1
|
Iwaya C, Iwata J. Associations between metabolic disorders and Sjögren's disease. JAPANESE DENTAL SCIENCE REVIEW 2024; 60:232-238. [PMID: 39502167 PMCID: PMC11535258 DOI: 10.1016/j.jdsr.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 11/08/2024] Open
Abstract
Sjögren's disease (SjD) is a systemic autoimmune disorder characterized by dry eyes and mouth caused by chronic inflammation and is often accompanied by various extra-glandular manifestations, including fatigue and diffuse pain. Although the pathogenesis of the disease remains elusive, several factors (e.g. environmental, genetic and hormonal factors, abnormal metabolic status) are associated with this condition. Accumulating evidence suggests a potential role of cholesterol metabolism in immune and non-immune modulation in various diseases. In this review, we summarize the current findings on the associations between cholesterol metabolism and SjD.
Collapse
Affiliation(s)
- Chihiro Iwaya
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, The University of Texas Health Science Center at Houston (UTHealth), School of Dentistry, Houston, Texas 77054, USA
- Center for Craniofacial Research, The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX 77054, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
2
|
Tsemperouli M, Cheppali SK, Molina FR, Chetrit D, Landajuela A, Toomre D, Karatekin E. Vesicle docking and fusion pore modulation by the neuronal calcium sensor Synaptotagmin-1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.12.612660. [PMID: 39314345 PMCID: PMC11419119 DOI: 10.1101/2024.09.12.612660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Synaptotagmin-1 (Syt1) is a major calcium sensor for rapid neurotransmitter release in neurons and hormone release in many neuroendocrine cells. It possesses two tandem cytosolic C2 domains that bind calcium, negatively charged phospholipids, and the neuronal SNARE complex. Calcium binding to Syt1 triggers exocytosis, but how this occurs is not well understood. Syt1 has additional roles in docking dense core vesicles (DCV) and synaptic vesicles (SV) to the plasma membrane (PM) and in regulating fusion pore dynamics. Thus, Syt1 perturbations could affect release through vesicle docking, fusion triggering, fusion pore regulation, or a combination of these. Here, using a human neuroendocrine cell line, we show that neutralization of highly conserved polybasic patches in either C2 domain of Syt1 impairs both DCV docking and efficient release of serotonin from DCVs. Interestingly, the same mutations resulted in larger fusion pores and faster release of serotonin during individual fusion events. Thus, Syt1's roles in vesicle docking, fusion triggering, and fusion pore control may be functionally related.
Collapse
Affiliation(s)
- Maria Tsemperouli
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Sudheer Kumar Cheppali
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Felix Rivera Molina
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - David Chetrit
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Ane Landajuela
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
| | - Derek Toomre
- Cell Biology, School of Medicine, Yale University
- CINEMA Lab, School of Medicine, Yale University
| | - Erdem Karatekin
- Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT
- Nanobiology Institute, Yale University, West Haven, CT
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS) UMR 8003, Paris, France
- Wu Tsai Institute, Yale University
| |
Collapse
|
3
|
Lin SZ, Prost J, Rupprecht JF. Curvature-induced clustering of cell adhesion proteins. Phys Rev E 2024; 109:054406. [PMID: 38907394 DOI: 10.1103/physreve.109.054406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/02/2024] [Indexed: 06/24/2024]
Abstract
Cell adhesion proteins typically form stable clusters that anchor the cell membrane to its environment. Several works have suggested that cell membrane protein clusters can emerge from a local feedback between the membrane curvature and the density of proteins. Here, we investigate the effect of such a curvature-sensing mechanism in the context of cell adhesion proteins. We show how clustering emerges in an intermediate range of adhesion and curvature-sensing strengths. We identify key differences with the tilt-induced gradient sensing mechanism we previously proposed (Lin et al., arXiv:2307.03670).
Collapse
Affiliation(s)
- Shao-Zhen Lin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| | - Jacques Prost
- Laboratoire Physico-Chimie Curie, UMR 168, Institut Curie, PSL Research University, CNRS, Sorbonne Université, 75005 Paris, France
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Jean-François Rupprecht
- Aix Marseille Univ, Université de Toulon, CNRS, CPT (UMR 7332), Turing Centre for Living systems, Marseille, France
| |
Collapse
|
4
|
Jahn R, Cafiso DC, Tamm LK. Mechanisms of SNARE proteins in membrane fusion. Nat Rev Mol Cell Biol 2024; 25:101-118. [PMID: 37848589 PMCID: PMC11578640 DOI: 10.1038/s41580-023-00668-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2023] [Indexed: 10/19/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are a family of small conserved eukaryotic proteins that mediate membrane fusion between organelles and with the plasma membrane. SNAREs are directly or indirectly anchored to membranes. Prior to fusion, complementary SNAREs assemble between membranes with the aid of accessory proteins that provide a scaffold to initiate SNARE zippering, pulling the membranes together and mediating fusion. Recent advances have enabled the construction of detailed models describing bilayer transitions and energy barriers along the fusion pathway and have elucidated the structures of SNAREs complexed in various states with regulatory proteins. In this Review, we discuss how these advances are yielding an increasingly detailed picture of the SNARE-mediated fusion pathway, leading from first contact between the membranes via metastable non-bilayer intermediates towards the opening and expansion of a fusion pore. We describe how SNARE proteins assemble into complexes, how this assembly is regulated by accessory proteins and how SNARE complexes overcome the free energy barriers that prevent spontaneous membrane fusion.
Collapse
Affiliation(s)
- Reinhard Jahn
- Laboratory of Neurobiology, Max-Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - David C Cafiso
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Lira RB, Hammond JCF, Cavalcanti RRM, Rous M, Riske KA, Roos WH. The underlying mechanical properties of membranes tune their ability to fuse. J Biol Chem 2023; 299:105430. [PMID: 37926280 PMCID: PMC10716014 DOI: 10.1016/j.jbc.2023.105430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023] Open
Abstract
Membrane fusion is a ubiquitous process associated with a multitude of biological events. Although it has long been appreciated that membrane mechanics plays an important role in membrane fusion, the molecular interplay between mechanics and fusion has remained elusive. For example, although different lipids modulate membrane mechanics differently, depending on their composition, molar ratio, and complex interactions, differing lipid compositions may lead to similar mechanical properties. This raises the question of whether (i) the specific lipid composition or (ii) the average mesoscale mechanics of membranes acts as the determining factor for cellular function. Furthermore, little is known about the potential consequences of fusion on membrane disruption. Here, we use a combination of confocal microscopy, time-resolved imaging, and electroporation to shed light onto the underlying mechanical properties of membranes that regulate membrane fusion. Fusion efficiency follows a nearly universal behavior that depends on membrane fluidity parameters, such as membrane viscosity and bending rigidity, rather than on specific lipid composition. This helps explaining why the charged and fluid membranes of the inner leaflet of the plasma membrane are more fusogenic than their outer counterparts. Importantly, we show that physiological levels of cholesterol, a key component of biological membranes, has a mild effect on fusion but significantly enhances membrane mechanical stability against pore formation, suggesting that its high cellular levels buffer the membrane against disruption. The ability of membranes to efficiently fuse while preserving their integrity may have given evolutionary advantages to cells by enabling their function while preserving membrane stability.
Collapse
Affiliation(s)
- Rafael B Lira
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| | - Jayna C F Hammond
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | | | - Madelief Rous
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Instituut, Rijksuniversiteit Groningen, Groningen, Netherlands.
| |
Collapse
|
6
|
Ribovski L, Joshi B, Gao J, Zuhorn I. Breaking free: endocytosis and endosomal escape of extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2023; 4:283-305. [PMID: 39697985 PMCID: PMC11648447 DOI: 10.20517/evcna.2023.26] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are natural micro-/nanoparticles that play an important role in intercellular communication. They are secreted by producer/donor cells and subsequent uptake by recipient/acceptor cells may result in phenotypic changes in these cells due to the delivery of cargo molecules, including lipids, RNA, and proteins. The process of endocytosis is widely described as the main mechanism responsible for cellular uptake of EVs, with endosomal escape of cargo molecules being a necessity for the functional delivery of EV cargo. Equivalent to synthetic micro-/nanoparticles, the properties of EVs, such as size and composition, together with environmental factors such as temperature, pH, and extracellular fluid composition, codetermine the interactions of EVs with cells, from binding to uptake, intracellular trafficking, and cargo release. Innovative assays for detection and quantification of the different steps in the EV formation and EV-mediated cargo delivery process have provided valuable insight into the biogenesis and cellular processing of EVs and their cargo, revealing the occurrence of EV recycling and degradation, next to functional cargo delivery, with the back fusion of the EV with the endosomal membrane standing out as a common cargo release pathway. In view of the significant potential for developing EVs as drug delivery systems, this review discusses the interaction of EVs with biological membranes en route to cargo delivery, highlighting the reported techniques for studying EV internalization and intracellular trafficking, EV-membrane fusion, endosomal permeabilization, and cargo delivery, including functional delivery of RNA cargo.
Collapse
Affiliation(s)
- Laís Ribovski
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
- Authors contributed equally
| | - Bhagyashree Joshi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft 2629 HZ, the Netherlands
- Authors contributed equally
| | - Jie Gao
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| | - Inge Zuhorn
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Groningen 9713 AV, the Netherlands
| |
Collapse
|
7
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
8
|
Xue M, Cao Y, Shen C, Guo W. Computational Advances of Protein/Neurotransmitter-membrane Interactions Involved in Vesicle Fusion and Neurotransmitter Release. J Mol Biol 2023; 435:167818. [PMID: 36089056 DOI: 10.1016/j.jmb.2022.167818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/22/2022] [Accepted: 09/04/2022] [Indexed: 02/04/2023]
Abstract
Vesicle fusion is of crucial importance to neuronal communication at neuron terminals. The exquisite but complex fusion machinery for neurotransmitter release is tightly controlled and regulated by protein/neurotransmitter-membrane interactions. Computational 'microscopies', in particular molecular dynamics simulations and related techniques, have provided notable insight into the physiological process over the past decades, and have made enormous contributions to fields such as neurology, pharmacology and pathophysiology. Here we review the computational advances of protein/neurotransmitter-membrane interactions related to presynaptic vesicle-membrane fusion and neurotransmitter release, and outline the in silico challenges ahead for understanding this important physiological process.
Collapse
Affiliation(s)
- Minmin Xue
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Yuwei Cao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China
| | - Chun Shen
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.
| | - Wanlin Guo
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China; State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
9
|
Villamil Giraldo AM, Mannsverk S, Kasson PM. Measuring single-virus fusion kinetics using an assay for nucleic acid exposure. Biophys J 2022; 121:4467-4475. [PMID: 36330566 PMCID: PMC9748363 DOI: 10.1016/j.bpj.2022.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/26/2022] [Accepted: 10/31/2022] [Indexed: 11/11/2022] Open
Abstract
The kinetics by which individual enveloped viruses fuse with membranes provide an important window into viral-entry mechanisms. We have developed a real-time assay using fluorescent probes for single-virus genome exposure than can report on stages of viral entry including or subsequent to fusion pore formation and prior to viral genome trafficking. We accomplish this using oxazole yellow nucleic-acid-binding dyes, which can be encapsulated in the lumen of target membranes to permit specific detection of fusion events. Since increased fluorescence of the dye occurs only when it encounters viral genome via a fusion pore and binds, this assay excludes content leakage without fusion. Using this assay, we show that influenza virus fuses with liposomes of different sizes with indistinguishable kinetics by both testing liposomes extruded through pores of different radii and showing that the fusion kinetics of individual liposomes are uncorrelated with the size of the liposome. These results suggest that the starting curvature of such liposomes does not control the rate-limiting steps in influenza entry.
Collapse
Affiliation(s)
- Ana M Villamil Giraldo
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Steinar Mannsverk
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Peter M Kasson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden; Departments of Molecular Physiology and Biomedical Engineering, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
10
|
Chng CP, Hsia KJ, Huang C. Modulation of lipid vesicle-membrane interactions by cholesterol. SOFT MATTER 2022; 18:7752-7761. [PMID: 36093613 DOI: 10.1039/d2sm00693f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanoscale lipid vesicles are attractive vehicles for drug delivery. Although often considered as soft nanoparticles in terms of mechanical deformability, the fluidic nature of the lipid membrane makes their interactions with another lipid membrane much more complex. Cholesterol is a key molecule that not only effectively stiffens lipid bilayer membranes but also induces membrane fusion. As such, how cholesterol modulates lipid vesicle-membrane interactions during endocytosis remains elusive. Through systematic molecular dynamics simulations, we find that membrane stiffening upon incorporating cholesterol reduces vesicle wrapping by a planar membrane, hindering endocytosis. Membrane fusion is also accelerated when either the vesicle or the planar membrane is cholesterol-rich, but fusion becomes minimal when both the vesicle and planar membrane are cholesterol-rich. This study provides insights into vesicle-membrane interactions in the presence of cholesterol and enlightens how cholesterol may be used to direct the cellular uptake pathways of nanoliposomes.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| | - K Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore.
| |
Collapse
|
11
|
Coffman RE, Kraichely KN, Kreutzberger AJB, Kiessling V, Tamm LK, Woodbury DJ. Drunken lipid membranes, not drunken SNARE proteins, promote fusion in a model of neurotransmitter release. Front Mol Neurosci 2022; 15:1022756. [PMID: 36311016 PMCID: PMC9614348 DOI: 10.3389/fnmol.2022.1022756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Alcohol affects many neuronal proteins that are upstream or down-stream of synaptic vesicle fusion and neurotransmitter release. Less well studied is alcohol's effect on the fusion machinery including SNARE proteins and lipid membranes. Using a SNARE-driven fusion assay we show that fusion probability is significantly increased at 0.4% v/v (68 mM) ethanol; but not with methanol up to 10%. Ethanol appears to act directly on membrane lipids since experiments focused on protein properties [circular dichroism spectrometry, site-directed fluorescence interference contrast (sdFLIC) microscopy, and vesicle docking results] showed no significant changes up to 5% ethanol, but a protein-free fusion assay also showed increased lipid membrane fusion rates with 0.4% ethanol. These data show that the effects of high physiological doses of ethanol on SNARE-driven fusion are mediated through ethanol's interaction with the lipid bilayer of membranes and not SNARE proteins, and that methanol affects lipid membranes and SNARE proteins only at high doses.
Collapse
Affiliation(s)
- Robert E. Coffman
- Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Katelyn N. Kraichely
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA, United States
| | - Dixon J. Woodbury
- Neuroscience Center, Brigham Young University, Provo, UT, United States
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT, United States
| |
Collapse
|
12
|
Kacher R, Mounier C, Caboche J, Betuing S. Altered Cholesterol Homeostasis in Huntington’s Disease. Front Aging Neurosci 2022; 14:797220. [PMID: 35517051 PMCID: PMC9063567 DOI: 10.3389/fnagi.2022.797220] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant genetic disorder caused by an expansion of the CAG repeat in the first exon of Huntingtin’s gene. The associated neurodegeneration mainly affects the striatum and the cortex at early stages and progressively spreads to other brain structures. Targeting HD at its earlier stages is under intense investigation. Numerous drugs were tested, with a rate of success of only 3.5% approved molecules used as symptomatic treatment. The restoration of cholesterol metabolism, which is central to the brain homeostasis and strongly altered in HD, could be an interesting disease-modifying strategy. Cholesterol is an essential membrane component in the central nervous system (CNS); alterations of its homeostasis have deleterious consequences on neuronal functions. The levels of several sterols, upstream of cholesterol, are markedly decreased within the striatum of HD mouse model. Transcription of cholesterol biosynthetic genes is reduced in HD cell and mouse models as well as post-mortem striatal and cortical tissues from HD patients. Since the dynamic of brain cholesterol metabolism is complex, it is essential to establish the best method to target it in HD. Cholesterol, which does not cross the blood-brain-barrier, is locally synthesized and renewed within the brain. All cell types in the CNS synthesize cholesterol during development but as they progress through adulthood, neurons down-regulate their cholesterol synthesis and turn to astrocytes for their full supply. Cellular levels of cholesterol reflect the dynamic balance between synthesis, uptake and export, all integrated into the context of the cross talk between neurons and glial cells. In this review, we describe the latest advances regarding the role of cholesterol deregulation in neuronal functions and how this could be a determinant factor in neuronal degeneration and HD progression. The pathways and major mechanisms by which cholesterol and sterols are regulated in the CNS will be described. From this overview, we discuss the main clinical strategies for manipulating cholesterol metabolism in the CNS, and how to reinstate a proper balance in HD.
Collapse
Affiliation(s)
- Radhia Kacher
- Institut du Cerveau - Paris Brain Institute (ICM), AP-HP, INSERM, CNRS, University Hospital Pitié-Salpêtrière, Sorbonne Université, Paris, France
- INSERM, U1216, Grenoble Institut Neurosciences, Université Grenoble Alpes, Grenoble, France
| | - Coline Mounier
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Jocelyne Caboche
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Sandrine Betuing
- Neuroscience Paris Seine, Institut de Biologie Paris-Seine, Faculté des Sciences et Ingénierie, Sorbonne Université, Paris, France
- Centre National de la Recherche Scientifique, UMR 8246, Paris, France
- U1130, Institut National de la Santé et de la Recherche Médicale, Paris, France
- *Correspondence: Sandrine Betuing,
| |
Collapse
|
13
|
Zhu X, Li T, Hu E, Duan L, Zhang C, Wang Y, Tang T, Yang Z, Fan R. Proteomics Study Reveals the Anti-Depressive Mechanisms and the Compatibility Advantage of Chaihu-Shugan-San in a Rat Model of Chronic Unpredictable Mild Stress. Front Pharmacol 2022; 12:791097. [PMID: 35111057 PMCID: PMC8802092 DOI: 10.3389/fphar.2021.791097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/13/2021] [Indexed: 12/27/2022] Open
Abstract
Background: Chaihu-Shugan-San is a classical prescription to treat depression. According to the traditional Chinese medicine (TCM) principle, the 2 decomposed recipes in Chaihu-Shugan-San exert synergistic effects, including Shu Gan (stagnated Gan-Qi dispersion) and Rou Gan (Gan nourishment to alleviate pain). However, the specific mechanism of Chaihu-Shugan-San on depression and its compatibility rule remain to be explored. Objective: We aimed to explore the anti-depression mechanisms and analyze the advantage of TCM compatibility of Chaihu-Shugan-San. Methods: The chronic unpredictable mild stress (CUMS) rat model was established. Antidepressant effects were evaluated by sucrose preference test (SPT), and forced swimming test (FST). Tandem Mass Tag (TMT)-based quantitative proteomics of the hippocampus was used to obtain differentially expressed proteins (DEPs). Bioinformatics analysis including Gene Ontology (GO), pathway enrichment, and protein-protein interaction (PPI) networks was utilized to study the DEPs connections. At last, the achieved key targets were verified by western blotting. Results: Chaihu-Shugan-San increased weight gain and food intake, as well as exhibited better therapeutic effects including enhanced sucrose preference and extended immobility time when compared with its decomposed recipes. Proteomics showed Chaihu-Shugan-San, Shu Gan, and Rou Gan regulated 110, 12, and 407 DEPs, respectively. Compared with Shu Gan or Rou Gan alone, the expression of 22 proteins was additionally changed by Chaihu-Shugan-San treatment, whereas the expression of 323 proteins whose expression was changed by Shu Gan or Rou Gan alone were not changed by Chaihu-Shugan-San treatment. Bioinformatics analysis demonstrated that Chaihu-Shugan-San affected neurotransmitter’s release and transmission cycle (e.g., γ-aminobutyric acid (GABA), glutamate, serotonin, norepinephrine, dopamine, and acetylcholine). GABA release pathway is also targeted by the 22 DEPs. Unexpectedly, only 2 pathways were enriched by the 323 DEPs: Metabolism and Cellular responses to external stimuli. Lastly, the expression of Gad2, Vamp2, and Pde2a was verified by western blotting. Conclusions: Chaihu-Shugan-San treats depression via multiple targets and pathways, which may include regulations of 110 DEPs and some neurotransmitter’s transmission cycle. Compared with Shu Gan and Rou Gan, the 22 Chaihu-Shugan-San advanced proteins and the affected GABA pathway may be the advantages of Chaihu-Shugan-San compatibility. This research offers data and theory support for the clinical application of Chaihu-Shugan-San.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Teng Li
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - En Hu
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Lihua Duan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chunhu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tao Tang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Rong Fan
- Department of Integrated Traditional Chinese and Western Medicine, Institute of Integrative Medicine, Xiangya Hospital, Central, South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Rituper B, Guček A, Lisjak M, Gorska U, Šakanović A, Bobnar ST, Lasič E, Božić M, Abbineni PS, Jorgačevski J, Kreft M, Verkhratsky A, Platt FM, Anderluh G, Stenovec M, Božič B, Coorssen JR, Zorec R. Vesicle cholesterol controls exocytotic fusion pore. Cell Calcium 2021; 101:102503. [PMID: 34844123 DOI: 10.1016/j.ceca.2021.102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
In some lysosomal storage diseases (LSD) cholesterol accumulates in vesicles. Whether increased vesicle cholesterol affects vesicle fusion with the plasmalemma, where the fusion pore, a channel between the vesicle lumen and the extracellular space, is formed, is unknown. Super-resolution microscopy revealed that after stimulation of exocytosis, pituitary lactotroph vesicles discharge cholesterol which transfers to the plasmalemma. Cholesterol depletion in lactotrophs and astrocytes, both exhibiting Ca2+-dependent exocytosis regulated by distinct Ca2+sources, evokes vesicle secretion. Although this treatment enhanced cytosolic levels of Ca2+ in lactotrophs but decreased it in astrocytes, this indicates that cholesterol may well directly define the fusion pore. In an attempt to explain this mechanism, a new model of cholesterol-dependent fusion pore regulation is proposed. High-resolution membrane capacitance measurements, used to monitor fusion pore conductance, a parameter related to fusion pore diameter, confirm that at resting conditions reducing cholesterol increases, while enrichment with cholesterol decreases the conductance of the fusion pore. In resting fibroblasts, lacking the Npc1 protein, a cellular model of LSD in which cholesterol accumulates in vesicles, the fusion pore conductance is smaller than in controls, showing that vesicle cholesterol controls fusion pore and is relevant for pathophysiology of LSD.
Collapse
Affiliation(s)
- Boštjan Rituper
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alenka Guček
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Marjeta Lisjak
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Urszula Gorska
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Aleksandra Šakanović
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Saša Trkov Bobnar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Eva Lasič
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Mićo Božić
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Prabhodh S Abbineni
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, United States of America
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Alexei Verkhratsky
- Celica Biomedical, 1000, Ljubljana, Slovenia; Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain
| | - Frances M Platt
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, United Kingdom
| | - Gregor Anderluh
- Laboratory for Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Slovenia
| | - Jens R Coorssen
- Department of Health Sciences, Faculty of Applied Health Sciences and Department of Biological Sciences, Faculty of Mathematics & Science, Brock University, St Catherine's, Ontario, Canada
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia; Celica Biomedical, 1000, Ljubljana, Slovenia.
| |
Collapse
|
15
|
Glitscher M, Hildt E. Endosomal Cholesterol in Viral Infections - A Common Denominator? Front Physiol 2021; 12:750544. [PMID: 34858206 PMCID: PMC8632007 DOI: 10.3389/fphys.2021.750544] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
Cholesterol has gained tremendous attention as an essential lipid in the life cycle of virtually all viruses. These seem to have developed manifold strategies to modulate the cholesterol metabolism to the side of lipid uptake and de novo synthesis. In turn, affecting the cholesterol homeostasis has emerged as novel broad-spectrum antiviral strategy. On the other hand, the innate immune system is similarly regulated by the lipid and stimulated by its derivatives. This certainly requires attention in the design of antiviral strategies aiming to decrease cellular cholesterol, as evidence accumulates that withdrawal of cholesterol hampers innate immunity. Secondly, there are exceptions to the rule of the abovementioned virus-induced metabolic shift toward cholesterol anabolism. It therefore is of interest to dissect underlying regulatory mechanisms, which we aimed for in this minireview. We further collected evidence for intracellular cholesterol concentrations being less important in viral life cycles as compared to the spatial distribution of the lipid. Various routes of cholesterol trafficking were found to be hijacked in viral infections with respect to organelle-endosome contact sites mediating cholesterol shuttling. Thus, re-distribution of cellular cholesterol in the context of viral infections requires more attention in ongoing research. As a final aim, a pan-antiviral treatment could be found just within the transport and re-adjustment of local cholesterol concentrations. Thus, we aimed to emphasize the importance of the regulatory roles the endosomal system fulfils herein and hope to stimulate research in this field.
Collapse
Affiliation(s)
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Langen, Germany
| |
Collapse
|
16
|
Nikolaus J, Hancock K, Tsemperouli M, Baddeley D, Karatekin E. Optimal Detection of Fusion Pore Dynamics Using Polarized Total Internal Reflection Fluorescence Microscopy. Front Mol Biosci 2021; 8:740408. [PMID: 34859048 PMCID: PMC8631473 DOI: 10.3389/fmolb.2021.740408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The fusion pore is the initial narrow connection that forms between fusing membranes. During vesicular release of hormones or neurotransmitters, the nanometer-sized fusion pore may open-close repeatedly (flicker) before resealing or dilating irreversibly, leading to kiss-and-run or full-fusion events, respectively. Pore dynamics govern vesicle cargo release and the mode of vesicle recycling, but the mechanisms are poorly understood. This is partly due to a lack of reconstituted assays that combine single-pore sensitivity and high time resolution. Total internal reflection fluorescence (TIRF) microscopy offers unique advantages for characterizing single membrane fusion events, but signals depend on effects that are difficult to disentangle, including the polarization of the excitation electric field, vesicle size, photobleaching, orientation of the excitation dipoles of the fluorophores with respect to the membrane, and the evanescent field depth. Commercial TIRF microscopes do not allow control of excitation polarization, further complicating analysis. To overcome these challenges, we built a polarization-controlled total internal reflection fluorescence (pTIRF) microscope and monitored fusion of proteoliposomes with planar lipid bilayers with single molecule sensitivity and ∼15 ms temporal resolution. Using pTIRF microscopy, we detected docking and fusion of fluorescently labeled small unilamellar vesicles, reconstituted with exocytotic/neuronal v-SNARE proteins (vSUVs), with a supported bilayer containing the cognate t-SNAREs (tSBL). By varying the excitation polarization angle, we were able to identify a dye-dependent optimal polarization at which the fluorescence increase upon fusion was maximal, facilitating event detection and analysis of lipid transfer kinetics. An improved algorithm allowed us to estimate the size of the fusing vSUV and the fusion pore openness (the fraction of time the pore is open) for every event. For most events, lipid transfer was much slower than expected for diffusion through an open pore, suggesting that fusion pore flickering limits lipid release. We find a weak correlation between fusion pore openness and vesicle area. The approach can be used to study mechanisms governing fusion pore dynamics in a wide range of membrane fusion processes.
Collapse
Affiliation(s)
- Joerg Nikolaus
- Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Nanobiology Institute, Yale University, West Haven, CT, United States
| | - Kasey Hancock
- Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Nanobiology Institute, Yale University, West Haven, CT, United States
- Integrated Physical and Engineering Biology Program, Yale University, New Haven, CT, United States
| | - Maria Tsemperouli
- Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Nanobiology Institute, Yale University, West Haven, CT, United States
| | - David Baddeley
- Nanobiology Institute, Yale University, West Haven, CT, United States
- Cell Biology, Yale University, New Haven, CT, United States
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, CT, United States
- Nanobiology Institute, Yale University, West Haven, CT, United States
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States
- Saints-Pères Paris Institute for the Neurosciences (SPPIN), Université de Paris, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
17
|
Liu KN, Boxer SG. Single-virus content-mixing assay reveals cholesterol-enhanced influenza membrane fusion efficiency. Biophys J 2021; 120:4832-4841. [PMID: 34536389 DOI: 10.1016/j.bpj.2021.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022] Open
Abstract
To infect a cell, enveloped viruses must first undergo membrane fusion, which proceeds through a hemifusion intermediate, followed by the formation of a fusion pore through which the viral genome is transferred to a target cell. Single-virus fusion studies to elucidate the dynamics of content mixing typically require extensive fluorescent labeling of viral contents. The labeling process must be optimized depending on the virus identity and strain and can potentially be perturbative to viral fusion behavior. Here, we introduce a single-virus assay in which content-labeled vesicles are bound to unlabeled influenza A virus (IAV) to eliminate the problematic step of content-labeling virions. We use fluorescence microscopy to observe individual, pH-triggered content mixing and content-loss events between IAV and target vesicles of varying cholesterol compositions. We show that target membrane cholesterol increases the efficiency of IAV content mixing and decreases the fraction of content-mixing events that result in content loss. These results are consistent with previous findings that cholesterol stabilizes pore formation in IAV entry and limits leakage after pore formation. We also show that content loss due to hemagglutinin fusion peptide engagement with the target membrane is independent of composition. This approach is a promising strategy for studying the single-virus content-mixing kinetics of other enveloped viruses.
Collapse
Affiliation(s)
- Katherine N Liu
- Department of Chemistry, Stanford University, Stanford, California
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California.
| |
Collapse
|
18
|
Daudey GA, Shen M, Singhal A, van der Est P, Sevink GJA, Boyle AL, Kros A. Liposome fusion with orthogonal coiled coil peptides as fusogens: the efficacy of roleplaying peptides. Chem Sci 2021; 12:13782-13792. [PMID: 34760163 PMCID: PMC8549789 DOI: 10.1039/d0sc06635d] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 09/18/2021] [Indexed: 12/18/2022] Open
Abstract
Biological membrane fusion is a highly specific and coordinated process as a multitude of vesicular fusion events proceed simultaneously in a complex environment with minimal off-target delivery. In this study, we develop a liposomal fusion model system with specific recognition using lipidated derivatives of a set of four de novo designed heterodimeric coiled coil (CC) peptide pairs. Content mixing was only obtained between liposomes functionalized with complementary peptides, demonstrating both fusogenic activity of CC peptides and the specificity of this model system. The diverse peptide fusogens revealed important relationships between the fusogenic efficacy and the peptide characteristics. The fusion efficiency increased from 20% to 70% as affinity between complementary peptides decreased, (from KF ≈ 108 to 104 M−1), and fusion efficiency also increased due to more pronounced asymmetric role-playing of membrane interacting ‘K’ peptides and homodimer-forming ‘E’ peptides. Furthermore, a new and highly fusogenic CC pair (E3/P1K) was discovered, providing an orthogonal peptide triad with the fusogenic CC pairs P2E/P2K and P3E/P3K. This E3/P1k pair was revealed, via molecular dynamics simulations, to have a shifted heptad repeat that can accommodate mismatched asparagine residues. These results will have broad implications not only for the fundamental understanding of CC design and how asparagine residues can be accommodated within the hydrophobic core, but also for drug delivery systems by revealing the necessary interplay of efficient peptide fusogens and enabling the targeted delivery of different carrier vesicles at various peptide-functionalized locations. We developed a liposomal fusion model system with specific recognition using a set of heterodimeric coiled coil peptide pairs. This study unravels important structure–fusogenic efficacy relationships of peptide fusogens.![]()
Collapse
Affiliation(s)
- Geert A Daudey
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Mengjie Shen
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Ankush Singhal
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Patrick van der Est
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - G J Agur Sevink
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Aimee L Boyle
- Macromolecular Biochemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University P.O. Box 9502 2300 RA Leiden The Netherlands
| |
Collapse
|
19
|
Bordanaba-Florit G, Royo F, Kruglik SG, Falcón-Pérez JM. Using single-vesicle technologies to unravel the heterogeneity of extracellular vesicles. Nat Protoc 2021; 16:3163-3185. [PMID: 34135505 DOI: 10.1038/s41596-021-00551-z] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Extracellular vesicles (EVs) are heterogeneous lipid containers with a complex molecular cargo comprising several populations with unique roles in biological processes. These vesicles are closely associated with specific physiological features, which makes them invaluable in the detection and monitoring of various diseases. EVs play a key role in pathophysiological processes by actively triggering genetic or metabolic responses. However, the heterogeneity of their structure and composition hinders their application in medical diagnosis and therapies. This diversity makes it difficult to establish their exact physiological roles, and the functions and composition of different EV (sub)populations. Ensemble averaging approaches currently employed for EV characterization, such as western blotting or 'omics' technologies, tend to obscure rather than reveal these heterogeneities. Recent developments in single-vesicle analysis have made it possible to overcome these limitations and have facilitated the development of practical clinical applications. In this review, we discuss the benefits and challenges inherent to the current methods for the analysis of single vesicles and review the contribution of these approaches to the understanding of EV biology. We describe the contributions of these recent technological advances to the characterization and phenotyping of EVs, examination of the role of EVs in cell-to-cell communication pathways and the identification and validation of EVs as disease biomarkers. Finally, we discuss the potential of innovative single-vesicle imaging and analysis methodologies using microfluidic devices, which promise to deliver rapid and effective basic and practical applications for minimally invasive prognosis systems.
Collapse
Affiliation(s)
- Guillermo Bordanaba-Florit
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain
| | - Sergei G Kruglik
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratoire Jean Perrin, Paris, France
| | - Juan M Falcón-Pérez
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Madrid, Spain. .,Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
20
|
Landajuela A, Braun M, Rodrigues CDA, Martínez-Calvo A, Doan T, Horenkamp F, Andronicos A, Shteyn V, Williams ND, Lin C, Wingreen NS, Rudner DZ, Karatekin E. FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biol 2021; 19:e3001314. [PMID: 34185788 PMCID: PMC8274934 DOI: 10.1371/journal.pbio.3001314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/12/2021] [Accepted: 06/07/2021] [Indexed: 11/18/2022] Open
Abstract
Little is known about mechanisms of membrane fission in bacteria despite their requirement for cytokinesis. The only known dedicated membrane fission machinery in bacteria, fission protein B (FisB), is expressed during sporulation in Bacillus subtilis and is required to release the developing spore into the mother cell cytoplasm. Here, we characterized the requirements for FisB-mediated membrane fission. FisB forms mobile clusters of approximately 12 molecules that give way to an immobile cluster at the engulfment pole containing approximately 40 proteins at the time of membrane fission. Analysis of FisB mutants revealed that binding to acidic lipids and homo-oligomerization are both critical for targeting FisB to the engulfment pole and membrane fission. Experiments using artificial membranes and filamentous cells suggest that FisB does not have an intrinsic ability to sense or induce membrane curvature but can bridge membranes. Finally, modeling suggests that homo-oligomerization and trans-interactions with membranes are sufficient to explain FisB accumulation at the membrane neck that connects the engulfment membrane to the rest of the mother cell membrane during late stages of engulfment. Together, our results show that FisB is a robust and unusual membrane fission protein that relies on homo-oligomerization, lipid binding, and the unique membrane topology generated during engulfment for localization and membrane scission, but surprisingly, not on lipid microdomains, negative-curvature lipids, or curvature sensing.
Collapse
Affiliation(s)
- Ane Landajuela
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Martha Braun
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | | | | | - Thierry Doan
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Aix-Marseille Université, Marseilles, France
| | - Florian Horenkamp
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Anna Andronicos
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
| | - Vladimir Shteyn
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Nathan D Williams
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Chenxiang Lin
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Cell Biology, Yale University, New Haven, Connecticut, United States of America
| | - Ned S Wingreen
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - David Z Rudner
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Erdem Karatekin
- Cellular and Molecular Physiology, Yale University, New Haven, Connecticut, United States of America
- Nanobiology Institute, Yale University, West Haven, Connecticut, United States of America
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Université de Paris, SPPIN-Saints-Pères Paris Institute for the Neurosciences, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
21
|
Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nat Chem 2021; 13:335-342. [PMID: 33785892 PMCID: PMC8049973 DOI: 10.1038/s41557-021-00667-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/23/2021] [Indexed: 02/01/2023]
Abstract
In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA 'nanobricks' to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30-130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.
Collapse
|
22
|
Mühlenbrock P, Sari M, Steinem C. In vitro single vesicle fusion assays based on pore-spanning membranes: merits and drawbacks. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:239-252. [PMID: 33320298 PMCID: PMC8071798 DOI: 10.1007/s00249-020-01479-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 12/22/2022]
Abstract
Neuronal fusion mediated by soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) is a fundamental cellular process by which two initially distinct membranes merge resulting in one interconnected structure to release neurotransmitters into the presynaptic cleft. To get access to the different stages of the fusion process, several in vitro assays have been developed. In this review, we provide a short overview of the current in vitro single vesicle fusion assays. Among those assays, we developed a single vesicle assay based on pore-spanning membranes (PSMs) on micrometre-sized pores in silicon, which might overcome some of the drawbacks associated with the other membrane architectures used for investigating fusion processes. Prepared by spreading of giant unilamellar vesicles with reconstituted t-SNAREs, PSMs provide an alternative tool to supported lipid bilayers to measure single vesicle fusion events by means of fluorescence microscopy. Here, we discuss the diffusive behaviour of the reconstituted membrane components as well as that of the fusing synthetic vesicles with reconstituted synaptobrevin 2 (v-SNARE). We compare our results with those obtained if the synthetic vesicles are replaced by natural chromaffin granules under otherwise identical conditions. The fusion efficiency as well as the different fusion states observable in this assay by means of both lipid mixing and content release are illuminated.
Collapse
Affiliation(s)
- Peter Mühlenbrock
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Merve Sari
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany
| | - Claudia Steinem
- Georg-August-Universität Göttingen, Institute of Organic and Biomolecular Chemistry, Tammannstr. 2, 37077, Göttingen, Germany.
- Max-Planck-Institute for Dynamics and Self Organization, Am Faßberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
23
|
Risselada HJ, Grubmüller H. How proteins open fusion pores: insights from molecular simulations. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:279-293. [PMID: 33340336 PMCID: PMC8071795 DOI: 10.1007/s00249-020-01484-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 02/06/2023]
Abstract
Fusion proteins can play a versatile and involved role during all stages of the fusion reaction. Their roles go far beyond forcing the opposing membranes into close proximity to drive stalk formation and fusion. Molecular simulations have played a central role in providing a molecular understanding of how fusion proteins actively overcome the free energy barriers of the fusion reaction up to the expansion of the fusion pore. Unexpectedly, molecular simulations have revealed a preference of the biological fusion reaction to proceed through asymmetric pathways resulting in the formation of, e.g., a stalk-hole complex, rim-pore, or vertex pore. Force-field based molecular simulations are now able to directly resolve the minimum free-energy path in protein-mediated fusion as well as quantifying the free energies of formed reaction intermediates. Ongoing developments in Graphics Processing Units (GPUs), free energy calculations, and coarse-grained force-fields will soon gain additional insights into the diverse roles of fusion proteins.
Collapse
Affiliation(s)
- H. Jelger Risselada
- Department of Theoretical Physics, Georg-August University of Göttingen, Göttingen, Germany
- Leiden University, Leiden Institute of Chemistry (LIC), Leiden, The Netherlands
| | - Helmut Grubmüller
- Max Planck Institute for Biophysical Chemistry, Theoretical and Computational Biophysics Department, Göttingen, Germany
| |
Collapse
|
24
|
Wu L, Courtney KC, Chapman ER. Cholesterol stabilizes recombinant exocytic fusion pores by altering membrane bending rigidity. Biophys J 2021; 120:1367-1377. [PMID: 33582136 DOI: 10.1016/j.bpj.2021.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
SNARE-mediated membrane fusion proceeds via the formation of a fusion pore. This intermediate structure is highly dynamic and can flicker between open and closed states. In cells, cholesterol has been reported to affect SNARE-mediated exocytosis and fusion pore dynamics. Here, we address the question of whether cholesterol directly affects the flickering rate of reconstituted fusion pores in vitro. These experiments were enabled by the recent development of a nanodisc⋅black lipid membrane recording system that monitors dynamic transitions between the open and closed states of nascent recombinant pores with submillisecond time resolution. The fusion pores formed between nanodiscs that bore the vesicular SNARE synaptobrevin 2 and black lipid membranes that harbored the target membrane SNAREs syntaxin 1A and SNAP-25B were markedly affected by cholesterol. These effects include strong reductions in flickering out of the open state, resulting in a significant increase in the open dwell-time. We attributed these effects to the known role of cholesterol in altering the elastic properties of lipid bilayers because manipulation of phospholipids to increase membrane stiffness mirrored the effects of cholesterol. In contrast to the observed effects on pore kinetics, cholesterol had no effect on the current that passed through individual pores and, hence, did not affect pore size. In conclusion, our results show that cholesterol dramatically stabilizes fusion pores in the open state by increasing membrane bending rigidity.
Collapse
Affiliation(s)
- Lanxi Wu
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Kevin C Courtney
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin
| | - Edwin R Chapman
- Howard Hughes Medical Institute and the Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.
| |
Collapse
|
25
|
Chowdhury HH, Zorec R. Exocytotic fusion pore under stress. Cell Stress 2020; 4:218-226. [PMID: 32908961 PMCID: PMC7453636 DOI: 10.15698/cst2020.09.230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/19/2020] [Accepted: 07/29/2020] [Indexed: 11/13/2022] Open
Abstract
Exocytosis is a universal process of eukaryotic cells, consisting of fusion between the vesicle and the plasma membranes, leading to the formation of a fusion pore, a channel through which vesicle cargo exits into the extracellular space. In 1986, Rand and Parsegian proposed several stages to explain the nature of membrane fusion. Following stimulation, it starts with focused stress destabilization of membranes in contact, followed by the coalescence of two membrane surfaces. In the next fraction of a millisecond, restabilization of fused membranes is considered to occur to maintain the cell's integrity. This view predicted that once a fusion pore is formed, it must widen abruptly, irreversibly and fully, whereby the vesicle membrane completely integrates with and collapses into the plasma membrane (full fusion exocytosis). However, recent experimental evidence has revealed that once the fusion pore opens, it may also reversibly close (transient or kiss-and-run exocytosis). Here, we present a historical perspective on understanding the mechanisms that initiate the membrane merger and fusion pore formation. Next, post-fusion mechanisms that regulate fusion pore stability are considered, reflecting the state in which the forces of widening and constriction of fusion pores are balanced. Although the mechanisms generating these forces are unclear, they may involve lipids and proteins, including SNAREs, which play a role not only in the pre-fusion but also post-fusion stages of exocytosis. How molecules stabilize the fusion pore in the open state is key for a better understanding of fusion pore physiology in health and disease.
Collapse
Affiliation(s)
- Helena Haque Chowdhury
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Medical Faculty, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Cell Engineering, Celica Biomedical, 1000 Ljubljana, Slovenia
- Laboratory of Neuroendocrinology – Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Medical Faculty, 1000 Ljubljana, Slovenia
| |
Collapse
|
26
|
Urbina FL, Gupton SL. SNARE-Mediated Exocytosis in Neuronal Development. Front Mol Neurosci 2020; 13:133. [PMID: 32848598 PMCID: PMC7427632 DOI: 10.3389/fnmol.2020.00133] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022] Open
Abstract
The formation of the nervous system involves establishing complex networks of synaptic connections between proper partners. This developmental undertaking requires the rapid expansion of the plasma membrane surface area as neurons grow and polarize, extending axons through the extracellular environment. Critical to the expansion of the plasma membrane and addition of plasma membrane material is exocytic vesicle fusion, a regulated mechanism driven by soluble N-ethylmaleimide-sensitive factor attachment proteins receptors (SNAREs). Since their discovery, SNAREs have been implicated in several critical neuronal functions involving exocytic fusion in addition to synaptic transmission, including neurite initiation and outgrowth, axon specification, axon extension, and synaptogenesis. Decades of research have uncovered a rich variety of SNARE expression and function. The basis of SNARE-mediated fusion, the opening of a fusion pore, remains an enigmatic event, despite an incredible amount of research, as fusion is not only heterogeneous but also spatially small and temporally fast. Multiple modes of exocytosis have been proposed, with full-vesicle fusion (FFV) and kiss-and-run (KNR) being the best described. Whereas most in vitro work has reconstituted fusion using VAMP-2, SNAP-25, and syntaxin-1; there is much to learn regarding the behaviors of distinct SNARE complexes. In the past few years, robust heterogeneity in the kinetics and fate of the fusion pore that varies by cell type have been uncovered, suggesting a paradigm shift in how the modes of exocytosis are viewed is warranted. Here, we explore both classic and recent work uncovering the variety of SNAREs and their importance in the development of neurons, as well as historical and newly proposed modes of exocytosis, their regulation, and proteins involved in the regulation of fusion kinetics.
Collapse
Affiliation(s)
- Fabio L. Urbina
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Stephanie L. Gupton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- UNC Neuroscience Center, Chapel Hill, NC, United States
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC, United States
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
27
|
Fusion Pore Formation Observed during SNARE-Mediated Vesicle Fusion with Pore-Spanning Membranes. Biophys J 2020; 119:151-161. [PMID: 32533941 DOI: 10.1016/j.bpj.2020.05.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 12/27/2022] Open
Abstract
Planar pore-spanning membranes (PSMs) have been shown to be a versatile tool to resolve elementary steps of the neuronal fusion process. However, in previous studies, we monitored only lipid mixing between fusing large unilamellar vesicles and PSMs and did not gather information about the formation of fusion pores. To address this important step of the fusion process, we entrapped sulforhodamine B at self-quenching concentrations into large unilamellar vesicles containing the v-SNARE synaptobrevin 2, which were docked and fused with lipid-labeled PSMs containing the t-SNARE acceptor complex ΔN49 prepared on gold-coated porous silicon substrates. By dual-color spinning disk fluorescence microscopy with a time resolution of ∼20 ms, we could unambiguously distinguish between bursting vesicles, which was only rarely observed (<0.01%), and fusion pore formation. From the time-resolved dual-color fluorescence time traces, we were able to identify different fusion pathways, including remaining three-dimensional postfusion structures with released content and transient openings and closings of the fusion pores. Our results on fusion pore formation and lipid diffusion from the PSM into the fusing vesicle let us conclude that the content release, i.e., fusion pore formation after the merger of the two lipid membranes occurs almost simultaneously.
Collapse
|
28
|
Peruzzi JA, Jacobs ML, Vu TQ, Wang KS, Kamat NP. Barcoding Biological Reactions with DNA-Functionalized Vesicles. Angew Chem Int Ed Engl 2019; 58:18683-18690. [PMID: 31596992 PMCID: PMC6901749 DOI: 10.1002/anie.201911544] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Indexed: 11/08/2022]
Abstract
Targeted vesicle fusion is a promising approach to selectively control interactions between vesicle compartments and would enable the initiation of biological reactions in complex aqueous environments. Here, we explore how two features of vesicle membranes, DNA tethers and phase-segregated membranes, promote fusion between specific vesicle populations. Membrane phase-segregation provides an energetic driver for membrane fusion that increases the efficiency of DNA-mediated fusion events. The orthogonality provided by DNA tethers allows us to direct fusion and delivery of DNA cargo to specific vesicle populations. Vesicle fusion between DNA-tethered vesicles can be used to initiate in vitro protein expression to produce model soluble and membrane proteins. Engineering orthogonal fusion events between DNA-tethered vesicles provides a new strategy to control the spatiotemporal dynamics of cell-free reactions, expanding opportunities to engineer artificial cellular systems.
Collapse
Affiliation(s)
- Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, USA
| | - Miranda L Jacobs
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Timothy Q Vu
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Kenneth S Wang
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
| | - Neha P Kamat
- Department of Biomedical Engineering, Northwestern University, McCormick School of Engineering, Technological Institute, 2145 Sheridan Road, Evanston, Il, 60208, USA
- Center for Synthetic Biology, Northwestern University, USA
- Chemistry of Life Processes Institute, Northwestern University, USA
| |
Collapse
|
29
|
Guo J, Zhang F, Gao J, Guan X, Liu B, Wang X, Qin Z, Tang K, Liu S. Proteomics-based screening of the target proteins associated with antidepressant-like effect and mechanism of Saikosaponin A. J Cell Mol Med 2019; 24:174-188. [PMID: 31762213 PMCID: PMC6933357 DOI: 10.1111/jcmm.14695] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 07/20/2019] [Accepted: 09/08/2019] [Indexed: 12/20/2022] Open
Abstract
Depression is a commonly occurring neuropsychiatric disease with an increasing incidence rate. Saikosaponin A (SA), a major bioactive component extracted from Radix Bupleuri, possesses anti‐malignant cell proliferation, anti‐inflammation, anti‐oxidation and liver protective effects. However, few studies have investigated SA’s antidepressant effects and pharmacological mechanisms of action. Our study aimed to explore the anti‐depression effect of SA and screen the target proteins regulated by SA in a rat model of chronic unpredictable mild stress (CUMS)‐induced depression. Results showed that 8‐week CUMS combined with separation could successfully produce depressive‐like behaviours and cause a decrease of dopamine (DA) in rat hippocampus, and 4‐week administration of SA could relieve CUMS rats’ depressive symptoms and up‐regulated DA content. There were 15 kinds of significant differentially expressed proteins that were detected not only between the control and CUMS groups, but also between the CUMS and SA treatment groups. Proline‐rich transmembrane protein 2 (PRRT2) was down‐regulated by CUMS while up‐regulated by SA. These findings reveal that SA may exert antidepressant effects by up‐regulating the expression level of PRRT2 and increasing DA content in hippocampus. The identification of these 15 differentially expressed proteins, including PRRT2, provides further insight into the treatment mechanism of SA for depression.
Collapse
Affiliation(s)
- Juanjuan Guo
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China.,Department of Geriatrics, Xuecheng People's Hospital, Zaozhuang, China
| | - Feng Zhang
- School of Life Sciences, Qilu Normal University, Jinan, China
| | - Jifang Gao
- Department of Pathology, Linyi People's Hospital, Linyi, China
| | - Xinyuan Guan
- Bureau of Emergency Management of Siping City, Siping, China
| | - Beiyun Liu
- Shanghai United Imaging Healthcare Co., Ltd., Shanghai, China
| | - Xiaoge Wang
- Guangzhou Hospital of integrated Traditional and West Medicine, Guangzhou, China
| | - Zhaoyu Qin
- Laboratory of Systems Biology, Institute of Biomedical Sciences, Fudan University, Shanghai, China
| | - Kuanxiao Tang
- Department of Geriatrics, Qilu Hospital of Shandong Univeristy, Jinan, China
| | - Shilian Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
30
|
Zuniga-Hertz JP, Patel HH. The Evolution of Cholesterol-Rich Membrane in Oxygen Adaption: The Respiratory System as a Model. Front Physiol 2019; 10:1340. [PMID: 31736773 PMCID: PMC6828933 DOI: 10.3389/fphys.2019.01340] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022] Open
Abstract
The increase in atmospheric oxygen levels imposed significant environmental pressure on primitive organisms concerning intracellular oxygen concentration management. Evidence suggests the rise of cholesterol, a key molecule for cellular membrane organization, as a cellular strategy to restrain free oxygen diffusion under the new environmental conditions. During evolution and the increase in organismal complexity, cholesterol played a pivotal role in the establishment of novel and more complex functions associated with lipid membranes. Of these, caveolae, cholesterol-rich membrane domains, are signaling hubs that regulate important in situ functions. Evolution resulted in complex respiratory systems and molecular response mechanisms that ensure responses to critical events such as hypoxia facilitated oxygen diffusion and transport in complex organisms. Caveolae have been structurally and functionally associated with respiratory systems and oxygen diffusion control through their relationship with molecular response systems like hypoxia-inducible factors (HIF), and particularly as a membrane-localized oxygen sensor, controlling oxygen diffusion balanced with cellular physiological requirements. This review will focus on membrane adaptations that contribute to regulating oxygen in living systems.
Collapse
Affiliation(s)
- Juan Pablo Zuniga-Hertz
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| | - Hemal H Patel
- Department of Anesthesiology, VA San Diego Healthcare System, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
31
|
Peruzzi JA, Jacobs ML, Vu TQ, Wang KS, Kamat NP. Barcoding Biological Reactions with DNA‐Functionalized Vesicles. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Justin A. Peruzzi
- Department of Chemical and Biological Engineering Northwestern University USA
| | - Miranda L. Jacobs
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Timothy Q. Vu
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Kenneth S. Wang
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
| | - Neha P. Kamat
- Department of Biomedical Engineering Northwestern University McCormick School of Engineering Technological Institute 2145 Sheridan Road Evanston Il 60208 USA
- Center for Synthetic Biology Northwestern University USA
- Chemistry of Life Processes Institute Northwestern University USA
| |
Collapse
|
32
|
A Nanodisc-Cell Fusion Assay with Single-Pore Sensitivity and Sub-millisecond Time Resolution. Methods Mol Biol 2019; 1860:263-275. [PMID: 30317511 DOI: 10.1007/978-1-4939-8760-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
During exocytosis, vesicles fuse with the plasma membrane and release their contents. The fusion pore is the initial, nanometer-sized connection between the plasma membrane and the cargo-laden vesicle. A growing body of evidence points toward the fusion pore being a regulator of exocytosis, but the shortcomings of current experimental techniques to investigate single-fusion pores make it difficult to study factors governing pore behavior. Here we describe an assay that fuses v-SNARE-reconstituted nanodiscs with cells ectopically expressing "flipped" t-SNAREs to monitor dynamics of single fusion pores in a biochemically defined system using electrical recordings. We also describe a fluorescence microscopy-based approach to monitor nanodisc-cell fusion that is much simpler to employ, but cannot resolve single pores.
Collapse
|
33
|
Fezoua-Boubegtiten Z, Hastoy B, Scotti P, Milochau A, Bathany K, Desbat B, Castano S, Oda R, Lang J. The transmembrane domain of the SNARE protein VAMP2 is highly sensitive to its lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:670-676. [DOI: 10.1016/j.bbamem.2018.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 11/15/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
|
34
|
McDargh ZA, Polley A, O'Shaughnessy B. SNARE-mediated membrane fusion is a two-stage process driven by entropic forces. FEBS Lett 2018; 592:3504-3515. [PMID: 30346036 DOI: 10.1002/1873-3468.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 11/08/2022]
Abstract
SNARE proteins constitute the core of the exocytotic membrane fusion machinery. Fusion occurs when vesicle-associated and target membrane-associated SNAREs zipper into trans-SNARE complexes ('SNAREpins'), but the number required is controversial and the mechanism of cooperative fusion is poorly understood. We developed a highly coarse-grained molecular dynamics simulation to access the long fusion timescales, which revealed a two-stage process. First, zippering energy was dissipated and cooperative entropic forces assembled the SNAREpins into a ring; second, entropic forces expanded the ring, pressing membranes together and catalyzing fusion. We predict that any number of SNAREs fuses membranes, but fusion is faster with more SNAREs.
Collapse
Affiliation(s)
- Zachary A McDargh
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Anirban Polley
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York City, NY, USA
| |
Collapse
|
35
|
Karatekin E. Toward a unified picture of the exocytotic fusion pore. FEBS Lett 2018; 592:3563-3585. [PMID: 30317539 PMCID: PMC6353554 DOI: 10.1002/1873-3468.13270] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/07/2022]
Abstract
Neurotransmitter and hormone release involve calcium-triggered fusion of a cargo-loaded vesicle with the plasma membrane. The initial connection between the fusing membranes, called the fusion pore, can evolve in various ways, including rapid dilation to allow full cargo release, slow expansion, repeated opening-closing and resealing. Pore dynamics determine the kinetics of cargo release and the mode of vesicle recycling, but how these processes are controlled is poorly understood. Previous reconstitutions could not monitor single pores, limiting mechanistic insight they could provide. Recently developed nanodisc-based fusion assays allow reconstitution and monitoring of single pores with unprecedented detail and hold great promise for future discoveries. They recapitulate various aspects of exocytotic fusion pores, but comparison is difficult because different approaches suggested very different exocytotic fusion pore properties, even for the same cell type. In this Review, I discuss how most of the data can be reconciled, by recognizing how different methods probe different aspects of the same fusion process. The resulting picture is that fusion pores have broadly distributed properties arising from stochastic processes which can be modulated by physical constraints imposed by proteins, lipids and membranes.
Collapse
Affiliation(s)
- Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale University, West Haven, CT, USA
- Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
36
|
Pick H, Alves AC, Vogel H. Single-Vesicle Assays Using Liposomes and Cell-Derived Vesicles: From Modeling Complex Membrane Processes to Synthetic Biology and Biomedical Applications. Chem Rev 2018; 118:8598-8654. [PMID: 30153012 DOI: 10.1021/acs.chemrev.7b00777] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plasma membrane is of central importance for defining the closed volume of cells in contradistinction to the extracellular environment. The plasma membrane not only serves as a boundary, but it also mediates the exchange of physical and chemical information between the cell and its environment in order to maintain intra- and intercellular functions. Artificial lipid- and cell-derived membrane vesicles have been used as closed-volume containers, representing the simplest cell model systems to study transmembrane processes and intracellular biochemistry. Classical examples are studies of membrane translocation processes in plasma membrane vesicles and proteoliposomes mediated by transport proteins and ion channels. Liposomes and native membrane vesicles are widely used as model membranes for investigating the binding and bilayer insertion of proteins, the structure and function of membrane proteins, the intramembrane composition and distribution of lipids and proteins, and the intermembrane interactions during exo- and endocytosis. In addition, natural cell-released microvesicles have gained importance for early detection of diseases and for their use as nanoreactors and minimal protocells. Yet, in most studies, ensembles of vesicles have been employed. More recently, new micro- and nanotechnological tools as well as novel developments in both optical and electron microscopy have allowed the isolation and investigation of individual (sub)micrometer-sized vesicles. Such single-vesicle experiments have revealed large heterogeneities in the structure and function of membrane components of single vesicles, which were hidden in ensemble studies. These results have opened enormous possibilities for bioanalysis and biotechnological applications involving unprecedented miniaturization at the nanometer and attoliter range. This review will cover important developments toward single-vesicle analysis and the central discoveries made in this exciting field of research.
Collapse
Affiliation(s)
- Horst Pick
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Ana Catarina Alves
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Horst Vogel
- Institute of Chemical Sciences and Engineering , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| |
Collapse
|
37
|
Sharma S, Lindau M. The fusion pore, 60 years after the first cartoon. FEBS Lett 2018; 592:3542-3562. [PMID: 29904915 DOI: 10.1002/1873-3468.13160] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Neurotransmitter release occurs in the form of quantal events by fusion of secretory vesicles with the plasma membrane, and begins with the formation of a fusion pore that has a conductance similar to that of a large ion channel or gap junction. In this review, we propose mechanisms of fusion pore formation and discuss their implications for fusion pore structure and function. Accumulating evidence indicates a direct role of soluble N-ethylmaleimide-sensitive-factor attachment receptor proteins in the opening of fusion pores. Fusion pores are likely neither protein channels nor purely lipid, but are of proteolipidic composition. Future perspectives to gain better insight into the molecular structure of fusion pores are discussed.
Collapse
Affiliation(s)
- Satyan Sharma
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | - Manfred Lindau
- Laboratory for Nanoscale Cell Biology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany.,School of Applied and Engineering Physics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
38
|
Gardner JM, Abrams CF. Rate of hemifusion diaphragm dissipation and ability to form three-junction bound HD determined by lipid composition. J Chem Phys 2018; 147:134903. [PMID: 28987088 DOI: 10.1063/1.4994320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Though the hemifusion diaphragm (HD) is widely accepted as an intermediate in bilayer membrane fusion, lipid contributions toward HD stability and dynamics are still not fully understood. In this paper, we study large, binary, protein-free HD systems at varying compositions of negative intrinsic curvature (NIC) lipids using molecular dynamics (MD) simulations of a solvent-free coarse-grained lipid model. Under MD, initially created HDs are found to relax to three major end states depending on the composition and lipid intrinsic curvature. Low compositions of NIC lipids or weak intrinsic curvature result in double-bilayer end states, and moderate compositions of moderate to strong NIC lipids result in metastable fusion pores. Importantly, high compositions of moderate NIC lipids result in a metastable HD that persists beyond μs time scales. NIC lipids stabilize the HD by filling the junction core around the HD. Sorting of NIC lipids toward the three-junction region occurs in fused-endpoint systems, but no significant sorting was seen in systems that end in a double bilayer indicating that high line tension at the triple junction drives HD dissipation faster than sorting can enrich that junction enough to lower that line tension. The appearance of three end states dependent on the NIC lipid composition highlights the necessity of NIC lipids for non-leaky fusion.
Collapse
Affiliation(s)
- Jasmine M Gardner
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St., Philadelphia, Pennsylvania 19104, USA
| | - Cameron F Abrams
- Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut St., Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
39
|
Kim J, Shin YK. Productive and Non-productive Pathways for Synaptotagmin 1 to Support Ca 2+-Triggered Fast Exocytosis. Front Mol Neurosci 2017; 10:380. [PMID: 29187811 PMCID: PMC5695160 DOI: 10.3389/fnmol.2017.00380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/01/2017] [Indexed: 12/17/2022] Open
Abstract
Ca2+-triggered SNARE-mediated membrane fusion is essential for neuronal communication. The speed of this process is of particular importance because it sets a time limit to cognitive and physical activities. In this work, we expand the proteoliposome-to-supported bilayer (SBL) fusion assay by successfully incorporating synaptotagmin 1 (Syt1), a major Ca2+ sensor. We report that Syt1 and Ca2+ together can elicit more than a 50-fold increase in the number of membrane fusion events when compared with membrane fusion mediated by SNAREs only. What is remarkable is that ~55% of all vesicle fusion events occurs within 20 ms upon vesicle docking. Furthermore, pre-binding of Syt1 to SNAREs prior to Ca2+ inhibits spontaneous fusion, but intriguingly, this leads to a complete loss of the Ca2+ responsiveness. Thus, our results suggest that there is a productive and a non-productive pathway for Syt1, depending on whether there is a premature interaction between Syt1 and SNAREs. Our results show that Ca2+ binding to Syt1 prior to Syt1's binding to SNAREs may be a prerequisite for the productive pathway. The successful reconstitution of Syt1 activities in the physiological time scale provides new opportunities to test the current mechanistic models for Ca2+-triggered exocytosis.
Collapse
Affiliation(s)
| | - Yeon-Kyun Shin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
40
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
41
|
Daudey G, Zope HR, Voskuhl J, Kros A, Boyle AL. Membrane-Fusogen Distance Is Critical for Efficient Coiled-Coil-Peptide-Mediated Liposome Fusion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12443-12452. [PMID: 28980816 PMCID: PMC5666511 DOI: 10.1021/acs.langmuir.7b02931] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/02/2017] [Indexed: 06/07/2023]
Abstract
We have developed a model system for membrane fusion that utilizes lipidated derivatives of a heterodimeric coiled-coil pair dubbed E3 (EIAALEK)3 and K3 (KIAALKE)3. In this system, peptides are conjugated to a lipid anchor via a poly(ethylene glycol) (PEG) spacer, and this contribution studies the influence of the PEG spacer length, coupled with the type of lipid anchor, on liposome-liposome fusion. The effects of these modifications on peptide secondary structure, their interactions with liposomes, and their ability to mediate fusion were studied using a variety of different content mixing experiments and CD spectroscopy. Our results demonstrate the asymmetric role of the peptides in the fusion process because alterations to the PEG spacer length affect E3 and K3 differently. We conclude that negatively charged E3 acts as a "handle" for positively charged K3 and facilitates liposome docking, the first stage of the fusion process, through coiled-coil formation. The efficacy of this E3 handle is enhanced by longer spacer lengths. K3 directs the fusion process via peptide-membrane interactions, but the length of the PEG spacer plays two competing roles: a PEG4/PEG8 spacer length is optimal for membrane destabilization; however, a PEG12 spacer increases the fusion efficiency over time by improving the peptide accessibility for successive fusion events. Both the anchor type and spacer length affect the peptide structure; a cholesterol anchor appears to enhance K3-membrane interactions and thus mediates fusion more efficiently.
Collapse
Affiliation(s)
- Geert
A. Daudey
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | | | | | - Alexander Kros
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Aimee L. Boyle
- Supramolecular and Biomaterials Chemistry, Leiden
Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| |
Collapse
|
42
|
Kreutzberger AJB, Kiessling V, Liang B, Yang ST, Castle JD, Tamm LK. Asymmetric Phosphatidylethanolamine Distribution Controls Fusion Pore Lifetime and Probability. Biophys J 2017; 113:1912-1915. [PMID: 29037600 DOI: 10.1016/j.bpj.2017.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/13/2017] [Indexed: 01/18/2023] Open
Abstract
Little attention has been given to how the asymmetric lipid distribution of the plasma membrane might facilitate fusion pore formation during exocytosis. Phosphatidylethanolamine (PE), a cone-shaped phospholipid, is predominantly located in the inner leaflet of the plasma membrane and has been proposed to promote membrane deformation and stabilize fusion pores during exocytotic events. To explore this possibility, we modeled exocytosis using plasma membrane SNARE-containing planar-supported bilayers and purified neuroendocrine dense core vesicles (DCVs) as fusion partners, and we examined how different PE distributions between the two leaflets of the supported bilayers affected SNARE-mediated fusion. Using total internal reflection fluorescence microscopy, the fusion of single DCVs with the planar-supported bilayer was monitored by observing DCV-associated neuropeptide Y tagged with a fluorescent protein. The time-dependent line shape of the fluorescent signal enables detection of DCV docking, fusion-pore opening, and vesicle collapse into the planar membrane. Four different distributions of PE in the planar bilayer mimicking the plasma membrane were examined: exclusively in the leaflet facing the DCVs; exclusively in the opposite leaflet; equally distributed in both leaflets; and absent from both leaflets. With PE in the leaflet facing the DCVs, overall fusion was most efficient and the extended fusion pore lifetime (0.7 s) enabled notable detection of content release preceding vesicle collapse. All other PE distributions decreased fusion efficiency, altered pore lifetime, and reduced content release. With PE exclusively in the opposite leaflet, resolution of pore opening and content release was lost.
Collapse
Affiliation(s)
- Alex J B Kreutzberger
- Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia
| | - Sung-Tae Yang
- Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia
| | - J David Castle
- Department of Cell Biology, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia
| | - Lukas K Tamm
- Department of Molecular Physiology and Biological Physics, Center for Cell and Membrane Physiology at the University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
43
|
Wu Z, Thiyagarajan S, O'Shaughnessy B, Karatekin E. Regulation of Exocytotic Fusion Pores by SNARE Protein Transmembrane Domains. Front Mol Neurosci 2017; 10:315. [PMID: 29066949 PMCID: PMC5641348 DOI: 10.3389/fnmol.2017.00315] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/19/2017] [Indexed: 12/26/2022] Open
Abstract
Calcium-triggered exocytotic release of neurotransmitters and hormones from neurons and neuroendocrine cells underlies neuronal communication, motor activity and endocrine functions. The core of the neuronal exocytotic machinery is composed of soluble N-ethyl maleimide sensitive factor attachment protein receptors (SNAREs). Formation of complexes between vesicle-attached v- and plasma-membrane anchored t-SNAREs in a highly regulated fashion brings the membranes into close apposition. Small, soluble proteins called Complexins (Cpx) and calcium-sensing Synaptotagmins cooperate to block fusion at low resting calcium concentrations, but trigger release upon calcium increase. A growing body of evidence suggests that the transmembrane domains (TMDs) of SNARE proteins play important roles in regulating the processes of fusion and release, but the mechanisms involved are only starting to be uncovered. Here we review recent evidence that SNARE TMDs exert influence by regulating the dynamics of the fusion pore, the initial aqueous connection between the vesicular lumen and the extracellular space. Even after the fusion pore is established, hormone release by neuroendocrine cells is tightly controlled, and the same may be true of neurotransmitter release by neurons. The dynamics of the fusion pore can regulate the kinetics of cargo release and the net amount released, and can determine the mode of vesicle recycling. Manipulations of SNARE TMDs were found to affect fusion pore properties profoundly, both during exocytosis and in biochemical reconstitutions. To explain these effects, TMD flexibility, and interactions among TMDs or between TMDs and lipids have been invoked. Exocytosis has provided the best setting in which to unravel the underlying mechanisms, being unique among membrane fusion reactions in that single fusion pores can be probed using high-resolution methods. An important role will likely be played by methods that can probe single fusion pores in a biochemically defined setting which have recently become available. Finally, computer simulations are valuable mechanistic tools because they have the power to access small length scales and very short times that are experimentally inaccessible.
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States
| | | | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, NY, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, CT, United States.,Nanobiology Institute, Yale University, West Haven, CT, United States.,Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS), Paris, France
| |
Collapse
|
44
|
Fathali H, Cans AS. Amperometry methods for monitoring vesicular quantal size and regulation of exocytosis release. Pflugers Arch 2017; 470:125-134. [PMID: 28951968 PMCID: PMC5748430 DOI: 10.1007/s00424-017-2069-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 11/30/2022]
Abstract
Chemical signaling strength during intercellular communication can be regulated by secretory cells through controlling the amount of signaling molecules that are released from a secretory vesicle during the exocytosis process. In addition, the chemical signal can also be influenced by the amount of neurotransmitters that is accumulated and stored inside the secretory vesicle compartment. Here, we present the development of analytical methodologies and cell model systems that have been applied in neuroscience research for gaining better insights into the biophysics and the molecular mechanisms, which are involved in the regulatory aspects of the exocytosis machinery affecting the output signal of chemical transmission at neuronal and neuroendocrine cells.
Collapse
Affiliation(s)
- Hoda Fathali
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 42196, Gothenburg, Sweden.
| |
Collapse
|
45
|
Kuhlmann JW, Junius M, Diederichsen U, Steinem C. SNARE-Mediated Single-Vesicle Fusion Events with Supported and Freestanding Lipid Membranes. Biophys J 2017; 112:2348-2356. [PMID: 28591607 DOI: 10.1016/j.bpj.2017.04.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/24/2017] [Accepted: 04/24/2017] [Indexed: 10/19/2022] Open
Abstract
In vitro single-vesicle fusion assays are important tools to analyze the details of SNARE-mediated fusion processes. In this study, we employed planar pore-spanning membranes (PSMs) prepared on porous silicon substrates with large pore diameters of 5 μm, allowing us to compare the process of vesicle docking and fusion on the supported parts of the PSMs (s-PSMs) with that on the freestanding membrane parts (f-PSM) under the exact same experimental conditions. The PSMs harbor the t-SNARE ΔN49-complex to investigate the dynamics and fusogenicity of single large unilamellar vesicles doped with the v-SNARE synaptobrevin 2 by means of spinning-disc confocal microscopy with a time resolution of 10 ms. Our results demonstrate that vesicles docked to the s-PSM were fully immobile, whereas those docked to the f-PSM were mobile with a mean diffusion coefficient of 0.42 μm2/s. Despite the different dynamics of the vesicles on the two membrane types, similar fusion kinetics were observed, giving rise to a common fusion mechanism. Further investigations of individual lipid mixing events on the s-PSMs revealed semi-stable post-fusion structures.
Collapse
Affiliation(s)
- Jan W Kuhlmann
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Meike Junius
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany.
| |
Collapse
|
46
|
Hastoy B, Scotti PA, Milochau A, Fezoua-Boubegtiten Z, Rodas J, Megret R, Desbat B, Laguerre M, Castano S, Perrais D, Rorsman P, Oda R, Lang J. A Central Small Amino Acid in the VAMP2 Transmembrane Domain Regulates the Fusion Pore in Exocytosis. Sci Rep 2017; 7:2835. [PMID: 28588281 PMCID: PMC5460238 DOI: 10.1038/s41598-017-03013-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 04/27/2017] [Indexed: 11/30/2022] Open
Abstract
Exocytosis depends on cytosolic domains of SNARE proteins but the function of the transmembrane domains (TMDs) in membrane fusion remains controversial. The TMD of the SNARE protein synaptobrevin2/VAMP2 contains two highly conserved small amino acids, G100 and C103, in its central portion. Substituting G100 and/or C103 with the β-branched amino acid valine impairs the structural flexibility of the TMD in terms of α-helix/β-sheet transitions in model membranes (measured by infrared reflection-absorption or evanescent wave spectroscopy) during increase in protein/lipid ratios, a parameter expected to be altered by recruitment of SNAREs at fusion sites. This structural change is accompanied by reduced membrane fluidity (measured by infrared ellipsometry). The G100V/C103V mutation nearly abolishes depolarization-evoked exocytosis (measured by membrane capacitance) and hormone secretion (measured biochemically). Single-vesicle optical (by TIRF microscopy) and biophysical measurements of ATP release indicate that G100V/C103V retards initial fusion-pore opening, hinders its expansion and leads to premature closure in most instances. We conclude that the TMD of VAMP2 plays a critical role in membrane fusion and that the structural mobility provided by the central small amino acids is crucial for exocytosis by influencing the molecular re-arrangements of the lipid membrane that are necessary for fusion pore opening and expansion.
Collapse
Affiliation(s)
- Benoît Hastoy
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Pier A Scotti
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Alexandra Milochau
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Zahia Fezoua-Boubegtiten
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jorge Rodas
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Rémi Megret
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Laboratoire de l'Intégration du Matériau au Système, UMR CNRS 5218, 351 Cours de la Libération, 33400 Talence, France.,Institut Polytechnique de Bordeaux, Avernue des Facultés, 33405, Talence, France
| | - Bernard Desbat
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Michel Laguerre
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Sabine Castano
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - David Perrais
- Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.,Interdisciplinary Institute for Neuroscience, UMR CNRS 5287, 146, rue Léo-Saignat, 33077, Bordeaux, France
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | - Reiko Oda
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France.,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France
| | - Jochen Lang
- Laboratory of Membrane Chemistry and Biology (CBMN), UMR CNRS 5248, Université de Bordeaux, Allée de Geoffroy St Hilaire, 33600, Pessac, France. .,Université de Bordeaux, 351 Cours de la Libération, 33400, Talence, France.
| |
Collapse
|
47
|
Wu Z, Bello OD, Thiyagarajan S, Auclair SM, Vennekate W, Krishnakumar SS, O'Shaughnessy B, Karatekin E. Dilation of fusion pores by crowding of SNARE proteins. eLife 2017; 6. [PMID: 28346138 PMCID: PMC5404929 DOI: 10.7554/elife.22964] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/26/2017] [Indexed: 01/29/2023] Open
Abstract
Hormones and neurotransmitters are released through fluctuating exocytotic fusion pores that can flicker open and shut multiple times. Cargo release and vesicle recycling depend on the fate of the pore, which may reseal or dilate irreversibly. Pore nucleation requires zippering between vesicle-associated v-SNAREs and target membrane t-SNAREs, but the mechanisms governing the subsequent pore dilation are not understood. Here, we probed the dilation of single fusion pores using v-SNARE-reconstituted ~23-nm-diameter discoidal nanolipoprotein particles (vNLPs) as fusion partners with cells ectopically expressing cognate, 'flipped' t-SNAREs. Pore nucleation required a minimum of two v-SNAREs per NLP face, and further increases in v-SNARE copy numbers did not affect nucleation rate. By contrast, the probability of pore dilation increased with increasing v-SNARE copies and was far from saturating at 15 v-SNARE copies per face, the NLP capacity. Our experimental and computational results suggest that SNARE availability may be pivotal in determining whether neurotransmitters or hormones are released through a transient ('kiss and run') or an irreversibly dilating pore (full fusion).
Collapse
Affiliation(s)
- Zhenyong Wu
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Oscar D Bello
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | | | - Sarah Marie Auclair
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Wensi Vennekate
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States
| | - Shyam S Krishnakumar
- Nanobiology Institute, Yale University, West Haven, United States.,Department of Cell Biology, School of Medicine, Yale University, New Haven, United States
| | - Ben O'Shaughnessy
- Department of Chemical Engineering, Columbia University, New York, United States
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, United States.,Nanobiology Institute, Yale University, West Haven, United States.,Molecular Biophysics and Biochemistry, Yale University, New Haven, United States.,Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
48
|
Kiessling V, Liang B, Kreutzberger AJB, Tamm LK. Planar Supported Membranes with Mobile SNARE Proteins and Quantitative Fluorescence Microscopy Assays to Study Synaptic Vesicle Fusion. Front Mol Neurosci 2017; 10:72. [PMID: 28360838 PMCID: PMC5352703 DOI: 10.3389/fnmol.2017.00072] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 03/03/2017] [Indexed: 12/31/2022] Open
Abstract
Synaptic vesicle membrane fusion, the process by which neurotransmitter gets released at the presynaptic membrane is mediated by a complex interplay between proteins and lipids. The realization that the lipid bilayer is not just a passive environment where other molecular players like SNARE proteins act, but is itself actively involved in the process, makes the development of biochemical and biophysical assays particularly challenging. We summarize in vitro assays that use planar supported membranes and fluorescence microscopy to address some of the open questions regarding the molecular mechanisms of SNARE-mediated membrane fusion. Most of the assays discussed in this mini-review were developed in our lab over the last 15 years. We emphasize the sample requirements that we found are important for the successful application of these methods.
Collapse
Affiliation(s)
- Volker Kiessling
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Binyong Liang
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| | - Lukas K Tamm
- Center for Membrane and Cell Physiology, University of VirginiaCharlottesville, VA, USA; Department of Molecular Physiology and Biological Physics, University of VirginiaCharlottesville, VA, USA
| |
Collapse
|
49
|
Najafinobar N, Mellander LJ, Kurczy ME, Dunevall J, Angerer TB, Fletcher JS, Cans AS. Cholesterol Alters the Dynamics of Release in Protein Independent Cell Models for Exocytosis. Sci Rep 2016; 6:33702. [PMID: 27650365 PMCID: PMC5030643 DOI: 10.1038/srep33702] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/01/2016] [Indexed: 11/25/2022] Open
Abstract
Neurons communicate via an essential process called exocytosis. Cholesterol, an abundant lipid in both secretory vesicles and cell plasma membrane can affect this process. In this study, amperometric recordings of vesicular dopamine release from two different artificial cell models created from a giant unilamellar liposome and a bleb cell plasma membrane, show that with higher membrane cholesterol the kinetics for vesicular release are decelerated in a concentration dependent manner. This reduction in exocytotic speed was consistent for two observed modes of exocytosis, full and partial release. Partial release events, which only occurred in the bleb cell model due to the higher tension in the system, exhibited amperometric spikes with three distinct shapes. In addition to the classic transient, some spikes displayed a current ramp or plateau following the maximum peak current. These post spike features represent neurotransmitter release from a dilated pore before constriction and show that enhancing membrane rigidity via cholesterol adds resistance to a dilated pore to re-close. This implies that the cholesterol dependent biophysical properties of the membrane directly affect the exocytosis kinetics and that membrane tension along with membrane rigidity can influence the fusion pore dynamics and stabilization which is central to regulation of neurochemical release.
Collapse
Affiliation(s)
- Neda Najafinobar
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Lisa J. Mellander
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - Michael E. Kurczy
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Johan Dunevall
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Tina B. Angerer
- Department of Chemistry and Molecular Biology, University of Gothenburg, SE-412 96 Gothenburg, Sweden
| | - John S. Fletcher
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Ann-Sofie Cans
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
50
|
Nikolaus J, Karatekin E. SNARE-mediated Fusion of Single Proteoliposomes with Tethered Supported Bilayers in a Microfluidic Flow Cell Monitored by Polarized TIRF Microscopy. J Vis Exp 2016. [PMID: 27585113 DOI: 10.3791/54349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In the ubiquitous process of membrane fusion the opening of a fusion pore establishes the first connection between two formerly separate compartments. During neurotransmitter or hormone release via exocytosis, the fusion pore can transiently open and close repeatedly, regulating cargo release kinetics. Pore dynamics also determine the mode of vesicle recycling; irreversible resealing results in transient, "kiss-and-run" fusion, whereas dilation leads to full fusion. To better understand what factors govern pore dynamics, we developed an assay to monitor membrane fusion using polarized total internal reflection fluorescence (TIRF) microscopy with single molecule sensitivity and ~15 msec time resolution in a biochemically well-defined in vitro system. Fusion of fluorescently labeled small unilamellar vesicles containing v-SNARE proteins (v-SUVs) with a planar bilayer bearing t-SNAREs, supported on a soft polymer cushion (t-SBL, t-supported bilayer), is monitored. The assay uses microfluidic flow channels that ensure minimal sample consumption while supplying a constant density of SUVs. Exploiting the rapid signal enhancement upon transfer of lipid labels from the SUV to the SBL during fusion, kinetics of lipid dye transfer is monitored. The sensitivity of TIRF microscopy allows tracking single fluorescent lipid labels, from which lipid diffusivity and SUV size can be deduced for every fusion event. Lipid dye release times can be much longer than expected for unimpeded passage through permanently open pores. Using a model that assumes retardation of lipid release is due to pore flickering, a pore "openness", the fraction of time the pore remains open during fusion, can be estimated. A soluble marker can be encapsulated in the SUVs for simultaneous monitoring of lipid and soluble cargo release. Such measurements indicate some pores may reseal after losing a fraction of the soluble cargo.
Collapse
Affiliation(s)
- Joerg Nikolaus
- Department of Cellular and Molecular Physiology, Yale University School of Medicine; Nanobiology Institute, Yale University
| | - Erdem Karatekin
- Department of Cellular and Molecular Physiology, Yale University School of Medicine; Nanobiology Institute, Yale University; Department of Molecular Biophysics and Biochemistry, Yale University; Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS);
| |
Collapse
|