1
|
Nakao H, Nagao M, Yamada T, Imamura K, Nozaki K, Ikeda K, Nakano M. Impact of transmembrane peptides on individual lipid motions and collective dynamics of lipid bilayers. Colloids Surf B Biointerfaces 2023; 228:113396. [PMID: 37311269 DOI: 10.1016/j.colsurfb.2023.113396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/15/2023] [Accepted: 06/05/2023] [Indexed: 06/15/2023]
Abstract
The fluid nature of lipid bilayers is indispensable for the dynamic regulation of protein function and membrane morphology in biological membranes. Membrane-spanning domains of proteins interact with surrounding lipids and alter the physical properties of lipid bilayers. However, there is no comprehensive view of the effects of transmembrane proteins on the membrane's physical properties. Here, we investigated the effects of transmembrane peptides with different flip-flop-promoting abilities on the dynamics of a lipid bilayer employing complemental fluorescence and neutron scattering techniques. The quasi-elastic neutron scattering and fluorescence experiments revealed that lateral diffusion of the lipid molecules and the acyl chain motions were inhibited by the inclusion of transmembrane peptides. The neutron spin-echo spectroscopy measurements indicated that the lipid bilayer became more rigid but more compressible and the membrane viscosity increased when the transmembrane peptides were incorporated into the membrane. These results suggest that the inclusion of rigid transmembrane structures hinders individual and collective lipid motions by slowing down lipid diffusion and increasing interleaflet coupling. The present study provides a clue for understanding how the local interactions between lipids and proteins change the collective dynamics of the lipid bilayers, and therefore, the function of biological membranes.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Michihiro Nagao
- National Institute of Standards and Technology Center for Neutron Research, Gaithersburg, MD 20899-6102, USA; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115, USA; Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA
| | - Takeshi Yamada
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society (CROSS), 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Koki Imamura
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| |
Collapse
|
2
|
Nakao H, Nakano M. Flip-Flop Promotion Mechanisms by Model Transmembrane Peptides. Chem Pharm Bull (Tokyo) 2022; 70:519-523. [DOI: 10.1248/cpb.c22-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
3
|
Genome-wide CRISPR screen reveals CLPTM1L as a lipid scramblase required for efficient glycosylphosphatidylinositol biosynthesis. Proc Natl Acad Sci U S A 2022; 119:e2115083119. [PMID: 35344438 PMCID: PMC9169118 DOI: 10.1073/pnas.2115083119] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scramblases translocate lipids across the lipid bilayer without consumption of ATP, thereby regulating lipid distributions in cellular membranes. Cytosol-to-lumen translocation across the endoplasmic reticulum (ER) membrane is a common process among lipid glycoconjugates involved in posttranslational protein modifications in eukaryotes. These translocations are thought to be mediated by specific ER-resident scramblases, but the identity of these proteins and the underlying molecular mechanisms have been elusive. Here, we show that CLPTM1L, an integral membrane protein with eight putative transmembrane domains, is the major lipid scramblase involved in efficient glycosylphosphatidylinositol biosynthesis in the ER membrane. Our results validate the long-standing hypothesis that lipid scramblases ensure the efficient translocations of lipid glycoconjugates across the ER membrane for protein glycosylation pathways. Glycosylphosphatidylinositols (GPIs) are complex glycolipids that act as membrane anchors of many eukaryotic cell surface proteins. Biosynthesis of GPIs is initiated at the cytosolic face of the endoplasmic reticulum (ER) by generation of N-acetylglucosaminyl-phosphatidylinositol (GlcNAc-PI). The second intermediate, glucosaminyl-phosphatidylinositol (GlcN-PI), is translocated across the membrane to the luminal face for later biosynthetic steps and attachment to proteins. The mechanism of the luminal translocation of GlcN-PI is unclear. Here, we report a genome-wide CRISPR knockout screen of genes required for rescuing GPI-anchored protein expression after addition of chemically synthesized GlcNAc-PI to PIGA-knockout cells that cannot synthesize GlcNAc-PI. We identified CLPTM1L (cleft lip and palate transmembrane protein 1-like), an ER-resident multipass membrane protein, as a GlcN-PI scramblase required for efficient biosynthesis of GPIs. Knockout of CLPTM1L in PIGA-knockout cells impaired the efficient utilization of chemically synthesized GlcNAc-PI and GlcN-PI for GPI biosynthesis. Purified CLPTM1L scrambled GlcN-PI, GlcNAc-PI, PI, and several other phospholipids in vitro. CLPTM1L, a member of the PQ-loop family of proteins, represents a type of lipid scramblase having no structural similarity to known lipid scramblases. Knockout of CLPTM1L in various wild-type mammalian cultured cells partially decreased the level of GPI-anchored proteins. These results suggest that CLPTM1L is the major lipid scramblase involved in cytosol-to-lumen translocation of GlcN-PI across the ER membrane for efficient GPI biosynthesis.
Collapse
|
4
|
Abstract
Rapid flip-flop of phospholipids across the two leaflets of biological membranes is crucial for many aspects of cellular life. The transport proteins that facilitate this process are classified as pump-like flippases and floppases and channel-like scramblases. Unexpectedly, Class A G protein-coupled receptors (GPCRs), a large class of signaling proteins exemplified by the visual receptor rhodopsin and its apoprotein opsin, are constitutively active as scramblases in vitro. In liposomes, opsin scrambles lipids at a unitary rate of >100,000 per second. Atomistic molecular dynamics simulations of opsin in a lipid membrane reveal conformational transitions that expose a polar groove between transmembrane helices 6 and 7. This groove enables transbilayer lipid movement, conceptualized as the swiping of a credit card (lipid) through a card reader (GPCR). Conformational changes that facilitate scrambling are distinct from those associated with GPCR signaling. In this review, we discuss the physiological significance of GPCR scramblase activity and the modes of its regulation in cells. Expected final online publication date for the Annual Review of Biophysics, Volume 51 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York, USA; .,Institute of Computational Biomedicine, Weill Cornell Medical College, New York, New York, USA
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA;
| |
Collapse
|
5
|
Tadepalle N, Rugarli EI. Lipid Droplets in the Pathogenesis of Hereditary Spastic Paraplegia. Front Mol Biosci 2021; 8:673977. [PMID: 34041268 PMCID: PMC8141572 DOI: 10.3389/fmolb.2021.673977] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 12/21/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically heterogeneous conditions caused by the progressive dying back of the longest axons in the central nervous system, the corticospinal axons. A wealth of data in the last decade has unraveled disturbances of lipid droplet (LD) biogenesis, maturation, turnover and contact sites in cellular and animal models with perturbed expression and function of HSP proteins. As ubiquitous organelles that segregate neutral lipid into a phospholipid monolayer, LDs are at the cross-road of several processes including lipid metabolism and trafficking, energy homeostasis, and stress signaling cascades. However, their role in brain cells, especially in neurons remains enigmatic. Here, we review experimental findings linking LD abnormalities to defective function of proteins encoded by HSP genes, and discuss arising questions in the context of the pathogenesis of HSP.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Molecular and Cell Biology Laboratory, Salk Institute of Biological Sciences, La Jolla, CA, United States
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.,Center for Molecular Medicine (CMMC),Cologne, Germany
| |
Collapse
|
6
|
Nakao H, Kimura Y, Sakai A, Ikeda K, Nakano M. Development of membrane-insertable lipid scrambling peptides: A time-resolved small-angle neutron scattering study. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2021; 8:024301. [PMID: 33758768 PMCID: PMC7980860 DOI: 10.1063/4.0000045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/26/2021] [Indexed: 05/14/2023]
Abstract
Phospholipid transbilayer movement (flip-flop) in the plasma membrane is regulated by membrane proteins to maintain cell homeostasis and interact with other cells. The promotion of flip-flop by phospholipid scramblases causes the loss of membrane lipid asymmetry, which is involved in apoptosis, blood coagulation, and viral infection. Therefore, compounds that can artificially control flip-flop in the plasma membrane are of biological and medical interest. Here, we have developed lipid scrambling transmembrane peptides that can be inserted into the membrane. Time-resolved small-angle neutron scattering measurements revealed that the addition of peptides containing a glutamine residue at the center of the hydrophobic sequence to lipid vesicles induces the flip-flop of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine. Peptides without the glutamine residue had no effect on the flip-flop. Because the glutamine-containing peptides exhibited scramblase activity in monomeric form, the polar glutamine residue would be exposed to the hydrocarbon region of the membrane, perturbing the membrane and promoting the lipid flip-flop. These scrambling peptides would be valuable tools to regulate lipid flip-flop in the plasma membrane.
Collapse
Affiliation(s)
| | | | | | | | - Minoru Nakano
- Author to whom correspondence should be addressed: . Tel.: +81 76 434 7565. Fax: +81 76 434 7568
| |
Collapse
|
7
|
Nguyen MHL, DiPasquale M, Rickeard BW, Yip CG, Greco KN, Kelley EG, Marquardt D. Time-resolved SANS reveals pore-forming peptides cause rapid lipid reorganization. NEW J CHEM 2021. [DOI: 10.1039/d0nj04717a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Time-resolved SANS showed alamethicin and melittin promote DMPC lipid vesicle mixing and perturb DMPC kinetics in similar ways.
Collapse
Affiliation(s)
| | | | - Brett W. Rickeard
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Caesar G. Yip
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Kaity N. Greco
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Elizabeth G. Kelley
- NIST Center for Neutron Research
- National Institute of Standards and Technology
- Gaithersburg
- USA
| | - Drew Marquardt
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
- Department of Physics
| |
Collapse
|
8
|
Tadepalle N, Robers L, Veronese M, Zentis P, Babatz F, Brodesser S, Gruszczyk AV, Schauss A, Höning S, Rugarli EI. Microtubule-dependent and independent roles of spastin in lipid droplet dispersion and biogenesis. Life Sci Alliance 2020; 3:3/6/e202000715. [PMID: 32321733 PMCID: PMC7184029 DOI: 10.26508/lsa.202000715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 12/21/2022] Open
Abstract
Lipid droplets (LDs) are metabolic organelles that store neutral lipids and dynamically respond to changes in energy availability by accumulating or mobilizing triacylglycerols (TAGs). How the plastic behavior of LDs is regulated is poorly understood. Hereditary spastic paraplegia is a central motor axonopathy predominantly caused by mutations in SPAST, encoding the microtubule-severing protein spastin. The spastin-M1 isoform localizes to nascent LDs in mammalian cells; however, the mechanistic significance of this targeting is not fully explained. Here, we show that tightly controlled levels of spastin-M1 are required to inhibit LD biogenesis and TAG accumulation. Spastin-M1 maintains the morphogenesis of the ER when TAG synthesis is prevented, independent from microtubule binding. Moreover, spastin plays a microtubule-dependent role in mediating the dispersion of LDs from the ER upon glucose starvation. Our results reveal a dual role of spastin to shape ER tubules and to regulate LD movement along microtubules, opening new perspectives for the pathogenesis of hereditary spastic paraplegia.
Collapse
Affiliation(s)
- Nimesha Tadepalle
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Lennart Robers
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Matteo Veronese
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Peter Zentis
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Felix Babatz
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Susanne Brodesser
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anja V Gruszczyk
- Institute for Genetics, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Stefan Höning
- Institute for Biochemistry I, University of Cologne, Cologne, Germany
| | - Elena I Rugarli
- Institute for Genetics, University of Cologne, Cologne, Germany .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| |
Collapse
|
9
|
de Morais FAP, Gonçalves RS, Vilsinski BH, Lazarin-Bidóia D, Balbinot RB, Tsubone TM, Brunaldi K, Nakamura CV, Hioka N, Caetano W. Hypericin photodynamic activity in DPPC liposomes - part II: stability and application in melanoma B16-F10 cancer cells. Photochem Photobiol Sci 2020; 19:620-630. [PMID: 32248218 DOI: 10.1039/c9pp00284g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs. Hyp oxygen singlet lifetime (τ) in DPPC was approximately two-fold larger than that in P-123 micelles (Pluronic™ surfactants), reflecting a more hydrophobic environment provided by the DPPC liposome. On the other hand, singlet oxygen quantum yield values (ΦΔ1O2) in DPPC and P-123 were similar; Hyp molecules were preserved as monomers. The Hyp/DPPC liposome aqueous dispersion was stable during fluorescence emission and the liposome diameter remained stable for at least five days at 30 °C. However, the liposomes collapsed after the lyophilization/rehydration process, which was resolved by adding the lyoprotectant Trehalose to the liposome dispersion before lyophilization. Cell viability of the Hyp/DPPC formulation was assessed against healthy HaCat cells and high-metastatic melanoma B16-F10 cells. Hyp incorporated into the DPPC carrier presented a higher selectivity index than the Hyp sample previously solubilized in ethanol under the illumination effect. Moreover, the IC50 was lower for Hyp in DPPC than for Hyp pre-solubilized in ethanol. These results indicate the potential of the formulation of Hyp/DPPC for future biomedical applications in PDT treatment.
Collapse
Affiliation(s)
| | | | | | - Danielle Lazarin-Bidóia
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Rodolfo Bento Balbinot
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Tayana Mazin Tsubone
- Universidade Federal de Uberlandia, Institute of Chemistry, 38400-902, Minas, Gerais, Brazil
| | - Kellen Brunaldi
- Physiological Sciences Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Celso Vatatu Nakamura
- Universidade Estadual de Maringá, Technological Innovation Laboratory in the Pharmaceuticals and Cosmetics Development, Department of Health Sciences, 87020-900, Maringá, Paraná, Brazil
| | - Noboru Hioka
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| | - Wilker Caetano
- Chemistry Department, Universidade Estadual de Maringá, 87020-900, Maringá, Paraná, Brazil
| |
Collapse
|
10
|
Nakao H, Sugimoto Y, Ikeda K, Saito H, Nakano M. Structural Feature of Lipid Scrambling Model Transmembrane Peptides: Same-Side Positioning of Hydrophilic Residues and Their Deeper Position. J Phys Chem Lett 2020; 11:1662-1667. [PMID: 32058725 DOI: 10.1021/acs.jpclett.0c00175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Phospholipid scramblases that catalyze lipid transbilayer movement are associated with intercellular signaling and lipid homeostasis. Although several studies have shown that the hydrophilic residue-rich groove of the proteins mediates lipid scrambling, the interactions between the groove and the lipid bilayers remain poorly understood. Here we have revealed the structural features of model transmembrane peptides that conduct lipid scrambling as well as the interactions between the peptides and the surrounding lipids by means of experimental and simulation techniques. Peptides with two strongly hydrophilic residues located on the same side of the helices and at a deeper position in the membrane exhibited high scramblase activities. All-atom molecular dynamics simulations showed that the interactions between the hydrophilic residues and lipid head groups regulate the membrane thinning and disorder near the peptides in an order that correlates with the scramblase activity of the peptides. These results provide a basis for understanding the lipid scrambling mechanisms by transmembrane regions.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Yuta Sugimoto
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Keisuke Ikeda
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Hiroaki Saito
- Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | - Minoru Nakano
- Department of Biointerface Chemistry, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Abstract
The lipid bilayer, together with embedded proteins, is the central structure in biomembranes. While artificial lipid bilayers are useful to model natural membranes, they are generally symmetric, with the same membrane lipid composition in each lipid monolayer (leaflet). In contrast, natural membranes are often asymmetric, with different lipids in each leaflet. To prepare asymmetric lipid vesicles, we developed cyclodextrin-catalyzed phospholipid exchange procedures. The basic method is that an excess of vesicles with one set of lipids (the donor vesicles) is mixed with a second set of vesicles (acceptor vesicles) with a different set of lipids. Cyclodextrin is introduced into the external aqueous solution, so that lipids in the outer leaflet of the vesicles bind to it and are shuttled between the vesicles. At equilibrium, the lipids in the outer leaflet of the acceptor vesicles are replaced by those from the donor vesicles. The exchanged acceptor vesicles are then isolated. Asymmetric vesicles are versatile in terms of vesicle sizes and lipid compositions that can be prepared. Measuring asymmetry is often difficult. A variety of assays can be used to measure the extent of asymmetry, but most are specific for one particular membrane lipid type or class, and there are none that can be used in all situations. Studies using asymmetric vesicles have begun to explore how asymmetry influences lipid movement across the bilayer, the formation of ordered lipid domains, coupling between the physical properties in each leaflet, and membrane protein conformation. Lipid domain formation stands out as one of the most important properties in which asymmetry is likely to be crucial. Lipid bilayers can exist in both liquidlike and solid/ordered-like states depending on lipid structure, and in lipid vesicles with a mixture of lipids highly ordered and disordered domains can coexist. However, until very recently, such studies only had been carried out in symmetric artificial membranes. Whether ordered domains (often called lipid rafts) and disordered lipid domains coexist in asymmetric cell membranes remains controversial partly because lipids favoring the formation of an ordered state are largely restricted to the leaflet facing the external environment. Studies using asymmetric vesicles have recently shown that each leaflet can influence the physical behavior of the other, i.e., that the domain forming properties in each leaflet tend to be coupled, with consequences highly dependent upon the details of lipid structure. Future studies investigating the dependence of coupling and properties upon the details of lipid composition should clarify the potential of natural membranes to form lipid domains. In addition, we recently extended the exchange method to living mammalian cells, using exchange to efficiently replace virtually the entire phospholipid and sphingolipid population of the plasma membrane outer leaflet with exogenous lipids without harming cells. This should allow detailed studies of the functional impact of lipid structure, asymmetry, domain organization, and interactions with membrane proteins in living cells.
Collapse
Affiliation(s)
- Erwin London
- Department of Biochemistry and Cell Biology and Department of Chemistry Stony Brook University, Stony Brook, New York 11794, United States
| |
Collapse
|
12
|
Arabinogalactan protein-rare earth element complexes activate plant endocytosis. Proc Natl Acad Sci U S A 2019; 116:14349-14357. [PMID: 31239335 DOI: 10.1073/pnas.1902532116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Endocytosis is essential to all eukaryotes, but how cargoes are selected for internalization remains poorly characterized. Extracellular cargoes are thought to be selected by transmembrane receptors that bind intracellular adaptors proteins to initiate endocytosis. Here, we report a mechanism for clathrin-mediated endocytosis (CME) of extracellular lanthanum [La(III)] cargoes, which requires extracellular arabinogalactan proteins (AGPs) that are anchored on the outer face of the plasma membrane. AGPs were colocalized with La(III) on the cell surface and in La(III)-induced endocytic vesicles in Arabidopsis leaf cells. Superresolution imaging showed that La(III) triggered AGP movement across the plasma membrane. AGPs were then colocalized and physically associated with the μ subunit of the intracellular adaptor protein 2 (AP2) complexes. The AGP-AP2 interaction was independent of CME, whereas AGP's internalization required CME and AP2. Moreover, we show that AGP-dependent endocytosis in the presence of La(III) also occurred in human cells. These findings indicate that extracellular AGPs act as conserved CME cargo receptors, thus challenging the current paradigm about endocytosis of extracellular cargoes.
Collapse
|
13
|
Alagumuthu M, Dahiya D, Singh Nigam P. Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS MOLECULAR SCIENCE 2019. [DOI: 10.3934/molsci.2019.1.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
14
|
Patel SJ, Van Lehn RC. Characterizing the Molecular Mechanisms for Flipping Charged Peptide Flanking Loops across a Lipid Bilayer. J Phys Chem B 2018; 122:10337-10348. [PMID: 30376710 DOI: 10.1021/acs.jpcb.8b06613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cell membrane largely prevents the passive diffusion of charged molecules due to the large free energy barrier associated with translocating charged groups across the hydrophobic lipid bilayer core. Despite this barrier, some peptides can interconvert between transmembrane and surface-adsorbed states by "flipping" charged flanking loops across the bilayer on a surprisingly rapid second-minute time scale. The transmembrane helices of some multispanning membrane proteins undergo similar reorientation processes, suggesting that loop-flipping may be a mechanism for regulating membrane protein topology; however, the molecular mechanisms underlying this behavior remain unknown. In this work, we study the loop-flipping behavior exhibited by a peptide with a hydrophobic transmembrane helix, charged flanking loops, and a central, membrane-exposed aspartate residue of varying protonation state. We utilize all-atom temperature accelerated molecular dynamics simulations to predict the likelihood of loop-flipping without predefining specific loop-flipping pathways. We demonstrate that this approach can identify multiple possible flipping pathways, with the prevalence of each pathway depending on the protonation state of the central residue. In particular, we find that a charged central residue facilitates loop-flipping by stabilizing membrane water defects, enabling the "self-catalysis" of charge translocation. These findings provide detailed molecular-level insights into charged loop-flipping pathways that may generalize to other charge translocation processes, such as lipid flip-flop or the large-scale conformational rearrangements of multispanning membrane proteins.
Collapse
Affiliation(s)
- Samarthaben J Patel
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering , University of Wisconsin-Madison , Madison , Wisconsin 53706 , United States
| |
Collapse
|
15
|
A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes. Nat Commun 2018; 9:2426. [PMID: 29930243 PMCID: PMC6013447 DOI: 10.1038/s41467-018-04821-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/25/2018] [Indexed: 12/22/2022] Open
Abstract
Mimicking enzyme function and increasing performance of naturally evolved proteins is one of the most challenging and intriguing aims of nanoscience. Here, we employ DNA nanotechnology to design a synthetic enzyme that substantially outperforms its biological archetypes. Consisting of only eight strands, our DNA nanostructure spontaneously inserts into biological membranes by forming a toroidal pore that connects the membrane’s inner and outer leaflets. The membrane insertion catalyzes spontaneous transport of lipid molecules between the bilayer leaflets, rapidly equilibrating the lipid composition. Through a combination of microscopic simulations and fluorescence microscopy we find the lipid transport rate catalyzed by the DNA nanostructure exceeds 107 molecules per second, which is three orders of magnitude higher than the rate of lipid transport catalyzed by biological enzymes. Furthermore, we show that our DNA-based enzyme can control the composition of human cell membranes, which opens new avenues for applications of membrane-interacting DNA systems in medicine. Mimicking enzyme function and improving upon it is a challenge facing nanotechnology. Here the authors design a DNA nanostructure that catalyzes the transport of lipids between bilayers at a rate three orders of magnitude higher than biological enzymes.
Collapse
|
16
|
Nakao H, Hayashi C, Ikeda K, Saito H, Nagao H, Nakano M. Effects of Hydrophilic Residues and Hydrophobic Length on Flip-Flop Promotion by Transmembrane Peptides. J Phys Chem B 2018; 122:4318-4324. [PMID: 29589918 DOI: 10.1021/acs.jpcb.8b00298] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide-induced phospholipid flip-flop (scrambling) was evaluated using transmembrane model peptides in which the central residue was substituted with various amino acid residues (sequence: Ac-GKK(LA) nXW(LA) nLKKA-CONH2). Peptides with a strongly hydrophilic residue (X = Q, N, or H) had higher scramblase activity than that of other peptides, and the activity was also dependent on the length of the peptides. Peptides with a hydrophobic stretch of 17 residues showed high flip-promotion propensity, whereas those of 21 and 25 residues did not, suggesting that membrane thinning under negative mismatch conditions promotes the flipping. Interestingly, a hydrophobic stretch of 19 residues intensively promoted phospholipid scrambling and membrane leakage. The distinctive characteristics of the peptide were ascribed by long-term molecular dynamics simulation to the arrangement of central glutamine and terminal four lysine residues on the same side of the helix. The combination of simulated and experimental data enables understanding of the mechanisms by which transmembrane helices, and ultimately unidentified scramblases in biomembranes, cause lipid scrambling.
Collapse
Affiliation(s)
- Hiroyuki Nakao
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Chihiro Hayashi
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Keisuke Ikeda
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| | - Hiroaki Saito
- Institute of Science and Engineering , Kanazawa University , Kakuma , Kanazawa , Ishikawa 920-1192 , Japan.,Laboratory for Computational Molecular Design , RIKEN Quantitative Biology Center , 6-2-4 Furuedai , Suita , Osaka 565-0874 , Japan
| | - Hidemi Nagao
- Institute of Science and Engineering , Kanazawa University , Kakuma , Kanazawa , Ishikawa 920-1192 , Japan
| | - Minoru Nakano
- Graduate School of Medicine and Pharmaceutical Sciences , University of Toyama , 2630 Sugitani , Toyama 930-0194 , Japan
| |
Collapse
|
17
|
Intramembranal disulfide cross-linking elucidates the super-quaternary structure of mammalian CatSpers. Reprod Biol 2018; 18:76-82. [PMID: 29371110 DOI: 10.1016/j.repbio.2018.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/11/2018] [Accepted: 01/14/2018] [Indexed: 01/24/2023]
Abstract
CatSper is a voltage-dependent calcium channel located in the plasma membrane of the sperm flagellum and is responsible for triggering hyperactive motility. A homology model for the transmembrane region was built in which the arrangement of the subunits around the pseudo-four-fold symmetry axis was deduced by the pairing of conserved transmembranal cysteines across mammals. Directly emergent of the predicted quaternary structure is an architecture in which tetramers polymerize through additional, highly conserved cysteines, creating one or more double-rows channels extending the length of the principal piece of the mammalian sperm tail. The few species that are missing these cysteines are eusocial or otherwise monogamous, suggesting that sperm competition is selective for a disulfide-crosslinked macromolecular architecture. The model suggests testable hypotheses for how CatSper channel opening might behave in response to pH, 2-arachidonoylglycerol, and mechanical force. A flippase function is hypothesized, and a source of the concomitant disulfide isomerase activity is found in CatSper-associated proteins β, δ and ε.
Collapse
|
18
|
Hills RD. Refining amino acid hydrophobicity for dynamics simulation of membrane proteins. PeerJ 2018; 6:e4230. [PMID: 29340240 PMCID: PMC5767086 DOI: 10.7717/peerj.4230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 11/20/2022] Open
Abstract
Coarse-grained (CG) models have been successful in simulating the chemical properties of lipid bilayers, but accurate treatment of membrane proteins and lipid-protein molecular interactions remains a challenge. The CgProt force field, original developed with the multiscale coarse graining method, is assessed by comparing the potentials of mean force for sidechain insertion in a DOPC bilayer to results reported for atomistic molecular dynamics simulations. Reassignment of select CG sidechain sites from the apolar to polar site type was found to improve the attractive interfacial behavior of tyrosine, phenylalanine and asparagine as well as charged lysine and arginine residues. The solvation energy at membrane depths of 0, 1.3 and 1.7 nm correlates with experimental partition coefficients in aqueous mixtures of cyclohexane, octanol and POPC, respectively, for sidechain analogs and Wimley-White peptides. These experimental values serve as important anchor points in choosing between alternate CG models based on their observed permeation profiles, particularly for Arg, Lys and Gln residues where the all-atom OPLS solvation energy does not agree well with experiment. Available partitioning data was also used to reparameterize the representation of the peptide backbone, which needed to be made less attractive for the bilayer hydrophobic core region. The newly developed force field, CgProt 2.4, correctly predicts the global energy minimum in the potentials of mean force for insertion of the uncharged membrane-associated peptides LS3 and WALP23. CgProt will find application in studies of lipid-protein interactions and the conformational properties of diverse membrane protein systems.
Collapse
Affiliation(s)
- Ronald D Hills
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, United States of America
| |
Collapse
|
19
|
Ikeda K, Horiuchi A, Egawa A, Tamaki H, Fujiwara T, Nakano M. Nanodisc-to-Nanofiber Transition of Noncovalent Peptide-Phospholipid Assemblies. ACS OMEGA 2017; 2:2935-2944. [PMID: 31457628 PMCID: PMC6641012 DOI: 10.1021/acsomega.7b00424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/09/2017] [Indexed: 06/10/2023]
Abstract
We report a novel molecular architecture of peptide-phospholipid coassemblies. The amphiphilic peptide Ac-18A-NH2 (18A), which was designed to mimic apolipoprotein α-helices, has been shown to form nanodisc structures with phospholipid bilayers. We show that an 18A peptide cysteine substitution at residue 11, 18A[A11C], forms fibrous assemblies with 1-palmitoyl-2-oleoyl-phosphatidylcholine at a lipid-to-peptide (L/P) molar ratio of 1, a fiber diameter of 10-20 nm, and a length of more than 1 μm. Furthermore, 18A[A11C] can form nanodiscs with these lipid bilayers at L/P ratios of 4-6. The peptide adopts α-helical structures in both the nanodisc and nanofiber assemblies, although the α-helical bundle structures were evident only in the nanofibers, and the phospholipids of the nanofibers were not lamellar. Fluorescence spectroscopic analysis revealed that the peptide and lipid molecules in the nanofibers exhibited different solvent accessibility and hydrophobicity from those of the nanodiscs. Furthermore, the cysteine substitution at residue 11 did not result in disulfide bond formation, although it was responsible for the nanofiber formation, suggesting that this free sulfhydryl group has an important functional role. Alternatively, the disulfide dimer of 18A[A11C] preferentially formed nanodiscs, even at an L/P ratio of 1. Interconversions of these discoidal and fibrous assemblies were induced by the stepwise addition of free 18A[A11C] or liposomes into the solution. Furthermore, these structural transitions could also be induced by the introduction of oxidative and reductive stresses to the assemblies. Our results demonstrate that heteromolecular lipid-peptide complexes represent a novel approach to the construction of controllable and functional nanoscale assemblies.
Collapse
Affiliation(s)
- Keisuke Ikeda
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayame Horiuchi
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ayako Egawa
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Hajime Tamaki
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Toshimichi Fujiwara
- Institute
for Protein Research, Osaka University, 3-2 Yamadaoka, Suita 565-0871, Japan
| | - Minoru Nakano
- Graduate
School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
20
|
Pomorski TG, Menon AK. Lipid somersaults: Uncovering the mechanisms of protein-mediated lipid flipping. Prog Lipid Res 2016; 64:69-84. [PMID: 27528189 DOI: 10.1016/j.plipres.2016.08.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 08/10/2016] [Indexed: 12/22/2022]
Abstract
Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground-breaking identification of a number of lipid scramblases.
Collapse
Affiliation(s)
- Thomas Günther Pomorski
- Faculty of Chemistry and Biochemistry, Molecular Biochemistry, Ruhr University Bochum, Universitätstrasse 150, D-44780 Bochum, Germany; Centre for Membrane Pumps in Cells and Disease-PUMPKIN, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Anant K Menon
- Department of Biochemistry, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|