging Physics, Delft University of Technology, Delft, Netherlands
| | | | - Mert Gur
- Department of Mechanical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Eva Nogales
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Howard Hughes Medical Institute, Chevy Chase MD, USA
| | - Ahmet Yildiz
- Department of Molecular and Cellular Biology, University of California, Berkeley CA, USA
- Biophysics Graduate Group, University of California, Berkeley CA, USA
- Physics Department, University of California, Berkeley CA, USA
| |
Collapse
|
14
|
Hou W, Kang W, Li Y, Shan Y, Wang S, Liu F. Dynamic Dissection of Dynein and Kinesin-1 Cooperatively Mediated Intercellular Transport of Porcine Epidemic Diarrhea Coronavirus along Microtubule Using Single Virus Tracking. Virulence 2021; 12:615-629. [PMID: 33538234 PMCID: PMC7872075 DOI: 10.1080/21505594.2021.1878748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It is now clear that the intercellular transport on microtubules by dynein and kinesin-1 motors has an important role in the replication and spread of many viruses. Porcine epidemic diarrhea virus (PEDV) is an enveloped, single-stranded RNA virus of the Coronavirus family, which can infect swine of all ages and cause severe economic losses in the swine industry. Elucidating the molecular mechanisms of the intercellular transport of PEDV through microtubule, dynein and kinesin-1 will be crucial for understanding its pathogenesis. Here, we demonstrate that microtubule, dynein, and kinesin-1 are involved in PEDV infection and can influence PEDV fusion and accumulation in the perinuclear region but cannot affect PEDV attachment or internalization. Furthermore, we adopted a single-virus tracking technique to dynamically observe PEDV intracellular transport with five different types: unidirectional movement toward microtubule plus ends; unidirectional movement toward microtubule minus ends; bidirectional movement along the same microtubule; bidirectional movement along different microtubules and motionless state. Among these types, the functions of dynein and kinesin-1 in PEDV intercellular transport were further analyzed by single-virus tracking and found that dynein and kinesin-1 mainly transport PEDV to the minus and plus ends of the microtubules, respectively; meanwhile, they also can transport PEDV to the opposite ends of the microtubules different from their conventional transport directions and also coordinate the bidirectional movement of PEDV along the same or different microtubules through their cooperation. These results provided deep insights and references to understand the pathogenesis of PEDV as well as to develop vaccines and treatments.
Collapse
Affiliation(s)
- Wei Hou
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Wenjie Kang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Yangyang Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China.,Computational Optics Laboratory, Jiangnan University , Wuxi, Jiangsu, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University , Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Monzon GA, Scharrel L, DSouza A, Henrichs V, Santen L, Diez S. Stable tug-of-war between kinesin-1 and cytoplasmic dynein upon different ATP and roadblock concentrations. J Cell Sci 2020; 133:133/22/jcs249938. [PMID: 33257498 DOI: 10.1242/jcs.249938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/18/2020] [Indexed: 11/20/2022] Open
Abstract
The maintenance of intracellular processes, like organelle transport and cell division, depend on bidirectional movement along microtubules. These processes typically require kinesin and dynein motor proteins, which move with opposite directionality. Because both types of motors are often simultaneously bound to the cargo, regulatory mechanisms are required to ensure controlled directional transport. Recently, it has been shown that parameters like mechanical motor activation, ATP concentration and roadblocks on the microtubule surface differentially influence the activity of kinesin and dynein motors in distinct manners. However, how these parameters affect bidirectional transport systems has not been studied. Here, we investigate the regulatory influence of these three parameters using in vitro gliding motility assays and stochastic simulations. We find that the number of active kinesin and dynein motors determines the transport direction and velocity, but that variations in ATP concentration and roadblock density have no significant effect. Thus, factors influencing the force balance between opposite motors appear to be important, whereas the detailed stepping kinetics and bypassing capabilities of the motors only have a small effect.
Collapse
Affiliation(s)
- Gina A Monzon
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Lara Scharrel
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Ashwin DSouza
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Verena Henrichs
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany.,Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, CZ-25250 Prague West, Czech Republic
| | - Ludger Santen
- Center for Biophysics, Department of Physics, Saarland University, D-66123, Saarbrücken, Germany
| | - Stefan Diez
- B CUBE Center for Molecular Bioengineering and Cluster of Excellence Physics of Life, Technische Universität Dresden, D-01307 Dresden, Germany .,Max Planck Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| |
Collapse
|
16
|
Stochastic modelling of collective motor protein transport through a crossing of microtubules. J Theor Biol 2020; 505:110370. [DOI: 10.1016/j.jtbi.2020.110370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/22/2022]
|
17
|
Zhernov I, Diez S, Braun M, Lansky Z. Intrinsically Disordered Domain of Kinesin-3 Kif14 Enables Unique Functional Diversity. Curr Biol 2020; 30:3342-3351.e5. [PMID: 32649913 DOI: 10.1016/j.cub.2020.06.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/06/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
Collapse
Affiliation(s)
- Ilia Zhernov
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany
| | - Marcus Braun
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| | - Zdenek Lansky
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic.
| |
Collapse
|
18
|
Mitochondria-adaptor TRAK1 promotes kinesin-1 driven transport in crowded environments. Nat Commun 2020; 11:3123. [PMID: 32561740 PMCID: PMC7305210 DOI: 10.1038/s41467-020-16972-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 06/02/2020] [Indexed: 01/20/2023] Open
Abstract
Intracellular trafficking of organelles, driven by kinesin-1 stepping along microtubules, underpins essential cellular processes. In absence of other proteins on the microtubule surface, kinesin-1 performs micron-long runs. Under crowding conditions, however, kinesin-1 motility is drastically impeded. It is thus unclear how kinesin-1 acts as an efficient transporter in intracellular environments. Here, we demonstrate that TRAK1 (Milton), an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces. Interaction with TRAK1 i) facilitates kinesin-1 navigation around obstacles, ii) increases the probability of kinesin-1 passing through cohesive islands of tau and iii) increases the run length of kinesin-1 in cell lysate. We explain the enhanced motility by the observed direct interaction of TRAK1 with microtubules, providing an additional anchor for the kinesin-1-TRAK1 complex. Furthermore, TRAK1 enables mitochondrial transport in vitro. We propose adaptor-mediated tethering as a mechanism regulating kinesin-1 motility in various cellular environments. Intracellular trafficking of organelles is driven by kinesin-1 stepping along microtubules, but crowding conditions impede kinesin-1 motility. Here authors demonstrate that TRAK1, an adaptor protein essential for mitochondrial trafficking, activates kinesin-1 and increases robustness of kinesin-1 stepping on crowded microtubule surfaces.
Collapse
|
19
|
Deeb SK, Guzik-Lendrum S, Jeffrey JD, Gilbert SP. The ability of the kinesin-2 heterodimer KIF3AC to navigate microtubule networks is provided by the KIF3A motor domain. J Biol Chem 2019; 294:20070-20083. [PMID: 31748411 PMCID: PMC6937563 DOI: 10.1074/jbc.ra119.010725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/17/2019] [Indexed: 01/13/2023] Open
Abstract
Heterodimeric kinesin family member KIF3AC is a mammalian kinesin-2 that is highly expressed in the central nervous system and has been implicated in intracellular transport. KIF3AC is unusual in that the motility characteristics of KIF3C when expressed as a homodimer are exceeding slow, whereas homodimeric KIF3AA, as well as KIF3AC, have much faster ATPase kinetics and single molecule velocities. Heterodimeric KIF3AC and homodimeric KIF3AA and KIF3CC are processive, although the run length of KIF3AC exceeds that of KIF3AA and KIF3CC. KIF3C is of particular interest because it exhibits a signature 25-residue insert of glycine and serine residues in loop L11 of its motor domain, and this insert is not present in any other kinesin, suggesting that it confers specific properties to mammalian heterodimeric KIF3AC. To gain a better understanding of the mechanochemical potential of KIF3AC, we pursued a single molecule study to characterize the navigation ability of KIF3AC, KIF3AA, and KIF3CC when encountering microtubule intersections. The results show that all three motors exhibited a preference to remain on the same microtubule when approaching an intersection from the top microtubule, and the majority of track switches occurred from the bottom microtubule onto the top microtubule. Heterodimeric KIF3AC and homodimeric KIF3AA displayed a similar likelihood of switching tracks (36.1 and 32.3%, respectively). In contrast, KIF3CC detached at intersections (67.7%) rather than switch tracks. These results indicate that it is the properties of KIF3A that contribute largely to the ability of KIF3AC to switch microtubule tracks to navigate intersections.
Collapse
Affiliation(s)
- Stephanie K Deeb
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Stephanie Guzik-Lendrum
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Jasper D Jeffrey
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| | - Susan P Gilbert
- Department of Biological Sciences and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180
| |
Collapse
|
20
|
Tjioe M, Shukla S, Vaidya R, Troitskaia A, Bookwalter CS, Trybus KM, Chemla YR, Selvin PR. Multiple kinesins induce tension for smooth cargo transport. eLife 2019; 8:50974. [PMID: 31670658 PMCID: PMC6904222 DOI: 10.7554/elife.50974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022] Open
Abstract
How cargoes move within a crowded cell—over long distances and at speeds nearly the same as when moving on unimpeded pathway—has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2 to 8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up. Resisting kinesins tend to come off more rapidly than, and speed up when pulled by driving kinesins, implying an asymmetric tug-of-war. Furthermore, kinesins dynamically interact to overcome roadblocks, occasionally combining their forces. Consequently, multiple kinesins acting as a team may play a significant role in facilitating smooth cargo motion in a dense environment. This is one of few cases in which single molecule behavior can be connected to ensemble behavior of multiple motors. The inside of a cell is a crowded space, full of proteins and other molecules. Yet, the molecular motors that transport some of those molecules within the cell move at the same speed as they would in pure water – about one micrometer per second. How the molecular motors could achieve such speeds in crowded cells was unclear. Nevertheless, Tjioe et al. suspected that the answer might be related to how multiple motors work together. Molecular motors move by walking along filaments inside the cell and pulling their cargo from one location to another. Other molecules that bind to the filaments should, in theory, act like “roadblocks” and impede the movement of the cargo. Tjioe et al. studied a motor protein called kinesin, which walks on filaments called microtubules. But instead of looking at these motors moving along microtubules inside a cell, Tjioe et al. used a simpler system where the cell was eliminated, and all parts were purified. Specifically, Tjioe et al. tethered purified motors to a piece of glass and then observed them under an extremely accurate microscope as they moved free-floating, fluorescently labelled microtubules. The microtubules, in this scenario, were acting like cargoes, where many kinesins could bind. Each kinesin motor also had a small chemical tag that could emit light. By following the movement of the lights, it was possible to calculate what each kinesin was doing and how the cargo moved. When more than one kinesin molecule was acting, the tension and speed of one kinesin affected the movement of the others. In any group of kinesins, about two-thirds of kinesin pulled the cargo, and unexpectedly, about one-third tended to resist and slow the cargo. These latter kinesins were moved along with the group without actually driving the cargo. These resisting kinesins did come off more rapidly than the driving kinesins, meaning the cargo should be able to quickly bypass roadblocks. This would help to keep the whole group travelling in the right direction at a steady pace.
Collapse
Affiliation(s)
- Marco Tjioe
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Saurabh Shukla
- Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Rohit Vaidya
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Alice Troitskaia
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Carol S Bookwalter
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, United States
| | - Yann R Chemla
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, United States.,Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, United States
| |
Collapse
|
21
|
Drechsler H, Xu Y, Geyer VF, Zhang Y, Diez S. Multivalent electrostatic microtubule interactions of synthetic peptides are sufficient to mimic advanced MAP-like behavior. Mol Biol Cell 2019; 30:2953-2968. [PMID: 31599700 PMCID: PMC6857568 DOI: 10.1091/mbc.e19-05-0247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are a functionally highly diverse class of proteins that help to adjust the shape and function of the microtubule cytoskeleton in space and time. For this purpose, MAPs structurally support microtubules, modulate their dynamic instability, or regulate the activity of associated molecular motors. The microtubule-binding domains of MAPs are structurally divergent, but often depend on electrostatic interactions with the negatively charged surface of the microtubule. This suggests that the surface exposure of positive charges rather than a certain structural fold is sufficient for a protein to associate with microtubules. Consistently, positively charged artificial objects have been shown to associate with microtubules and to diffuse along their lattice. Natural MAPs, however, show a more sophisticated functionality beyond lattice-diffusion. Here, we asked whether basic electrostatic interactions are sufficient to also support advanced MAP functionality. To test this hypothesis, we studied simple positively charged peptide sequences for the occurrence of typical MAP-like behavior. We found that a multivalent peptide construct featuring four lysine-alanine heptarepeats (starPEG-(KA7)4)-but not its monovalent KA7-subunits-show advanced, biologically relevant MAP-like behavior: starPEG-(KA7)4 binds microtubules in the low nanomolar range, diffuses along their lattice with the ability to switch between intersecting microtubules, and tracks depolymerizing microtubule ends. Further, starPEG-(KA7)4 promotes microtubule nucleation and growth, mediates depolymerization coupled pulling at plus ends, and bundles microtubules without significantly interfering with other proteins on the microtubule lattice (as exemplified by the motor kinesin-1). Our results show that positive charges and multivalency are sufficient to mimic advanced MAP-like behavior.
Collapse
Affiliation(s)
- Hauke Drechsler
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Yong Xu
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Veikko F Geyer
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Yixin Zhang
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische -Universität -Dresden, Dresden 01307, Germany.,Cluster of Excellence Physics of Life, Technische -Universität -Dresden, Dresden 01307, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden 01307, Germany
| |
Collapse
|
22
|
Ferro LS, Can S, Turner MA, ElShenawy MM, Yildiz A. Kinesin and dynein use distinct mechanisms to bypass obstacles. eLife 2019; 8:e48629. [PMID: 31498080 PMCID: PMC6783262 DOI: 10.7554/elife.48629] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/07/2019] [Indexed: 12/20/2022] Open
Abstract
Kinesin-1 and cytoplasmic dynein are microtubule (MT) motors that transport intracellular cargoes. It remains unclear how these motors move along MTs densely coated with obstacles of various sizes in the cytoplasm. Here, we tested the ability of single and multiple motors to bypass synthetic obstacles on MTs in vitro. Contrary to previous reports, we found that single mammalian dynein is highly capable of bypassing obstacles. Single human kinesin-1 motors fail to avoid obstacles, consistent with their inability to take sideways steps on to neighboring MT protofilaments. Kinesins overcome this limitation when working in teams, bypassing obstacles as effectively as multiple dyneins. Cargos driven by multiple kinesins or dyneins are also capable of rotating around the MT to bypass large obstacles. These results suggest that multiplicity of motors is required not only for transporting cargos over long distances and generating higher forces, but also for maneuvering cargos on obstacle-coated MT surfaces.
Collapse
Affiliation(s)
- Luke S Ferro
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Sinan Can
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
| | - Meghan A Turner
- Biophysics Graduate GroupUniversity of California, BerkeleyBerkeleyUnited States
| | - Mohamed M ElShenawy
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
| | - Ahmet Yildiz
- Department of Molecular and Cell BiologyUniversity of California, BerkeleyBerkeleyUnited States
- Department of PhysicsUniversity of California, BerkeleyBerkeleyUnited States
- Biophysics Graduate GroupUniversity of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
23
|
Kinetically distinct phases of tau on microtubules regulate kinesin motors and severing enzymes. Nat Cell Biol 2019; 21:1086-1092. [DOI: 10.1038/s41556-019-0374-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 07/18/2019] [Indexed: 11/09/2022]
|
24
|
Mickolajczyk KJ, Cook ASI, Jevtha JP, Fricks J, Hancock WO. Insights into Kinesin-1 Stepping from Simulations and Tracking of Gold Nanoparticle-Labeled Motors. Biophys J 2019; 117:331-345. [PMID: 31301807 DOI: 10.1016/j.bpj.2019.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 06/04/2019] [Accepted: 06/10/2019] [Indexed: 02/02/2023] Open
Abstract
High-resolution tracking of gold nanoparticle-labeled proteins has emerged as a powerful technique for measuring the structural kinetics of processive enzymes and other biomacromolecules. These techniques use point spread function (PSF) fitting methods borrowed from single-molecule fluorescence imaging to determine molecular positions below the diffraction limit. However, compared to fluorescence, gold nanoparticle tracking experiments are performed at significantly higher frame rates and utilize much larger probes. In the current work, we use Brownian dynamics simulations of nanoparticle-labeled proteins to investigate the regimes in which the fundamental assumptions of PSF fitting hold and where they begin to break down. We find that because gold nanoparticles undergo tethered diffusion around their anchor point, PSF fitting cannot be extended to arbitrarily fast frame rates. Instead, camera exposure times that allow the nanoparticle to fully populate its stationary positional distribution achieve a spatial averaging that increases fitting precision. We furthermore find that changes in the rotational freedom of the tagged protein can lead to artifactual translations in the fitted particle position. Finally, we apply these lessons to dissect a standing controversy in the kinesin field over the structure of a dimer in the ATP waiting state. Combining new experiments with simulations, we determine that the rear kinesin head in the ATP waiting state is unbound but not displaced from its previous microtubule binding site and that apparent differences in separately published reports were simply due to differences in the gold nanoparticle attachment position. Our results highlight the importance of gold conjugation decisions and imaging parameters to high-resolution tracking results and will serve as a useful guide for the design of future gold nanoparticle tracking experiments.
Collapse
Affiliation(s)
- Keith J Mickolajczyk
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering
| | - Annan S I Cook
- Department of Biomedical Engineering; Department of Physics, Pennsylvania State University, University Park, Pennsylvania
| | | | - John Fricks
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, Arizona
| | - William O Hancock
- Department of Biomedical Engineering; Intercollege Graduate Degree Program in Bioengineering.
| |
Collapse
|
25
|
Mitra A, Suñé M, Diez S, Sancho JM, Oriola D, Casademunt J. A Brownian Ratchet Model Explains the Biased Sidestepping of Single-Headed Kinesin-3 KIF1A. Biophys J 2019; 116:2266-2274. [PMID: 31155147 PMCID: PMC6588830 DOI: 10.1016/j.bpj.2019.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/21/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022] Open
Abstract
The kinesin-3 motor KIF1A is involved in long-ranged axonal transport in neurons. To ensure vesicular delivery, motors need to navigate the microtubule lattice and overcome possible roadblocks along the way. The single-headed form of KIF1A is a highly diffusive motor that has been shown to be a prototype of a Brownian motor by virtue of a weakly bound diffusive state to the microtubule. Recently, groups of single-headed KIF1A motors were found to be able to sidestep along the microtubule lattice, creating left-handed helical membrane tubes when pulling on giant unilamellar vesicles in vitro. A possible hypothesis is that the diffusive state enables the motor to explore the microtubule lattice and switch protofilaments, leading to a left-handed helical motion. Here, we study the longitudinal rotation of microtubules driven by single-headed KIF1A motors using fluorescence-interference contrast microscopy. We find an average rotational pitch of ≃1.5μm, which is remarkably robust to changes in the gliding velocity, ATP concentration, microtubule length, and motor density. Our experimental results are compared to stochastic simulations of Brownian motors moving on a two-dimensional continuum ratchet potential, which quantitatively agree with the fluorescence-interference contrast experiments. We find that single-headed KIF1A sidestepping can be explained as a consequence of the intrinsic handedness and polarity of the microtubule lattice in combination with the diffusive mechanochemical cycle of the motor.
Collapse
Affiliation(s)
- Aniruddha Mitra
- Center for Molecular and Cellular Bioengineering, B CUBE, Technische Universität Dresden, Dresden, Germany
| | - Marc Suñé
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Stefan Diez
- Center for Molecular and Cellular Bioengineering, B CUBE, Technische Universität Dresden, Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - José M Sancho
- Departament de Física de la Matèria Condensada, Facultat de Física, University of Barcelona, Barcelona, Spain; University of Barcelona Institute of Complex Systems, University of Barcelona, Barcelona, Spain
| | - David Oriola
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Max Planck Institute for the Physics of Complex Systems, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany.
| | - Jaume Casademunt
- Departament de Física de la Matèria Condensada, Facultat de Física, University of Barcelona, Barcelona, Spain; University of Barcelona Institute of Complex Systems, University of Barcelona, Barcelona, Spain
| |
Collapse
|
26
|
Gicking AM, Wang P, Liu C, Mickolajczyk KJ, Guo L, Hancock WO, Qiu W. The Orphan Kinesin PAKRP2 Achieves Processive Motility via a Noncanonical Stepping Mechanism. Biophys J 2019; 116:1270-1281. [PMID: 30902363 DOI: 10.1016/j.bpj.2019.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 02/07/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022] Open
Abstract
Phragmoplast-associated kinesin-related protein 2 (PAKRP2) is an orphan kinesin in Arabidopsis thaliana that is thought to transport vesicles along phragmoplast microtubules for cell plate formation. Here, using single-molecule fluorescence microscopy, we show that PAKRP2 is the first orphan kinesin to exhibit processive plus-end-directed motility on single microtubules as individual homodimers. Our results show that PAKRP2 processivity is achieved despite having an exceptionally long (32 residues) neck linker. Furthermore, using high-resolution nanoparticle tracking, we find that PAKRP2 steps via a hand-over-hand mechanism that includes frequent side steps, a prolonged diffusional search of the tethered head, and tight coupling of the ATP hydrolysis cycle to the forward-stepping cycle. Interestingly, truncating the PAKRP2 neck linker to 14 residues decreases the run length of PAKRP2; thus, the long neck linker enhances the processive behavior. Based on the canonical model of kinesin stepping, such a long neck linker is expected to decrease the processivity and disrupt the coupling of ATP hydrolysis to forward stepping. Therefore, we conclude that PAKRP2 employs a noncanonical strategy for processive motility, wherein a long neck linker is coupled with a slow ATP hydrolysis rate to allow for an extended diffusional search during each step without sacrificing processivity or efficiency.
Collapse
Affiliation(s)
| | - Pan Wang
- Department of Physics, Oregon State University, Corvallis, Oregon; School of Physics and Electronics, Henan University, Kaifeng, Henan, China
| | - Chun Liu
- Pearl River Fisheries Research Institute, Guangzhou, China
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, Pennsylvania
| | - Lijun Guo
- School of Physics and Electronics, Henan University, Kaifeng, Henan, China
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, Pennsylvania
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, Oregon; Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
27
|
Korten T, Tavkin E, Scharrel L, Kushwaha VS, Diez S. An automated in vitro motility assay for high-throughput studies of molecular motors. LAB ON A CHIP 2018; 18:3196-3206. [PMID: 30204813 PMCID: PMC6180315 DOI: 10.1039/c8lc00547h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/31/2018] [Indexed: 05/05/2023]
Abstract
Molecular motors, essential to force-generation and cargo transport within cells, are invaluable tools for powering nanobiotechnological lab-on-a-chip devices. These devices are based on in vitro motility assays that reconstitute molecular transport with purified motor proteins, requiring a deep understanding of the biophysical properties of motor proteins and thorough optimization to enable motility under varying environmental conditions. Until now, these assays have been prepared manually, severely limiting throughput. To overcome this limitation, we developed an in vitro motility assay where sample preparation, imaging and data evaluation are fully automated, enabling the processing of a 384-well plate within less than three hours. We demonstrate the automated assay for the analysis of peptide inhibitors for kinesin-1 at a wide range of concentrations, revealing that the IAK domain responsible for kinesin-1 auto-inhibition is both necessary and sufficient to decrease the affinity of the motor protein for microtubules, an aspect that was hidden in previous experiments due to scarcity of data.
Collapse
Affiliation(s)
- Till Korten
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Elena Tavkin
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Lara Scharrel
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Vandana Singh Kushwaha
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering
, Technische Universität Dresden
,
01069 Dresden
, Germany
.
- Max Planck Institute of Molecular Cell Biology and Genetics
,
01307 Dresden
, Germany
| |
Collapse
|
28
|
Pearce SP, Heil M, Jensen OE, Jones GW, Prokop A. Curvature-Sensitive Kinesin Binding Can Explain Microtubule Ring Formation and Reveals Chaotic Dynamics in a Mathematical Model. Bull Math Biol 2018; 80:3002-3022. [DOI: 10.1007/s11538-018-0505-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/01/2018] [Indexed: 11/24/2022]
|
29
|
Directionally biased sidestepping of Kip3/kinesin-8 is regulated by ATP waiting time and motor-microtubule interaction strength. Proc Natl Acad Sci U S A 2018; 115:E7950-E7959. [PMID: 30093386 DOI: 10.1073/pnas.1801820115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinesin-8 motors, which move in a highly processive manner toward microtubule plus ends where they act as depolymerases, are essential regulators of microtubule dynamics in cells. To understand their navigation strategy on the microtubule lattice, we studied the 3D motion of single yeast kinesin-8 motors, Kip3, on freely suspended microtubules in vitro. We observed short-pitch, left-handed helical trajectories indicating that kinesin-8 motors frequently switch protofilaments in a directionally biased manner. Intriguingly, sidestepping was not directly coupled to forward stepping but rather depended on the average dwell time per forward step under limiting ATP concentrations. Based on our experimental findings and numerical simulations we propose that effective sidestepping toward the left is regulated by a bifurcation in the Kip3 step cycle, involving a transition from a two-head-bound to a one-head-bound conformation in the ATP-waiting state. Results from a kinesin-1 mutant with extended neck linker hint toward a generic sidestepping mechanism for processive kinesins, facilitating the circumvention of intracellular obstacles on the microtubule surface.
Collapse
|
30
|
Rank M, Frey E. Crowding and Pausing Strongly Affect Dynamics of Kinesin-1 Motors along Microtubules. Biophys J 2018; 115:1068-1081. [PMID: 30146266 PMCID: PMC6139881 DOI: 10.1016/j.bpj.2018.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/27/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Molecular motors of the kinesin-1 family move in a directed and processive fashion along microtubules. It is generally accepted that steric hindrance of motors leads to crowding effects; however, little is known about the specific interactions involved. We employ an agent-based lattice gas model to study the impact of interactions that enhance the detachment of motors from crowded filaments on their collective dynamics. The predictions of our model quantitatively agree with the experimentally observed concentration dependence of key motor characteristics including their run length, dwell time, velocity, and landing rate. From the anomalous stepping statistics of individual motors that exhibit relatively long pauses, we infer that kinesin-1 motors sometimes lapse into an inactive state. Hereby, the formation of traffic jams amplifies the impact of single inactive motors and leads to a crowding dependence of the frequencies and durations of the resulting periods of no or slow motion. We interpret these findings and conclude that kinesin-1 spends a significant fraction of its stepping cycle in a weakly bound state in which only one of its heads is bound to the microtubule.
Collapse
Affiliation(s)
- Matthias Rank
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, München, Germany.
| |
Collapse
|
31
|
Tjioe M, Ryoo H, Ishitsuka Y, Ge P, Bookwalter C, Huynh W, McKenney RJ, Trybus KM, Selvin PR. Magnetic Cytoskeleton Affinity Purification of Microtubule Motors Conjugated to Quantum Dots. Bioconjug Chem 2018; 29:2278-2286. [PMID: 29932650 PMCID: PMC6452869 DOI: 10.1021/acs.bioconjchem.8b00264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We develop magnetic cytoskeleton affinity (MiCA) purification, which allows for rapid isolation of molecular motors conjugated to large multivalent quantum dots, in miniscule quantities, which is especially useful for single-molecule applications. When purifying labeled molecular motors, an excess of fluorophores or labels is usually used. However, large labels tend to sediment during the centrifugation step of microtubule affinity purification, a traditionally powerful technique for motor purification. This is solved with MiCA, and purification time is cut from 2 h to 20 min, a significant time-savings when it needs to be done daily. For kinesin, MiCA works with as little as 0.6 μg protein, with yield of ∼27%, compared to 41% with traditional purification. We show the utility of MiCA purification in a force-gliding assay with kinesin, allowing, for the first time, simultaneous determination of whether the force from each motor in a multiple-motor system drives or hinders microtubule movement. Furthermore, we demonstrate rapid purification of just 30 ng dynein-dynactin-BICD2N-QD (DDB-QD), ordinarily a difficult protein-complex to purify.
Collapse
Affiliation(s)
| | | | | | | | | | - Walter Huynh
- Department of Cellular and Molecular Pharmacology , University of California, San Francisco , San Francisco , California 94143 , United States
| | - Richard J McKenney
- Molecular & Cellular Biology , University of California, Davis , La Jolla , California 92093 , United States
| | - Kathleen M Trybus
- Department of Molecular Physiology and Biophysics , University of Vermont , Burlington , Vermont 05405 , United States
| | | |
Collapse
|
32
|
Rank M, Mitra A, Reese L, Diez S, Frey E. Limited Resources Induce Bistability in Microtubule Length Regulation. PHYSICAL REVIEW LETTERS 2018; 120:148101. [PMID: 29694156 DOI: 10.1103/physrevlett.120.148101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/29/2018] [Indexed: 06/08/2023]
Abstract
The availability of protein is an important factor for the determination of the size of the mitotic spindle. Involved in spindle-size regulation is kinesin-8, a molecular motor and microtubule (MT) depolymerase, which is known to tightly control MT length. Here, we propose and analyze a theoretical model in which kinesin-induced MT depolymerization competes with spontaneous polymerization while supplies of both tubulin and kinesin are limited. In contrast to previous studies where resources were unconstrained, we find that, for a wide range of concentrations, MT length regulation is bistable. We test our predictions by conducting in vitro experiments and find that the bistable behavior manifests in a bimodal MT length distribution.
Collapse
Affiliation(s)
- Matthias Rank
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| | - Aniruddha Mitra
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Louis Reese
- Department of Bionanoscience, Kavli Institute of Nanoscience, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Arnoldstraße 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Erwin Frey
- Arnold-Sommerfeld-Center for Theoretical Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 München, Germany
| |
Collapse
|
33
|
Bugiel M, Mitra A, Girardo S, Diez S, Schäffer E. Measuring Microtubule Supertwist and Defects by Three-Dimensional-Force-Clamp Tracking of Single Kinesin-1 Motors. NANO LETTERS 2018; 18:1290-1295. [PMID: 29380607 DOI: 10.1021/acs.nanolett.7b04971] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Three-dimensional (3D) nanometer tracking of single biomolecules provides important information about their biological function. However, existing microscopy approaches often have only limited spatial or temporal precision and do not allow the application of defined loads. Here, we developed and applied a high-precision 3D-optical-tweezers force clamp to track in vitro the 3D motion of single kinesin-1 motor proteins along microtubules. To provide the motors with unimpeded access to the whole microtubule lattice, we mounted the microtubules on topographic surface features generated by UV-nanoimprint lithography. Because kinesin-1 motors processively move along individual protofilaments, we could determine the number of protofilaments the microtubules were composed of by measuring the helical pitches of motor movement on supertwisted microtubules. Moreover, we were able to identify defects in microtubules, most likely arising from local changes in the protofilament number. While it is hypothesized that microtubule supertwist and defects can severely influence the function of motors and other microtubule-associated proteins, the presented method allows for the first time to fully map the microtubule lattice in situ. This mapping allows the correlation of motor-filament interactions with the microtubule fine-structure. With the additional ability to apply loads, we expect our 3D-optical-tweezers force clamp to become a valuable tool for obtaining a wide range of information from other biological systems, inaccessible by two-dimensional and/or ensemble measurements.
Collapse
Affiliation(s)
- Michael Bugiel
- Eberhard Karls Universität Tübingen, ZMBP , Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Aniruddha Mitra
- Technische Universität Dresden, B CUBE - Center for Molecular Bioengineering and Center for Advancing Electronics Dresden , Arnoldstrasse 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Salvatore Girardo
- Technische Universität Dresden, BIOTEC - Center for Molecular and Cellular Bioengineering , Tatzberg 47/49, 01307 Dresden, Germany
| | - Stefan Diez
- Technische Universität Dresden, B CUBE - Center for Molecular Bioengineering and Center for Advancing Electronics Dresden , Arnoldstrasse 18, 01307 Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Erik Schäffer
- Eberhard Karls Universität Tübingen, ZMBP , Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
34
|
Feng Q, Mickolajczyk KJ, Chen GY, Hancock WO. Motor Reattachment Kinetics Play a Dominant Role in Multimotor-Driven Cargo Transport. Biophys J 2018; 114:400-409. [PMID: 29401437 PMCID: PMC5985011 DOI: 10.1016/j.bpj.2017.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 01/10/2023] Open
Abstract
Kinesin-based cargo transport in cells frequently involves the coordinated activity of multiple motors, including kinesins from different families that move at different speeds. However, compared to the progress at the single-molecule level, mechanisms by which multiple kinesins coordinate their activity during cargo transport are poorly understood. To understand these multimotor coordination mechanisms, defined pairs of kinesin-1 and kinesin-2 motors were assembled on DNA scaffolds and their motility examined in vitro. Although less processive than kinesin-1 at the single-molecule level, addition of kinesin-2 motors more effectively amplified cargo run lengths. By applying the law of total expectation to cargo binding durations in ADP, the kinesin-2 microtubule reattachment rate was shown to be fourfold faster than that of kinesin-1. This difference in microtubule binding rates was also observed in solution by stopped-flow. High-resolution tracking of a gold-nanoparticle-labeled motor with 1 ms and 2 nm precision revealed that kinesin-2 motors detach and rebind to the microtubule much more frequently than does kinesin-1. Finally, compared to cargo transported by two kinesin-1, cargo transported by two kinesin-2 motors more effectively navigated roadblocks on the microtubule track. These results highlight the importance of motor reattachment kinetics during multimotor transport and suggest a coordinated transport model in which kinesin-1 motors step effectively against loads whereas kinesin-2 motors rapidly unbind and rebind to the microtubule. This dynamic tethering by kinesin-2 maintains the cargo near the microtubule and enables effective navigation along crowded microtubules.
Collapse
Affiliation(s)
- Qingzhou Feng
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Molecular Cellular and Integrative Biological Sciences Program in Huck Institute of Life Sciences, Penn State University, University Park, Pennsylvania
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, Pennsylvania
| | - Geng-Yuan Chen
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, Pennsylvania
| | - William O Hancock
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania; Intercollege Graduate Degree Program in Bioengineering, Penn State University, University Park, Pennsylvania; Molecular Cellular and Integrative Biological Sciences Program in Huck Institute of Life Sciences, Penn State University, University Park, Pennsylvania.
| |
Collapse
|
35
|
Balabanian L, Berger CL, Hendricks AG. Acetylated Microtubules Are Preferentially Bundled Leading to Enhanced Kinesin-1 Motility. Biophys J 2017; 113:1551-1560. [PMID: 28978447 DOI: 10.1016/j.bpj.2017.08.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 12/29/2022] Open
Abstract
The motor proteins kinesin and dynein transport organelles, mRNA, proteins, and signaling molecules along the microtubule cytoskeleton. In addition to serving as tracks for transport, the microtubule cytoskeleton directs intracellular trafficking by regulating the activity of motor proteins through the organization of the filament network, microtubule-associated proteins, and tubulin posttranslational modifications. However, it is not well understood how these factors influence motor motility, and in vitro assays and live cell observations often produce disparate results. To systematically examine the factors that contribute to cytoskeleton-based regulation of motor protein motility, we extracted intact microtubule networks from cells and tracked the motility of single fluorescently labeled motor proteins on these cytoskeletons. We find that tubulin acetylation alone does not directly affect kinesin-1 motility. However, acetylated microtubules are predominantly bundled, and bundling enhances kinesin run lengths and provides a greater number of available kinesin binding sites. The neuronal MAP tau is also not sensitive to tubulin acetylation, but enriches preferentially on highly curved regions of microtubules where it strongly inhibits kinesin motility. Taken together, these results suggest that the organization of the microtubule network is a key contributor to the regulation of motor-based transport.
Collapse
Affiliation(s)
- Linda Balabanian
- Department of Bioengineering, McGill University, Montreal, Québec, Canada
| | - Christopher L Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont
| | - Adam G Hendricks
- Department of Bioengineering, McGill University, Montreal, Québec, Canada.
| |
Collapse
|
36
|
Reddy BJ, Tripathy S, Vershinin M, Tanenbaum ME, Xu J, Mattson-Hoss M, Arabi K, Chapman D, Doolin T, Hyeon C, Gross SP. Heterogeneity in kinesin function. Traffic 2017; 18:658-671. [PMID: 28731566 PMCID: PMC11166478 DOI: 10.1111/tra.12504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/25/2022]
Abstract
The kinesin family proteins are often studied as prototypical molecular motors; a deeper understanding of them can illuminate regulation of intracellular transport. It is typically assumed that they function identically. Here we find that this assumption of homogeneous function appears incorrect: variation among motors' velocities in vivo and in vitro is larger than the stochastic variation expected for an ensemble of "identical" motors. When moving on microtubules, slow and fast motors are persistently slow, and fast, respectively. We develop theory that provides quantitative criteria to determine whether the observed single-molecule variation is too large to be generated from an ensemble of identical molecules. To analyze such heterogeneity, we group traces into homogeneous sub-ensembles. Motility studies varying the temperature, pH and glycerol concentration suggest at least 2 distinct functional states that are independently affected by external conditions. We end by investigating the functional ramifications of such heterogeneity through Monte-Carlo multi-motor simulations.
Collapse
Affiliation(s)
- Babu J.N. Reddy
- Department of Developmental and Cell Biology, University of California, Irvine, CA
| | - Suvranta Tripathy
- Department of Developmental and Cell Biology, University of California, Irvine, CA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michael Vershinin
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah
| | - Marvin E. Tanenbaum
- Hubrecht Institute, The Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center, Utrecht, The Netherlands
| | - Jing Xu
- School of Natural Sciences, University of California, Merced, California
| | | | - Karim Arabi
- Department of Developmental and Cell Biology, University of California, Irvine, CA
| | - Dail Chapman
- Department of Developmental and Cell Biology, University of California, Irvine, CA
| | - Tory Doolin
- Department of Developmental and Cell Biology, University of California, Irvine, CA
| | | | - Steven P. Gross
- Department of Developmental and Cell Biology, University of California, Irvine, CA
| |
Collapse
|
37
|
Siddiqui N, Straube A. Intracellular Cargo Transport by Kinesin-3 Motors. BIOCHEMISTRY (MOSCOW) 2017; 82:803-815. [PMID: 28918744 DOI: 10.1134/s0006297917070057] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Intracellular transport along microtubules enables cellular cargoes to efficiently reach the extremities of large, eukaryotic cells. While it would take more than 200 years for a small vesicle to diffuse from the cell body to the growing tip of a one-meter long axon, transport by a kinesin allows delivery in one week. It is clear from this example that the evolution of intracellular transport was tightly linked to the development of complex and macroscopic life forms. The human genome encodes 45 kinesins, 8 of those belonging to the family of kinesin-3 organelle transporters that are known to transport a variety of cargoes towards the plus end of microtubules. However, their mode of action, their tertiary structure, and regulation are controversial. In this review, we summarize the latest developments in our understanding of these fascinating molecular motors.
Collapse
Affiliation(s)
- N Siddiqui
- Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
38
|
Stepp WL, Merck G, Mueller-Planitz F, Ökten Z. Kinesin-2 motors adapt their stepping behavior for processive transport on axonemes and microtubules. EMBO Rep 2017; 18:1947-1956. [PMID: 28887322 DOI: 10.15252/embr.201744097] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/11/2017] [Accepted: 08/14/2017] [Indexed: 11/09/2022] Open
Abstract
Two structurally distinct filamentous tracks, namely singlet microtubules in the cytoplasm and axonemes in the cilium, serve as railroads for long-range transport processes in vivo In all organisms studied so far, the kinesin-2 family is essential for long-range transport on axonemes. Intriguingly, in higher eukaryotes, kinesin-2 has been adapted to work on microtubules in the cytoplasm as well. Here, we show that heterodimeric kinesin-2 motors distinguish between axonemes and microtubules. Unlike canonical kinesin-1, kinesin-2 takes directional, off-axis steps on microtubules, but it resumes a straight path when walking on the axonemes. The inherent ability of kinesin-2 to side-track on the microtubule lattice restricts the motor to one side of the doublet microtubule in axonemes. The mechanistic features revealed here provide a molecular explanation for the previously observed partitioning of oppositely moving intraflagellar transport trains to the A- and B-tubules of the same doublet microtubule. Our results offer first mechanistic insights into why nature may have co-evolved the heterodimeric kinesin-2 with the ciliary machinery to work on the specialized axonemal surface for two-way traffic.
Collapse
Affiliation(s)
- Willi L Stepp
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Georg Merck
- Physik Department E22, Technische Universität München, Garching, Germany
| | - Felix Mueller-Planitz
- Molecular Biology, Biomedical Center, Faculty of Medicine, LMU Munich, Martinsried, Germany
| | - Zeynep Ökten
- Physik Department E22, Technische Universität München, Garching, Germany .,Munich Center for Integrated Protein Science, Munich, Germany
| |
Collapse
|
39
|
Liang WH, Li Q, Rifat Faysal KM, King SJ, Gopinathan A, Xu J. Microtubule Defects Influence Kinesin-Based Transport In Vitro. Biophys J 2017; 110:2229-40. [PMID: 27224488 DOI: 10.1016/j.bpj.2016.04.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 04/18/2016] [Accepted: 04/22/2016] [Indexed: 10/25/2022] Open
Abstract
Microtubules are protein polymers that form "molecular highways" for long-range transport within living cells. Molecular motors actively step along microtubules to shuttle cellular materials between the nucleus and the cell periphery; this transport is critical for the survival and health of all eukaryotic cells. Structural defects in microtubules exist, but whether these defects impact molecular motor-based transport remains unknown. Here, we report a new, to our knowledge, approach that allowed us to directly investigate the impact of such defects. Using a modified optical-trapping method, we examined the group function of a major molecular motor, conventional kinesin, when transporting cargos along individual microtubules. We found that microtubule defects influence kinesin-based transport in vitro. The effects depend on motor number: cargos driven by a few motors tended to unbind prematurely from the microtubule, whereas cargos driven by more motors tended to pause. To our knowledge, our study provides the first direct link between microtubule defects and kinesin function. The effects uncovered in our study may have physiological relevance in vivo.
Collapse
Affiliation(s)
- Winnie H Liang
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Qiaochu Li
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - K M Rifat Faysal
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Stephen J King
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida
| | - Ajay Gopinathan
- Department of Physics, School of Natural Sciences, University of California, Merced, California
| | - Jing Xu
- Department of Physics, School of Natural Sciences, University of California, Merced, California.
| |
Collapse
|
40
|
Verdeny-Vilanova I, Wehnekamp F, Mohan N, Sandoval Álvarez Á, Borbely JS, Otterstrom JJ, Lamb DC, Lakadamyali M. 3D motion of vesicles along microtubules helps them to circumvent obstacles in cells. J Cell Sci 2017; 130:1904-1916. [PMID: 28420672 PMCID: PMC5482975 DOI: 10.1242/jcs.201178] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/11/2017] [Indexed: 01/15/2023] Open
Abstract
Vesicle transport is regulated at multiple levels, including regulation by scaffolding proteins and the cytoskeleton. This tight regulation is essential, since slowing or stoppage of transport can cause accumulation of obstacles and has been linked to diseases. Understanding the mechanisms by which transport is regulated as well as how motor proteins overcome obstacles can give important clues as to how these mechanisms break down in disease states. Here, we describe that the cytoskeleton architecture impacts transport in a vesicle-size-dependent manner, leading to pausing of vesicles larger than the separation of the microtubules. We further develop methods capable of following 3D transport processes in living cells. Using these methods, we show that vesicles move using two different modes along the microtubule. Off-axis motion, which leads to repositioning of the vesicle in 3D along the microtubule, correlates with the presence of steric obstacles and may help in circumventing them.
Collapse
Affiliation(s)
- Ione Verdeny-Vilanova
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Fabian Wehnekamp
- Ludwig-Maximilians-Universität München, Department of Chemistry, Physical Chemistry, Center for Integrated Protein Science Munich, and Nanosystems Initiative Munich, Butenandtstr. 5-13, München 81377, Germany
| | - Nitin Mohan
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Ángel Sandoval Álvarez
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Joseph Steven Borbely
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Jason John Otterstrom
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| | - Don C Lamb
- Ludwig-Maximilians-Universität München, Department of Chemistry, Physical Chemistry, Center for Integrated Protein Science Munich, and Nanosystems Initiative Munich, Butenandtstr. 5-13, München 81377, Germany
| | - Melike Lakadamyali
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona 08860, Spain
| |
Collapse
|
41
|
Hoeprich GJ, Mickolajczyk KJ, Nelson SR, Hancock WO, Berger CL. The axonal transport motor kinesin-2 navigates microtubule obstacles via protofilament switching. Traffic 2017; 18:304-314. [PMID: 28267259 DOI: 10.1111/tra.12478] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/24/2017] [Accepted: 03/03/2017] [Indexed: 02/02/2023]
Abstract
Axonal transport involves kinesin motors trafficking cargo along microtubules that are rich in microtubule-associated proteins (MAPs). Much attention has focused on the behavior of kinesin-1 in the presence of MAPs, which has overshadowed understanding the contribution of other kinesins such as kinesin-2 in axonal transport. We have previously shown that, unlike kinesin-1, kinesin-2 in vitro motility is insensitive to the neuronal MAP Tau. However, the mechanism by which kinesin-2 efficiently navigates Tau on the microtubule surface is unknown. We hypothesized that mammalian kinesin-2 side-steps to adjacent protofilaments to maneuver around MAPs. To test this, we used single-molecule imaging to track the characteristic run length and protofilament switching behavior of kinesin-1 and kinesin-2 motors in the absence and presence of 2 different microtubule obstacles. Under all conditions tested, kinesin-2 switched protofilaments more frequently than kinesin-1. Using computational modeling that recapitulates run length and switching frequencies in the presence of varying roadblock densities, we conclude that kinesin-2 switches protofilaments to navigate around microtubule obstacles. Elucidating the kinesin-2 mechanism of navigation on the crowded microtubule surface provides a refined view of its contribution in facilitating axonal transport.
Collapse
Affiliation(s)
- Gregory J Hoeprich
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| | - Keith J Mickolajczyk
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania.,Intercollege Graduate Degree Program in Bioengineering, Pennsylvania State University, University Park, Pennsylvania
| | - Shane R Nelson
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| | - William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania
| | - Christopher L Berger
- Department of Molecular Physiology & Biophysics, University of Vermont, Burlington, Vermont
| |
Collapse
|
42
|
Hancock WO. The Kinesin-1 Chemomechanical Cycle: Stepping Toward a Consensus. Biophys J 2016; 110:1216-25. [PMID: 27028632 DOI: 10.1016/j.bpj.2016.02.025] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 10/22/2022] Open
Abstract
Kinesin-1 serves as a model for understanding fundamentals of motor protein mechanochemistry and for interpreting functional diversity across the kinesin superfamily. Despite sustained work over the last three decades, disagreements remain regarding the events that trigger the two key transitions in the stepping cycle: detachment of the trailing head from the microtubule and binding of the tethered head to the next tubulin binding site. This review describes the conflicting views of these events and highlights recent work that sheds light on these long-standing controversies. It concludes by presenting a consensus kinesin-1 chemomechanical that incorporates recent work, resolves discrepancies, and highlights key questions for future experimental work. It is hoped that this model provides a framework for understanding how diverse kinesins are tuned for their specific cellular roles.
Collapse
Affiliation(s)
- William O Hancock
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania.
| |
Collapse
|
43
|
Andrecka J, Takagi Y, Mickolajczyk KJ, Lippert LG, Sellers JR, Hancock WO, Goldman YE, Kukura P. Interferometric Scattering Microscopy for the Study of Molecular Motors. Methods Enzymol 2016; 581:517-539. [PMID: 27793291 DOI: 10.1016/bs.mie.2016.08.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Our understanding of molecular motor function has been greatly improved by the development of imaging modalities, which enable real-time observation of their motion at the single-molecule level. Here, we describe the use of a new method, interferometric scattering microscopy, for the investigation of motor protein dynamics by attaching and tracking the motion of metallic nanoparticle labels as small as 20nm diameter. Using myosin-5, kinesin-1, and dynein as examples, we describe the basic assays, labeling strategies, and principles of data analysis. Our approach is relevant not only for motor protein dynamics but also provides a general tool for single-particle tracking with high spatiotemporal precision, which overcomes the limitations of single-molecule fluorescence methods.
Collapse
Affiliation(s)
- J Andrecka
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom
| | - Y Takagi
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - K J Mickolajczyk
- Pennsylvania State University, University Park, PA, United States; Intercollege Graduate Degree Program in Bioengineering, Pennsylvania State University, University Park, PA, United States
| | - L G Lippert
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - J R Sellers
- Laboratory of Molecular Physiology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - W O Hancock
- Pennsylvania State University, University Park, PA, United States; Intercollege Graduate Degree Program in Bioengineering, Pennsylvania State University, University Park, PA, United States
| | - Y E Goldman
- Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - P Kukura
- Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
44
|
Sozański K, Ruhnow F, Wiśniewska A, Tabaka M, Diez S, Hołyst R. Small Crowders Slow Down Kinesin-1 Stepping by Hindering Motor Domain Diffusion. PHYSICAL REVIEW LETTERS 2015; 115:218102. [PMID: 26636875 DOI: 10.1103/physrevlett.115.218102] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Indexed: 05/23/2023]
Abstract
The dimeric motor protein kinesin-1 moves processively along microtubules against forces of up to 7 pN. However, the mechanism of force generation is still debated. Here, we point to the crucial importance of diffusion of the tethered motor domain for the stepping of kinesin-1: small crowders stop the motor at a viscosity of 5 mPa·s-corresponding to a hydrodynamic load in the sub-fN (~10^{-4} pN) range-whereas large crowders have no impact even at viscosities above 100 mPa·s. This indicates that the scale-dependent, effective viscosity experienced by the tethered motor domain is a key factor determining kinesin's functionality. Our results emphasize the role of diffusion in the kinesin-1 stepping mechanism and the general importance of the viscosity scaling paradigm in nanomechanics.
Collapse
Affiliation(s)
- Krzysztof Sozański
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Felix Ruhnow
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Agnieszka Wiśniewska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Tabaka
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Stefan Diez
- B CUBE-Center for Molecular Bioengineering, Technische Universität Dresden, Arnoldstrasse 18, 01307 Dresden, Germany
| | - Robert Hołyst
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
45
|
Mitra A, Ruhnow F, Nitzsche B, Diez S. Impact-Free Measurement of Microtubule Rotations on Kinesin and Cytoplasmic-Dynein Coated Surfaces. PLoS One 2015; 10:e0136920. [PMID: 26368807 PMCID: PMC4569553 DOI: 10.1371/journal.pone.0136920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
Knowledge about the three-dimensional stepping of motor proteins on the surface of microtubules (MTs) as well as the torsional components in their power strokes can be inferred from longitudinal MT rotations in gliding motility assays. In previous studies, optical detection of these rotations relied on the tracking of rather large optical probes present on the outer MT surface. However, these probes may act as obstacles for motor stepping and may prevent the unhindered rotation of the gliding MTs. To overcome these limitations, we devised a novel, impact-free method to detect MT rotations based on fluorescent speckles within the MT structure in combination with fluorescence-interference contrast microscopy. We (i) confirmed the rotational pitches of MTs gliding on surfaces coated by kinesin-1 and kinesin-8 motors, (ii) demonstrated the superiority of our method over previous approaches on kinesin-8 coated surfaces at low ATP concentration, and (iii) identified MT rotations driven by mammalian cytoplasmic dynein, indicating that during collective motion cytoplasmic dynein side-steps with a bias in one direction. Our novel method is easy to implement on any state-of-the-art fluorescence microscope and allows for high-throughput experiments.
Collapse
Affiliation(s)
- Aniruddha Mitra
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Felix Ruhnow
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Bert Nitzsche
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Diez
- B CUBE—Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Max Plank Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail:
| |
Collapse
|
46
|
Bertalan Z, Budrikis Z, La Porta CAM, Zapperi S. Navigation Strategies of Motor Proteins on Decorated Tracks. PLoS One 2015; 10:e0136945. [PMID: 26323095 PMCID: PMC4556374 DOI: 10.1371/journal.pone.0136945] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/11/2015] [Indexed: 11/18/2022] Open
Abstract
Motor proteins display widely different stepping patterns as they move on microtubule tracks, from the deterministic linear or helical motion performed by the protein kinesin to the uncoordinated random steps made by dynein. How these different strategies produce an efficient navigation system needed to ensure correct cellular functioning is still unclear. Here, we show by numerical simulations that deterministic and random motor steps yield different outcomes when random obstacles decorate the microtubule tracks: kinesin moves faster on clean tracks but its motion is strongly hindered on decorated tracks, while dynein is slower on clean tracks but more efficient in avoiding obstacles. Further simulations indicate that dynein's advantage on decorated tracks is due to its ability to step backwards. Our results explain how different navigation strategies are employed by the cell to optimize motor driven cargo transport.
Collapse
Affiliation(s)
- Zsolt Bertalan
- Institute for Scientific Interchange Foundation, Torino, Italy
| | - Zoe Budrikis
- Institute for Scientific Interchange Foundation, Torino, Italy
| | - Caterina A. M. La Porta
- Center for Complexity and Biosystems, Department of Bioscience, University of Milan, Milano, Italy
- * E-mail: (CAMLP); (SZ)
| | - Stefano Zapperi
- Institute for Scientific Interchange Foundation, Torino, Italy
- Center for Complexity and Biosystems, Department of Physics, University of Milan, Milano, Italy
- CNR - Consiglio Nazionale delle Ricerche, Istituto per l’Energetica e le Interfasi, Milano, Italy
- Department of Applied Physics, Aalto University, Aalto, Espoo, Finland
- * E-mail: (CAMLP); (SZ)
| |
Collapse
|