1
|
Gardiner AT, Mujakić I, Bína D, Gardian Z, Kopejtka K, Nupur, Qian P, Koblížek M. Characterisation of the photosynthetic complexes from the marine gammaproteobacterium Congregibacter litoralis KT71. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148946. [PMID: 36455648 DOI: 10.1016/j.bbabio.2022.148946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/02/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
Possibly the most abundant group of anoxygenic phototrophs are marine photoheterotrophic Gammaproteobacteria belonging to the NOR5/OM60 clade. As little is known about their photosynthetic apparatus, the photosynthetic complexes from the marine phototrophic bacterium Congregibacter litoralis KT71 were purified and spectroscopically characterised. The intra-cytoplasmic membranes contain a smaller amount of photosynthetic complexes when compared with anaerobic purple bacteria. Moreover, the intra-cytoplasmic membranes contain only a minimum amount of peripheral LH2 complexes. The complexes are populated by bacteriochlorophyll a, spirilloxanthin and two novel ketocarotenoids, with biophysical and biochemical properties similar to previously characterised complexes from purple bacteria. The organization of the RC-LH1 complex has been further characterised using cryo-electron microscopy. The overall organisation is similar to the complex from the gammaproteobacterium Thermochromatium tepidum, with the type-II reaction centre surrounded by a slightly elliptical LH1 antenna ring composed of 16 αβ-subunits with no discernible gap or pore. The RC-LH1 and LH2 apoproteins are phylogenetically related to other halophilic species but LH2 also to some alphaproteobacterial species. It seems that the reduction of light-harvesting apparatus and acquisition of novel ketocarotenoids in Congregibacter litoralis KT71 represent specific adaptations for operating the anoxygenic photosynthesis under aerobic conditions at sea.
Collapse
Affiliation(s)
- Alastair T Gardiner
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Izabela Mujakić
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - David Bína
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Zdenko Gardian
- Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic; Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Karel Kopejtka
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Nupur
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic
| | - Pu Qian
- Materials and Structure Analysis, Thermofisher Scientific, Achtseweg Noord 5, 5651 GG Eindhoven, Netherlands
| | - Michal Koblížek
- Institute of Microbiology of the Czech Academy of Sciences, 379 81 Třeboň, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
2
|
Preprocess dependence of optical properties of ensembles and single siphonaxanthin-containing major antenna from the marine green alga Codium fragile. Sci Rep 2022; 12:8461. [PMID: 35589761 PMCID: PMC9120457 DOI: 10.1038/s41598-022-11572-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
The siphonaxanthin-siphonein-Chl-a/b-protein (SCP) is the light-harvesting complex of the marine alga Codium fragile. Its structure resembles that of the major light-harvesting complexes of higher plants, LHC II, yet it features a reversed Chl a:Chl b ratio and it accommodates other variants of carotenoids. We have recorded the fluorescence emission spectra and fluorescence lifetimes from ensembles and single SCP complexes for three different scenarios of handling the samples. While the data obtained from ensembles of SCP complexes yield equivalent results, those obtained from single SCP complexes featured significant differences as a function of the sample history. We ascribe this discrepancy to the different excitation intensities that have been used for ensemble and single complex spectroscopy, and conclude that the SCP complexes undergo an aging process during storage. This process is manifested as a lowering of energetic barriers within the protein, enabling thermal activation of conformational changes at room temperature. This in turn leads to the preferential population of a red-shifted state that features a significant decrease of the fluorescence lifetime.
Collapse
|
3
|
The role of far-red spectral states in the energy regulation of phycobilisomes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:341-349. [DOI: 10.1016/j.bbabio.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/18/2018] [Accepted: 01/26/2019] [Indexed: 11/19/2022]
|
4
|
Pishchalnikov R, Shubin V, Razjivin A. Single Molecule Fluorescence Spectroscopy of PSI Trimers from Arthrospira platensis: A Computational Approach. Molecules 2019; 24:molecules24040822. [PMID: 30823581 PMCID: PMC6412541 DOI: 10.3390/molecules24040822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022] Open
Abstract
Based on single molecule spectroscopy analysis and our preliminary theoretical studies, the linear and fluorescence spectra of the PSI trimer from Arthrospira platensis with different realizations of the static disorder were modeled at cryogenic temperature. Considering the previously calculated spectral density of chlorophyll, an exciton model for the PSI monomer and trimer including the red antenna states was developed taking into account the supposed similarity of PSI antenna structures from Thermosynechococcus e., Synechocystis sp. PCC6803, and Arthrospira platensis. The red Chls in the PSI monomer were assumed to be in the nearest proximity of the reaction center. The PSI trimer model allowed the simulation of experimentally measured zero phonon line distribution of the red states considering a weak electron-phonon coupling for the antenna exciton states. However, the broad absorption and fluorescence spectra of an individual emitter at 760 nm were calculated by adjusting the Huang-Rhys factors of the chlorophyll lower phonon modes assuming strong electron-phonon coupling.
Collapse
Affiliation(s)
- Roman Pishchalnikov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Vladimir Shubin
- Bach Institute of Biochemistry of the Russian Academy of Sciences, 119071 Moscow, Russia.
| | - Andrei Razjivin
- Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia.
| |
Collapse
|
5
|
Sipka G, Maróti P. Photoprotection in intact cells of photosynthetic bacteria: quenching of bacteriochlorophyll fluorescence by carotenoid triplets. PHOTOSYNTHESIS RESEARCH 2018; 136:17-30. [PMID: 29064080 DOI: 10.1007/s11120-017-0434-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Upon high light excitation in photosynthetic bacteria, various triplet states of pigments can accumulate leading to harmful effects. Here, the generation and lifetime of flash-induced carotenoid triplets (3Car) have been studied by observation of the quenching of bacteriochlorophyll (BChl) fluorescence in different strains of photosynthetic bacteria including Rvx. gelatinosus (anaerobic and semianaerobic), Rsp. rubrum, Thio. roseopersicina, Rba. sphaeroides 2.4.1 and carotenoid- and cytochrome-deficient mutants Rba. sphaeroides Ga, R-26, and cycA, respectively. The following results were obtained: (1) 3Car quenching is observed during and not exclusively after the photochemical rise of the fluorescence yield of BChl indicating that the charge separation in the reaction center (RC) and the carotenoid triplet formation are not consecutive but parallel processes. (2) The photoprotective function of 3Car is not limited to the RC only and can be described by a model in which the carotenoids are distributed in the lake of the BChl pigments. (3) The observed lifetime of 3Car in intact cells is the weighted average of the lifetimes of the carotenoids with various numbers of conjugated double bonds in the bacterial strain. (4) The lifetime of 3Car measured in the light is significantly shorter (1-2 μs) than that measured in the dark (2-10 μs). The difference reveals the importance of the dynamics of 3Car before relaxation. The results will be discussed not only in terms of energy levels of the 3Car but also in terms of the kinetics of transitions among different sublevels in the excited triplet state of the carotenoid.
Collapse
Affiliation(s)
- Gábor Sipka
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary
- Institute of Plant Biology, Biological Research Center, Hungarian Academy of Sciences, Szeged, 6726, Hungary
| | - Péter Maróti
- Department of Medical Physics, University of Szeged, Rerrich Béla tér 1, Szeged, 6720, Hungary.
| |
Collapse
|
6
|
Gorski A, Knyukshto V, Zenkevich E, Starukhin A, Kijak M, Solarski J, Semeikin A, Lyubimova T. Temperature dependent steric hindrance effects in triplet state relaxation of meso-phenyl-substituted Pd-octaethylporphyrins. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Löhner A, Cogdell R, Köhler J. Contribution of low-temperature single-molecule techniques to structural issues of pigment-protein complexes from photosynthetic purple bacteria. J R Soc Interface 2018; 15:rsif.2017.0680. [PMID: 29321265 DOI: 10.1098/rsif.2017.0680] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/01/2017] [Indexed: 11/12/2022] Open
Abstract
As the electronic energies of the chromophores in a pigment-protein complex are imposed by the geometrical structure of the protein, this allows the spectral information obtained to be compared with predictions derived from structural models. Thereby, the single-molecule approach is particularly suited for the elucidation of specific, distinctive spectral features that are key for a particular model structure, and that would not be observable in ensemble-averaged spectra due to the heterogeneity of the biological objects. In this concise review, we illustrate with the example of the light-harvesting complexes from photosynthetic purple bacteria how results from low-temperature single-molecule spectroscopy can be used to discriminate between different structural models. Thereby the low-temperature approach provides two advantages: (i) owing to the negligible photobleaching, very long observation times become possible, and more importantly, (ii) at cryogenic temperatures, vibrational degrees of freedom are frozen out, leading to sharper spectral features and in turn to better resolved spectra.
Collapse
Affiliation(s)
- Alexander Löhner
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Richard Cogdell
- Institute of Molecular, Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany .,Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
8
|
Apoprotein heterogeneity increases spectral disorder and a step-wise modification of the B850 fluorescence peak position. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1859:137-144. [PMID: 29174011 DOI: 10.1016/j.bbabio.2017.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/24/2017] [Accepted: 11/19/2017] [Indexed: 11/21/2022]
Abstract
It has already been established that the quaternary structure of the main light-harvesting complex (LH2) from the photosynthetic bacterium Rhodopseudomonas palustris is a nonameric 'ring' of PucAB heterodimers and under low-light culturing conditions an increased diversity of PucB synthesis occurs. In this work, single molecule fluorescence emission studies show that different classes of LH2 'rings' are present in "low-light" adapted cells and that an unknown chaperon process creates multiple sub-types of 'rings' with more conformational sub-states and configurations. This increase in spectral disorder significantly augments the cross-section for photon absorption and subsequent energy flow to the reaction centre trap when photon availability is a limiting factor. This work highlights yet another variant used by phototrophs to gather energy for cellular development.
Collapse
|
9
|
Stability and properties of quasi-stable conformational states in the LH2 light-harvesting complex of Rbl. acidophilus bacteria formed by hexacoordination of bacteriochlorophyll a magnesium atom. Chem Phys 2017. [DOI: 10.1016/j.chemphys.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Fokas AS, Cole DJ, Hine NDM, Wells SA, Payne MC, Chin AW. Evidence of Correlated Static Disorder in the Fenna-Matthews-Olson Complex. J Phys Chem Lett 2017; 8:2350-2356. [PMID: 28485971 DOI: 10.1021/acs.jpclett.7b00669] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Observation of excitonic quantum beats in photosynthetic antennae has prompted wide debate regarding the function of excitonic coherence in pigment-protein complexes. Much of this work focuses on the interactions of excitons with the femto-to-picosecond dynamical fluctuations of their environment. However, in experiments these effects can be masked by static disorder of the excited-state energies across ensembles, whose microscopic origins are challenging to predict. Here the excited-state properties of ∼2000 atom clusters of the Fenna-Matthews-Olson complex are simulated using a unique combination of linear-scaling density functional theory and constrained geometric dynamics. While slow, large amplitude protein motion leads to large variations in the Qy transitions of two pigments, we identify pigment-protein correlations that greatly reduce variations in the energy gap across the ensemble, which is consistent with experimental observations of suppressed inhomogeneous dephasing of quantum beats.
Collapse
Affiliation(s)
- Alexander S Fokas
- TCM Group, Cavendish Laboratory , 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Daniel J Cole
- TCM Group, Cavendish Laboratory , 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
- School of Chemistry, Newcastle University , Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Nicholas D M Hine
- Department of Physics, University of Warwick , Coventry CV4 7AL, United Kingdom
| | - Stephen A Wells
- Department of Chemistry, University of Bath , Claverton Down BA2 7AY, United Kingdom
| | - Michael C Payne
- TCM Group, Cavendish Laboratory , 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Alex W Chin
- TCM Group, Cavendish Laboratory , 19 J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
11
|
Kondo T, Chen WJ, Schlau-Cohen GS. Single-Molecule Fluorescence Spectroscopy of Photosynthetic Systems. Chem Rev 2017; 117:860-898. [DOI: 10.1021/acs.chemrev.6b00195] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Toru Kondo
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Wei Jia Chen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Gabriela S. Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
12
|
Laser pulse induced multiple exciton kinetics in molecular ring structures. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Sapin E, Carr DB, De Jong KA, Shehu A. Computing energy landscape maps and structural excursions of proteins. BMC Genomics 2016; 17 Suppl 4:546. [PMID: 27535545 PMCID: PMC5001232 DOI: 10.1186/s12864-016-2798-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Structural excursions of a protein at equilibrium are key to biomolecular recognition and function modulation. Protein modeling research is driven by the need to aid wet laboratories in characterizing equilibrium protein dynamics. In principle, structural excursions of a protein can be directly observed via simulation of its dynamics, but the disparate temporal scales involved in such excursions make this approach computationally impractical. On the other hand, an informative representation of the structure space available to a protein at equilibrium can be obtained efficiently via stochastic optimization, but this approach does not directly yield information on equilibrium dynamics. METHODS We present here a novel methodology that first builds a multi-dimensional map of the energy landscape that underlies the structure space of a given protein and then queries the computed map for energetically-feasible excursions between structures of interest. An evolutionary algorithm builds such maps with a practical computational budget. Graphical techniques analyze a computed multi-dimensional map and expose interesting features of an energy landscape, such as basins and barriers. A path searching algorithm then queries a nearest-neighbor graph representation of a computed map for energetically-feasible basin-to-basin excursions. RESULTS Evaluation is conducted on intrinsically-dynamic proteins of importance in human biology and disease. Visual statistical analysis of the maps of energy landscapes computed by the proposed methodology reveals features already captured in the wet laboratory, as well as new features indicative of interesting, unknown thermodynamically-stable and semi-stable regions of the equilibrium structure space. Comparison of maps and structural excursions computed by the proposed methodology on sequence variants of a protein sheds light on the role of equilibrium structure and dynamics in the sequence-function relationship. CONCLUSIONS Applications show that the proposed methodology is effective at locating basins in complex energy landscapes and computing basin-basin excursions of a protein with a practical computational budget. While the actual temporal scales spanned by a structural excursion cannot be directly obtained due to the foregoing of simulation of dynamics, hypotheses can be formulated regarding the impact of sequence mutations on protein function. These hypotheses are valuable in instigating further research in wet laboratories.
Collapse
Affiliation(s)
- Emmanuel Sapin
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Daniel B Carr
- Department of Statistics, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Kenneth A De Jong
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA.,Krasnow Institute for Advanced Study, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA
| | - Amarda Shehu
- Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA. amarda.@gmu.edu.,Department of Bioengineering, George Mason University, 4400 University Drive, Fairfax, 22030, VA, USA. amarda.@gmu.edu.,School of Systems Biology, George Mason University, 10900 University Boulevard, Manassas, 20110, VA, USA. amarda.@gmu.edu
| |
Collapse
|
14
|
Maximova T, Moffatt R, Ma B, Nussinov R, Shehu A. Principles and Overview of Sampling Methods for Modeling Macromolecular Structure and Dynamics. PLoS Comput Biol 2016; 12:e1004619. [PMID: 27124275 PMCID: PMC4849799 DOI: 10.1371/journal.pcbi.1004619] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Investigation of macromolecular structure and dynamics is fundamental to understanding how macromolecules carry out their functions in the cell. Significant advances have been made toward this end in silico, with a growing number of computational methods proposed yearly to study and simulate various aspects of macromolecular structure and dynamics. This review aims to provide an overview of recent advances, focusing primarily on methods proposed for exploring the structure space of macromolecules in isolation and in assemblies for the purpose of characterizing equilibrium structure and dynamics. In addition to surveying recent applications that showcase current capabilities of computational methods, this review highlights state-of-the-art algorithmic techniques proposed to overcome challenges posed in silico by the disparate spatial and time scales accessed by dynamic macromolecules. This review is not meant to be exhaustive, as such an endeavor is impossible, but rather aims to balance breadth and depth of strategies for modeling macromolecular structure and dynamics for a broad audience of novices and experts.
Collapse
Affiliation(s)
- Tatiana Maximova
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Ryan Moffatt
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, United States of America
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amarda Shehu
- Department of Computer Science, George Mason University, Fairfax, Virginia, United States of America
- Department of Biongineering, George Mason University, Fairfax, Virginia, United States of America
- School of Systems Biology, George Mason University, Manassas, Virginia, United States of America
| |
Collapse
|
15
|
Schörner M, Beyer SR, Southall J, Cogdell RJ, Köhler J. Multi-Level, Multi Time-Scale Fluorescence Intermittency of Photosynthetic LH2 Complexes: A Precursor of Non-Photochemical Quenching? J Phys Chem B 2015; 119:13958-63. [PMID: 26419118 DOI: 10.1021/acs.jpcb.5b06979] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The light harvesting complex LH2 is a chromoprotein that is an ideal system for studying protein dynamics via the spectral fluctuations of the emission of its intrinsic chromophores. We have immobilized these complexes in a polymer film and studied the fluctuations of the fluorescence intensity from individual complexes over 9 orders of magnitude in time. Combining time-tagged detection of single photons with a change-point analysis has allowed the unambigeous identification of the various intensity levels due to the huge statistical basis of the data set. We propose that the observed intensity level fluctuations reflect conformational changes of the protein backbone that might be a precursor of the mechanism from which nonphotochemical quenching of higher plants has evolved.
Collapse
Affiliation(s)
- Mario Schörner
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - Sebastian Reinhardt Beyer
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| | - June Southall
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Richard J Cogdell
- Institute of Molecular, Cell & Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Jürgen Köhler
- Experimental Physics IV and Bayreuth Institute for Macromolecular Research (BIMF), University of Bayreuth , 95447 Bayreuth, Germany
| |
Collapse
|