1
|
Schnitzer B, Welkenhuysen N, Leake MC, Shashkova S, Cvijovic M. The effect of stress on biophysical characteristics of misfolded protein aggregates in living Saccharomyces cerevisiae cells. Exp Gerontol 2022; 162:111755. [PMID: 35240259 DOI: 10.1016/j.exger.2022.111755] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 11/28/2022]
Abstract
Aggregation of misfolded or damaged proteins is often attributed to numerous metabolic and neurodegenerative disorders. To reveal underlying mechanisms and cellular responses, it is crucial to investigate protein aggregate dynamics in cells. Here, we used super-resolution single-molecule microscopy to obtain biophysical characteristics of individual aggregates of a model misfolded protein ∆ssCPY* labelled with GFP. We demonstrated that oxidative and hyperosmotic stress lead to increased aggregate stoichiometries but not necessarily the total number of aggregates. Moreover, our data suggest the importance of the thioredoxin peroxidase Tsa1 for the controlled sequestering and clearance of aggregates upon both conditions. Our work provides novel insights into the understanding of the cellular response to stress via revealing the dynamical properties of stress-induced protein aggregates.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Niek Welkenhuysen
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden
| | - Mark C Leake
- Department of Physics, University of York, YO10 5DD York, UK; Department of Biology, University of York, YO10 5DD York, UK
| | - Sviatlana Shashkova
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden; Department of Physics, University of York, YO10 5DD York, UK.
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Department of Mathematical Sciences, University of Gothenburg, 412 96 Gothenburg, Sweden.
| |
Collapse
|
2
|
Bioimaging approaches for quantification of individual cell behavior during cell fate decisions. Biochem Soc Trans 2022; 50:513-527. [PMID: 35166330 DOI: 10.1042/bst20210534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022]
Abstract
Tracking individual cells has allowed a new understanding of cellular behavior in human health and disease by adding a dynamic component to the already complex heterogeneity of single cells. Technically, despite countless advances, numerous experimental variables can affect data collection and interpretation and need to be considered. In this review, we discuss the main technical aspects and biological findings in the analysis of the behavior of individual cells. We discuss the most relevant contributions provided by these approaches in clinically relevant human conditions like embryo development, stem cells biology, inflammation, cancer and microbiology, along with the cellular mechanisms and molecular pathways underlying these conditions. We also discuss the key technical aspects to be considered when planning and performing experiments involving the analysis of individual cells over long periods. Despite the challenges in automatic detection, features extraction and long-term tracking that need to be tackled, the potential impact of single-cell bioimaging is enormous in understanding the pathogenesis and development of new therapies in human pathophysiology.
Collapse
|
3
|
Jacquel B, Aspert T, Laporte D, Sagot I, Charvin G. Monitoring single-cell dynamics of entry into quiescence during an unperturbed life cycle. eLife 2021; 10:73186. [PMID: 34723791 PMCID: PMC8594939 DOI: 10.7554/elife.73186] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
The life cycle of microorganisms is associated with dynamic metabolic transitions and complex cellular responses. In yeast, how metabolic signals control the progressive choreography of structural reorganizations observed in quiescent cells during a natural life cycle remains unclear. We have developed an integrated microfluidic device to address this question, enabling continuous single-cell tracking in a batch culture experiencing unperturbed nutrient exhaustion to unravel the coordination between metabolic and structural transitions within cells. Our technique reveals an abrupt fate divergence in the population, whereby a fraction of cells is unable to transition to respiratory metabolism and undergoes a reversible entry into a quiescence-like state leading to premature cell death. Further observations reveal that nonmonotonous internal pH fluctuations in respiration-competent cells orchestrate the successive waves of protein superassemblies formation that accompany the entry into a bona fide quiescent state. This ultimately leads to an abrupt cytosolic glass transition that occurs stochastically long after proliferation cessation. This new experimental framework provides a unique way to track single-cell fate dynamics over a long timescale in a population of cells that continuously modify their ecological niche.
Collapse
Affiliation(s)
- Basile Jacquel
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Théo Aspert
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Damien Laporte
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de Bordeaux, Bordeaux, France, Bordeaux, France
| | - Gilles Charvin
- Department of Developmental Biology and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
4
|
Wang Z, Zhang Y, Jiang L, Qiu J, Gao Y, Gu T, Li Z. Responses of Rhodotorula mucilaginosa under Pb(II) stress: carotenoid production and budding. Environ Microbiol 2021; 24:678-688. [PMID: 34002461 DOI: 10.1111/1462-2920.15603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/15/2021] [Accepted: 05/16/2021] [Indexed: 11/27/2022]
Abstract
Rhodotorula mucilaginosa resists heavy metal (HM) stress because of its abundant extracellular polymeric substances and functional vesicles. In this study, we provided new insights into its survival strategies at both biochemical and genetic levels. After lead exposure, carotenoid biosynthesis was initiated within 24 h incubation and then increased to the maximum after 96 h of incubation. Raman analysis confirmed that carotenoids (primarily β-carotene) were the major identifiable chemical substances on the cell surface. Moreover, the increased carotenoid production was accompanied by a rising budding rate, ~40% higher than that in the cultures without Pb. During the 96 h of incubation, the driving force for Pb accumulation was assigned to this elevated budding rate. After 96 h, biosorption was primarily attributed to the enhanced antioxidant ability of the single cells during carotenoid production. Furthermore, the yeast budding cells demonstrated an evidently heterogeneous biosorption of Pb, i.e., the rejuvenated daughters had a relatively lower Pb level than the mother cells. This resulted in the protection of the buds from Pb stress. After investigating phosphorus uptake and the RNA sequencing data, we finally confirmed two tightly correlated pathways that resist HM stress, i.e., biochemical (carotenoid production) and reproductive (healthy buds) pathways.
Collapse
Affiliation(s)
- Zhijun Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ying Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Liu Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Jingjing Qiu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yanan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhen Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.,Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
5
|
Bheda P, Aguilar-Gómez D, Kukhtevich I, Becker J, Charvin G, Kirmizis A, Schneider R. Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in Saccharomyces cerevisiae. STAR Protoc 2020; 1:100228. [PMID: 33377118 PMCID: PMC7757727 DOI: 10.1016/j.xpro.2020.100228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is an excellent model organism to dissect the maintenance and inheritance of phenotypes due to its asymmetric division. This requires following individual cells over time as they go through divisions to define pedigrees. Here, we provide a detailed protocol for collecting and analyzing time-lapse imaging data of yeast cells. The microfluidics protocol can achieve improved time resolution for single-cell tracking to enable characterization of maintenance and inheritance of phenotypes. For complete details on the use and execution of this protocol, please refer to Bheda et al. (2020a).
Collapse
Affiliation(s)
- Poonam Bheda
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Igor Kukhtevich
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Johannes Becker
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Gilles Charvin
- Development and Stem Cells, IGBMC, 67400 Illkirch, France
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
- Faculty of Biology, Ludwig-Maximilians Universität München, 80333 Munich, Germany
| |
Collapse
|
6
|
Johnston HE, Samant RS. Alternative systems for misfolded protein clearance: life beyond the proteasome. FEBS J 2020; 288:4464-4487. [PMID: 33135311 DOI: 10.1111/febs.15617] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/15/2020] [Accepted: 10/30/2020] [Indexed: 12/18/2022]
Abstract
Protein misfolding is a major driver of ageing-associated frailty and disease pathology. Although all cells possess multiple, well-characterised protein quality control systems to mitigate the toxicity of misfolded proteins, how they are integrated to maintain protein homeostasis ('proteostasis') in health-and how their disintegration contributes to disease-is still an exciting and fast-paced area of research. Under physiological conditions, the predominant route for misfolded protein clearance involves ubiquitylation and proteasome-mediated degradation. When the capacity of this route is overwhelmed-as happens during conditions of acute environmental stress, or chronic ageing-related decline-alternative routes for protein quality control are activated. In this review, we summarise our current understanding of how proteasome-targeted misfolded proteins are retrafficked to alternative protein quality control routes such as juxta-nuclear sequestration and selective autophagy when the ubiquitin-proteasome system is compromised. We also discuss the molecular determinants of these alternative protein quality control systems, attempt to clarify distinctions between various cytoplasmic spatial quality control inclusion bodies (e.g., Q-bodies, p62 bodies, JUNQ, aggresomes, and aggresome-like induced structures 'ALIS'), and speculate on emerging concepts in the field that we hope will spur future research-with the potential to benefit the rational development of healthy ageing strategies.
Collapse
Affiliation(s)
| | - Rahul S Samant
- Signalling Programme, The Babraham Institute, Cambridge, UK
| |
Collapse
|
7
|
Abstract
Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective. The extent of senescence due to damage accumulation—or aging—is evidently evolvable as it differs hugely between species and is not universal, suggesting that its fitness advantages depend on life history and environment. In contrast, repair of damage is present in all organisms studied. Despite the fundamental trade-off between investing resources into repair or into growth, repair and segregation of damage have not always been considered alternatives. For unicellular organisms, unrepaired damage could be divided asymmetrically between daughter cells, leading to senescence of one and rejuvenation of the other. Repair of “unicells” has been predicted to be advantageous in well-mixed environments such as chemostats. Most microorganisms, however, live in spatially structured systems, such as biofilms, with gradients of environmental conditions and cellular physiology as well as a clonal population structure. To investigate whether this clonal structure might favor senescence by damage segregation (a division-of-labor strategy akin to the germline-soma division in multicellular organisms), we used an individual-based computational model and developed an adaptive repair strategy where cells respond to their current intracellular damage levels by investing into repair machinery accordingly. Our simulations showed that the new adaptive repair strategy was advantageous provided that growth was limited by substrate availability, which is typical for biofilms. Thus, biofilms do not favor a germline-soma-like division of labor between daughter cells in terms of damage segregation. We suggest that damage segregation is beneficial only when extrinsic mortality is high, a degree of multicellularity is present, and an active mechanism makes segregation effective. IMPORTANCE Damage is an inevitable consequence of life. For unicellular organisms, this leads to a trade-off between allocating resources into damage repair or into growth coupled with segregation of damage upon cell division, i.e., aging and senescence. Few studies considered repair as an alternative to senescence. None considered biofilms, where the majority of unicellular organisms live, although fitness advantages in well-mixed systems often turn into disadvantages in spatially structured systems such as biofilms. We compared the fitness consequences of aging versus an adaptive repair mechanism based on sensing damage, using an individual-based model of a generic unicellular organism growing in biofilms. We found that senescence is not beneficial provided that growth is limited by substrate availability. Instead, it is useful as a stress response to deal with damage that failed to be repaired when (i) extrinsic mortality was high; (ii) a degree of multicellularity was present; and (iii) damage segregation was effective.
Collapse
|
8
|
Schnitzer B, Borgqvist J, Cvijovic M. The synergy of damage repair and retention promotes rejuvenation and prolongs healthy lifespans in cell lineages. PLoS Comput Biol 2020; 16:e1008314. [PMID: 33044956 PMCID: PMC7598927 DOI: 10.1371/journal.pcbi.1008314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/30/2020] [Accepted: 09/04/2020] [Indexed: 01/29/2023] Open
Abstract
Damaged proteins are inherited asymmetrically during cell division in the yeast Saccharomyces cerevisiae, such that most damage is retained within the mother cell. The consequence is an ageing mother and a rejuvenated daughter cell with full replicative potential. Daughters of old and damaged mothers are however born with increasing levels of damage resulting in lowered replicative lifespans. Remarkably, these prematurely old daughters can give rise to rejuvenated cells with low damage levels and recovered lifespans, called second-degree rejuvenation. We aimed to investigate how damage repair and retention together can promote rejuvenation and at the same time ensure low damage levels in mother cells, reflected in longer health spans. We developed a dynamic model for damage accumulation over successive divisions in individual cells as part of a dynamically growing cell lineage. With detailed knowledge about single-cell dynamics and relationships between all cells in the lineage, we can infer how individual damage repair and retention strategies affect the propagation of damage in the population. We show that damage retention lowers damage levels in the population by reducing the variability across the lineage, and results in larger population sizes. Repairing damage efficiently in early life, as opposed to investing in repair when damage has already accumulated, counteracts accelerated ageing caused by damage retention. It prolongs the health span of individual cells which are moreover less prone to stress. In combination, damage retention and early investment in repair are beneficial for healthy ageing in yeast cell populations.
Collapse
Affiliation(s)
- Barbara Schnitzer
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Johannes Borgqvist
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| | - Marija Cvijovic
- Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
9
|
Morita A, Hamoh T, Perona Martinez FP, Chipaux M, Sigaeva A, Mignon C, van der Laan KJ, Hochstetter A, Schirhagl R. The Fate of Lipid-Coated and Uncoated Fluorescent Nanodiamonds during Cell Division in Yeast. NANOMATERIALS 2020; 10:nano10030516. [PMID: 32178407 PMCID: PMC7153471 DOI: 10.3390/nano10030516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/18/2022]
Abstract
Fluorescent nanodiamonds are frequently used as biolabels. They have also recently been established for magnetic resonance and temperature sensing at the nanoscale level. To properly use them in cell biology, we first have to understand their intracellular fate. Here, we investigated, for the first time, what happens to diamond particles during and after cell division in yeast (Saccharomyces cerevisiae) cells. More concretely, our goal was to answer the question of whether nanodiamonds remain in the mother cells or end up in the daughter cells. Yeast cells are widely used as a model organism in aging and biotechnology research, and they are particularly interesting because their asymmetric cell division leads to morphologically different mother and daughter cells. Although yeast cells have a mechanism to prevent potentially harmful substances from entering the daughter cells, we found an increased number of diamond particles in daughter cells. Additionally, we found substantial excretion of particles, which has not been reported for mammalian cells. We also investigated what types of movement diamond particles undergo in the cells. Finally, we also compared bare nanodiamonds with lipid-coated diamonds, and there were no significant differences in respect to either movement or intracellular fate.
Collapse
Affiliation(s)
- Aryan Morita
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Department of Dental Biomedical Sciences, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia
| | - Thamir Hamoh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Felipe P. Perona Martinez
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Mayeul Chipaux
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Alina Sigaeva
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Charles Mignon
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Kiran J. van der Laan
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
| | - Axel Hochstetter
- Division of Biomedical Engineering, School of Engineering, University of Glasgow, Glasgow G12 8LT, UK;
| | - Romana Schirhagl
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; (A.M.); (T.H.); (F.P.P.M.); (M.C.); (A.S.); (C.M.); (K.J.v.d.L.)
- Correspondence:
| |
Collapse
|
10
|
Jones SK, Spivey EC, Rybarski JR, Finkelstein IJ. A Microfluidic Device for Massively Parallel, Whole-lifespan Imaging of Single Fission Yeast Cells. Bio Protoc 2018; 8:e2783. [PMID: 29770351 DOI: 10.21769/bioprotoc.2783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Whole-lifespan single-cell analysis has greatly increased our understanding of fundamental cellular processes such as cellular aging. To observe individual cells across their entire lifespan, all progeny must be removed from the growth medium, typically via manual microdissection. However, manual microdissection is laborious, low-throughput, and incompatible with fluorescence microscopy. Here, we describe assembly and operation of the multiplexed-Fission Yeast Lifespan Microdissector (multFYLM), a high-throughput microfluidic device for rapidly acquiring single-cell whole-lifespan imaging. multFYLM captures approximately one thousand rod-shaped fission yeast cells from up to six different genetic backgrounds or treatment regimens. The immobilized cells are fluorescently imaged for over a week, while the progeny cells are removed from the device. The resulting datasets yield high-resolution multi-channel images that record each cell's replicative lifespan. We anticipate that the multFYLM will be broadly applicable for single-cell whole-lifespan studies in the fission yeast (Schizosaccharomyces pombe) and other symmetrically-dividing unicellular organisms.
Collapse
Affiliation(s)
- Stephen K Jones
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Eric C Spivey
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - James R Rybarski
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.,Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Is Aggregate-Dependent Yeast Aging Fortuitous? A Model of Damage Segregation and Aggregate Dynamics. Biophys J 2017; 113:2464-2476. [PMID: 29212000 DOI: 10.1016/j.bpj.2017.09.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 09/26/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022] Open
Abstract
During cytokinesis in Saccharomyces cerevisiae, damaged proteins are distributed unequally between the daughter and mother cells. The retention of these proteins is correlated with yeast aging. Even though evidence suggests that aggregates are retained due to an underlying molecular mechanism, the debate on whether an active mechanism is necessary for this asymmetry remains unsolved. In particular, passive diffusion and a bud-specific dilution remain as possible explanations. Here, a computational and mathematical model is provided to test whether passive mechanisms alone are sufficient to account for the aggregate distribution patterns and the aggregate kinetics observed in living cells. To this author's knowledge, this is the most comprehensive model available on this subject and the only one combining key potentially essential passive-only mechanisms proposed in existing bibliography-namely, the geometrical effect of the dividing yeast cell on the diffusion of protein aggregates, and the possibility of aggregate binding and aggregate formation at different rates. Results suggest that although passive processes alone can reproduce certain averaged observables from experimental bibliography, they are insufficient to vindicate aggregate activity observed in living budding yeast cells. These results are complemented by showing that under basic forms of active quality control, discrepancies between the outputs of the model and experimental bibliography are reduced.
Collapse
|
12
|
Saarikangas J, Caudron F. Spatial regulation of coalesced protein assemblies: Lessons from yeast to diseases. Prion 2017; 11:162-173. [PMID: 28574744 PMCID: PMC5480387 DOI: 10.1080/19336896.2017.1322239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Organisms rely on correctly folded proteins to carry out essential functions. Protein quality control factors guard proteostasis and prevent protein misfolding. When quality control fails and in response to diverse stresses, many proteins start to accumulate at specific deposit sites that maintain cellular organization and protect the functionality of coalescing proteins. These transitions involve dedicated proteins that promote coalescence and are facilitated by endo-membranes and cytoskeletal platforms. Moreover, several proteins make use of weak multivalent interactions or conformational templating to drive the formation of large-scale assemblies. Formation of such assemblies is often associated with a change in biochemical activity that can be used by cells to execute biochemical decisions in a localized manner during development and adaption. Since all assembly types impact cell physiology, their localization and dynamics need to be tightly regulated. Interestingly, at least some of the regulatory mechanisms are shared by functional membrane-less organelles and assemblies of terminally aggregated proteins. Furthermore, constituents of functional assemblies can aggregate and become non-functional during aging. Here we present the current knowledge as to how coalescing protein assemblies are spatially organized in cells and we postulate that failures in their spatial confinement might underscore certain aspects of aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Juha Saarikangas
- a ETH Zurich, Institute of Biochemistry , Zurich , Switzerland.,b Wissenschaftskolleg zu Berlin , Institute for Advanced Study , Berlin , Germany.,c Helsinki Institute of Life Science, University of Helsinki , Helsinki , Finland.,d Faculty of Biological and Environmental Sciences , University of Helsinki , Helsinki , Finland
| | - Fabrice Caudron
- e Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| |
Collapse
|
13
|
Goulev Y, Morlot S, Matifas A, Huang B, Molin M, Toledano MB, Charvin G. Nonlinear feedback drives homeostatic plasticity in H 2O 2 stress response. eLife 2017; 6. [PMID: 28418333 PMCID: PMC5438251 DOI: 10.7554/elife.23971] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/14/2017] [Indexed: 12/20/2022] Open
Abstract
Homeostatic systems that rely on genetic regulatory networks are intrinsically limited by the transcriptional response time, which may restrict a cell’s ability to adapt to unanticipated environmental challenges. To bypass this limitation, cells have evolved mechanisms whereby exposure to mild stress increases their resistance to subsequent threats. However, the mechanisms responsible for such adaptive homeostasis remain largely unknown. Here, we used live-cell imaging and microfluidics to investigate the adaptive response of budding yeast to temporally controlled H2O2 stress patterns. We demonstrate that acquisition of tolerance is a systems-level property resulting from nonlinearity of H2O2 scavenging by peroxiredoxins and our study reveals that this regulatory scheme induces a striking hormetic effect of extracellular H2O2 stress on replicative longevity. Our study thus provides a novel quantitative framework bridging the molecular architecture of a cellular homeostatic system to the emergence of nonintuitive adaptive properties. DOI:http://dx.doi.org/10.7554/eLife.23971.001 Harmful external conditions, such as extreme heat or radiation, can cause stress to cells that may lead to permanent damage and even death. Cell stress is responsible for some cancers and degenerative diseases, and is involved in the process of aging. Cells respond to stress by modifying their activities in order to prevent damage from occurring. Some studies have suggested that the ability of cells to survive a stressful situation might depend both on the severity of the stress and also on the way in which the stress is applied. For example, the stress might start suddenly or develop more gradually. Cells exposed to a mild level of stress develop a tolerance that enables them to survive stronger doses of the same stress in the future. However, it is not clear how cells acquire such tolerance, and whether mild levels of stress can have more general benefits to cells, such as increased lifespan. Hydrogen peroxide and other “oxidative” compounds play important roles in cells, but they are also capable of causing damage so their levels must be tightly controlled. Goulev et al. developed a “microfluidic” device to study the effects of oxidative stress on yeast cells. The device made it possible to precisely control the level of hydrogen peroxide in the cells’ environment while monitoring the cells’ stress responses. The experiments show that exposing yeast cells to gradually increasing levels of hydrogen peroxide can train the cells to be able to survive when they are exposed to high levels of this compound. This ability depends on the activity of specific enzymes called peroxidases that are known to be able to destroy hydrogen peroxide inside the cells. The experiments suggest that gradually increasing levels of hydrogen peroxide trigger increases in the production of peroxidases that protect the cells against future oxidative stress. Further experiments show that even a very low dose of hydrogen peroxide is sufficient to activate the production of the enzymes, leading to an increase in the lifespan of the cells. A future challenge will be to investigate whether the principles identified in this work also apply to other stress responses in yeast. DOI:http://dx.doi.org/10.7554/eLife.23971.002
Collapse
Affiliation(s)
- Youlian Goulev
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Sandrine Morlot
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Audrey Matifas
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bo Huang
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michel B Toledano
- Oxidative Stress and Cancer, IBITECS, SBIGEM, CEA-Saclay, Gif-sur-Yvette, France
| | - Gilles Charvin
- Developmental Biology and Stem Cells Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France.,Centre National de la Recherche Scientifique, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
14
|
Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF. Over-expression of the molecular chaperone Hsp104 inSaccharomyces cerevisiaeresults in the malpartition of [PSI+] propagons. Mol Microbiol 2017; 104:125-143. [DOI: 10.1111/mmi.13617] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Frederique Ness
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Brian S. Cox
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Jintana Wongwigkarn
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Wesley R. Naeimi
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| | - Mick F. Tuite
- Kent Fungal Group, School of Biosciences; University of Kent; Canterbury Kent NJ CT2 7 UK
| |
Collapse
|