1
|
Kim S, Min D. Robust magnetic tweezers for membrane protein folding studies. Methods Enzymol 2024; 694:285-301. [PMID: 38492955 DOI: 10.1016/bs.mie.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Single-molecule magnetic tweezers have recently been adapted for monitoring the interactions between transmembrane helices of membrane proteins within lipid bilayers. In this chapter, we describe the procedures of conducting studies on membrane protein folding using a robust magnetic tweezer method. This tweezer method is capable of observing thousands of (un)folding transitions over extended periods of several to tens of hours. Using this approach, we can dissect the folding pathways of membrane proteins, determine their folding time scales, and map the folding energy landscapes, with a higher statistical reliability. Our robust magnetic tweezers also allow for estimating the folding speed limit of helical membrane proteins, which serves as a link between the kinetics and barrier energies.
Collapse
Affiliation(s)
- Seoyoon Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Duyoung Min
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea; Center for Wave Energy Materials, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
2
|
Devi A, Neupane K, Jung H, Neuman KC, Woodside MT. Nonlinear effects in optical trapping of titanium dioxide and diamond nanoparticles. Biophys J 2023; 122:3439-3446. [PMID: 37496270 PMCID: PMC10502464 DOI: 10.1016/j.bpj.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/28/2023] Open
Abstract
Optical trapping in biophysics typically uses micron-scale beads made of materials like polystyrene or glass to probe the target of interest. Using smaller beads made of higher-index materials could increase the time resolution of these measurements. We characterized the trapping of nanoscale beads made of diamond and titanium dioxide (TiO2) in a single-beam gradient trap. Calculating theoretical expectations for the trapping stiffness of these beads, we found good agreement with measured values. Trap stiffness was significantly higher for TiO2 beads, owing to notable enhancement from nonlinear optical effects, not previously observed for continuous-wave trapping. Trap stiffness was over 6-fold higher for TiO2 beads than polystyrene beads of similar size at 70 mW laser power. These results suggest that diamond and TiO2 nanobeads can be used to improve time resolution in optical tweezers measurements.
Collapse
Affiliation(s)
- Anita Devi
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, AB, Canada
| | - Haksung Jung
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland; Quantum Magnetic Imaging Team, Korea Research Institute of Standards and Science, Daejeon, Republic of Korea
| | - Keir C Neuman
- Laboratory of Single Molecule Biophysics, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Kuznets-Speck B, Limmer DT. Inferring equilibrium transition rates from nonequilibrium protocols. Biophys J 2023; 122:1659-1664. [PMID: 36964656 PMCID: PMC10183322 DOI: 10.1016/j.bpj.2023.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 01/08/2023] [Accepted: 03/21/2023] [Indexed: 03/26/2023] Open
Abstract
We develop a theory for inferring equilibrium transition rates from trajectories driven by a time-dependent force using results from stochastic thermodynamics. Applying the Kawasaki relation to approximate the nonequilibrium distribution function in terms of the equilibrium distribution function and the excess dissipation, we formulate a nonequilibrium transition state theory to estimate the rate enhancement over the equilibrium rate due to the nonequilibrium protocol. We demonstrate the utility of our theory in examples of pulling of harmonically trapped particles in one and two dimensions, as well as a semiflexible polymer with a reactive linker in three dimensions. We expect our purely thermodynamic approach will find use in both molecular simulation and force spectroscopy experiments.
Collapse
Affiliation(s)
| | - David T Limmer
- Chemistry Department, University of California, Berkeley, Berkeley, California; Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California; Kavli Energy NanoSciences Institute, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
4
|
Godec A, Makarov DE. Challenges in Inferring the Directionality of Active Molecular Processes from Single-Molecule Fluorescence Resonance Energy Transfer Trajectories. J Phys Chem Lett 2023; 14:49-56. [PMID: 36566432 DOI: 10.1021/acs.jpclett.2c03244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We discuss some of the practical challenges that one faces in using stochastic thermodynamics to infer directionality of molecular machines from experimental single-molecule trajectories. Because of the limited spatiotemporal resolution of single-molecule experiments and because both forward and backward transitions between the same pairs of states cannot always be detected, differentiating between the forward and backward directions of, e.g., an ATP-consuming molecular machine that operates periodically, turns out to be a nontrivial task. Using a simple extension of a Markov-state model that is commonly employed to analyze single-molecule transition-path measurements, we illustrate how irreversibility can be hidden from such measurements but in some cases can be uncovered when non-Markov effects in low-dimensional single-molecule trajectories are considered.
Collapse
Affiliation(s)
- Aljaž Godec
- Mathematical bioPhysics Group, Max Planck Institute for Multidisciplinary Sciences, 37077Göttingen, Germany
| | | |
Collapse
|
5
|
Makarov DE, Berezhkovskii A, Haran G, Pollak E. The Effect of Time Resolution on Apparent Transition Path Times Observed in Single-Molecule Studies of Biomolecules. J Phys Chem B 2022; 126:7966-7974. [PMID: 36194758 PMCID: PMC9574923 DOI: 10.1021/acs.jpcb.2c05550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/20/2022] [Indexed: 11/28/2022]
Abstract
Single-molecule experiments have now achieved a time resolution allowing observation of transition paths, the brief trajectory segments where the molecule undergoing an unfolding or folding transition enters the energetically or entropically unfavorable barrier region from the folded/unfolded side and exits to the unfolded/folded side, thereby completing the transition. This resolution, however, is yet insufficient to identify the precise entrance/exit events that mark the beginning and the end of a transition path: the nature of the diffusive dynamics is such that a molecular trajectory will recross the boundary between the barrier region and the folded/unfolded state, multiple times, at a time scale much shorter than that of the typical experimental resolution. Here we use theory and Brownian dynamics simulations to show that, as a result of such recrossings, the apparent transition path times are generally longer than the true ones. We quantify this effect using a simple model where the observed dynamics is a moving average of the true dynamics and discuss experimental implications of our results.
Collapse
Affiliation(s)
- Dmitrii E. Makarov
- Depatment
of Chemistry and Oden Institute for Computational Engineering and
Sciences, University of Texas at Austin, Austin, Texas78712, United States
| | - Alexander Berezhkovskii
- Eunice
Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland20892, United States
| | - Gilad Haran
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| | - Eli Pollak
- Department
of Chemical and Biological Physics, Weizmann
Institute of Science, Rehovot76100, Israel
| |
Collapse
|
6
|
Ahlawat V, Deopa SPS, Patil S. Quantitative Elasticity of Flexible Polymer Chains Using Interferometer-Based AFM. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:526. [PMID: 35159871 PMCID: PMC8839736 DOI: 10.3390/nano12030526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 12/04/2022]
Abstract
We estimate the elasticity of single polymer chains using atomic force microscope (AFM)-based oscillatory experiments. An accurate estimate of elasticity using AFM is limited by assumptions in describing the dynamics of an oscillating cantilever. Here, we use a home-built fiber-interferometry-based detection system that allows a simple and universal point-mass description of cantilever oscillations. By oscillating the cantilever base and detecting changes in cantilever oscillations with an interferometer, we extracted stiffness versus extension profiles for polymers. For polyethylene glycol (PEG) in a good solvent, stiffness-extension data showed significant deviation from conventional force-extension curves (FECs) measured in constant velocity pulling experiments. Furthermore, modeling stiffness data with an entropic worm-like chain (WLC) model yielded a persistence length of (0.5 ± 0.2 nm) compared to anomaly low value (0.12 nm ± 0.01) in conventional pulling experiments. This value also matched well with equilibrium measurements performed using magnetic tweezers. In contrast, polystyrene (PS) in a poor solvent, like water, showed no deviation between the two experiments. However, the stiffness profile for PS in good solvent (8M Urea) showed significant deviation from conventional force-extension curves. We obtained a persistence length of (0.8 ± 0.2 nm) compared to (0.22 nm ± 0.01) in pulling experiments. Our unambiguous measurements using interferometer yield physically acceptable values of persistence length. It validates the WLC model in good solvents but suggests caution for its use in poor solvents.
Collapse
Affiliation(s)
| | | | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research (IISER) Pune, Pashan Road, Pune 411008, India; (V.A.); (S.P.S.D.)
| |
Collapse
|
7
|
Observing the base-by-base search for native structure along transition paths during the folding of single nucleic acid hairpins. Proc Natl Acad Sci U S A 2021; 118:2101006118. [PMID: 34853166 DOI: 10.1073/pnas.2101006118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2021] [Indexed: 12/25/2022] Open
Abstract
Biomolecular folding involves searching among myriad possibilities for the native conformation, but the elementary steps expected from theory for this search have never been detected directly. We probed the dynamics of folding at high resolution using optical tweezers, measuring individual trajectories as nucleic acid hairpins passed through the high-energy transition states that dominate kinetics and define folding mechanisms. We observed brief but ubiquitous pauses in the transition states, with a dwell time distribution that matched microscopic theories of folding quantitatively. The sequence dependence suggested that pauses were dominated by microbarriers from nonnative conformations during the search by each nucleotide residue for the native base-pairing conformation. Furthermore, the pauses were position dependent, revealing subtle local variations in energy-landscape roughness and allowing the diffusion coefficient describing the microscopic dynamics within the barrier to be found without reconstructing the shape of the energy landscape. These results show how high-resolution measurements can elucidate key microscopic events during folding to test fundamental theories of folding.
Collapse
|
8
|
Petrosyan R, Narayan A, Woodside MT. Single-Molecule Force Spectroscopy of Protein Folding. J Mol Biol 2021; 433:167207. [PMID: 34418422 DOI: 10.1016/j.jmb.2021.167207] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
The use of force probes to induce unfolding and refolding of single molecules through the application of mechanical tension, known as single-molecule force spectroscopy (SMFS), has proven to be a powerful tool for studying the dynamics of protein folding. Here we provide an overview of what has been learned about protein folding using SMFS, from small, single-domain proteins to large, multi-domain proteins. We highlight the ability of SMFS to measure the energy landscapes underlying folding, to map complex pathways for native and non-native folding, to probe the mechanisms of chaperones that assist with native folding, to elucidate the effects of the ribosome on co-translational folding, and to monitor the folding of membrane proteins.
Collapse
Affiliation(s)
- Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Abhishek Narayan
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
9
|
Modulation of a protein-folding landscape revealed by AFM-based force spectroscopy notwithstanding instrumental limitations. Proc Natl Acad Sci U S A 2021; 118:2015728118. [PMID: 33723041 DOI: 10.1073/pnas.2015728118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Single-molecule force spectroscopy is a powerful tool for studying protein folding. Over the last decade, a key question has emerged: how are changes in intrinsic biomolecular dynamics altered by attachment to μm-scale force probes via flexible linkers? Here, we studied the folding/unfolding of α3D using atomic force microscopy (AFM)-based force spectroscopy. α3D offers an unusual opportunity as a prior single-molecule fluorescence resonance energy transfer (smFRET) study showed α3D's configurational diffusion constant within the context of Kramers theory varies with pH. The resulting pH dependence provides a test for AFM-based force spectroscopy's ability to track intrinsic changes in protein folding dynamics. Experimentally, however, α3D is challenging. It unfolds at low force (<15 pN) and exhibits fast-folding kinetics. We therefore used focused ion beam-modified cantilevers that combine exceptional force precision, stability, and temporal resolution to detect state occupancies as brief as 1 ms. Notably, equilibrium and nonequilibrium force spectroscopy data recapitulated the pH dependence measured using smFRET, despite differences in destabilization mechanism. We reconstructed a one-dimensional free-energy landscape from dynamic data via an inverse Weierstrass transform. At both neutral and low pH, the resulting constant-force landscapes showed minimal differences (∼0.2 to 0.5 k B T) in transition state height. These landscapes were essentially equal to the predicted entropic barrier and symmetric. In contrast, force-dependent rates showed that the distance to the unfolding transition state increased as pH decreased and thereby contributed to the accelerated kinetics at low pH. More broadly, this precise characterization of a fast-folding, mechanically labile protein enables future AFM-based studies of subtle transitions in mechanoresponsive proteins.
Collapse
|
10
|
Abstract
Chemists visualize chemical reactions as motion along one-dimensional "reaction coordinates" over free energy barriers. Various rate theories, such as transition state theory and the Kramers theory of diffusive barrier crossing, differ in their assumptions regarding the mathematical specifics of this motion. Direct experimental observation of the motion along reaction coordinates requires single-molecule experiments performed with unprecedented time resolution. Toward this goal, recent single-molecule studies achieved time resolution sufficient to catch biomolecules in the act of crossing free energy barriers as they fold, bind to their targets, or undergo other large structural changes, offering a window into the elusive reaction "mechanisms". This Perspective describes what we can learn (and what we have already learned) about barrier crossing dynamics through synergy of single-molecule experiments, theory, and molecular simulations. In particular, I will discuss how emerging experimental data can be used to answer several questions of principle. For example, is motion along the reaction coordinate diffusive, is there conformational memory, and is reduction to just one degree of freedom to represent the reaction mechanism justified? It turns out that these questions can be formulated as experimentally testable mathematical inequalities, and their application to experimental and simulated data has already led to a number of insights. I will also discuss open issues and current challenges in this fast evolving field of research.
Collapse
Affiliation(s)
- Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Broad distributions of transition-path times are fingerprints of multidimensionality of the underlying free energy landscapes. Proc Natl Acad Sci U S A 2020; 117:27116-27123. [PMID: 33087575 DOI: 10.1073/pnas.2008307117] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent single-molecule experiments have observed transition paths, i.e., brief events where molecules (particularly biomolecules) are caught in the act of surmounting activation barriers. Such measurements offer unprecedented mechanistic insights into the dynamics of biomolecular folding and binding, molecular machines, and biological membrane channels. A key challenge to these studies is to infer the complex details of the multidimensional energy landscape traversed by the transition paths from inherently low-dimensional experimental signals. A common minimalist model attempting to do so is that of one-dimensional diffusion along a reaction coordinate, yet its validity has been called into question. Here, we show that the distribution of the transition path time, which is a common experimental observable, can be used to differentiate between the dynamics described by models of one-dimensional diffusion from the dynamics in which multidimensionality is essential. Specifically, we prove that the coefficient of variation obtained from this distribution cannot possibly exceed 1 for any one-dimensional diffusive model, no matter how rugged its underlying free energy landscape is: In other words, this distribution cannot be broader than the single-exponential one. Thus, a coefficient of variation exceeding 1 is a fingerprint of multidimensional dynamics. Analysis of transition paths in atomistic simulations of proteins shows that this coefficient often exceeds 1, signifying essential multidimensionality of those systems.
Collapse
|
12
|
Jacobson DR, Perkins TT. Correcting molecular transition rates measured by single-molecule force spectroscopy for limited temporal resolution. Phys Rev E 2020; 102:022402. [PMID: 32942397 DOI: 10.1103/physreve.102.022402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Equilibrium free-energy-landscape parameters governing biomolecular folding can be determined from nonequilibrium force-induced unfolding by measuring the rates k for transitioning back and forth between states as a function of force F. However, bias in the observed forward and reverse rates is introduced by limited effective temporal resolution, which includes the mechanical response time of the force probe and any smoothing used to improve the signal-to-noise ratio. Here we use simulations to characterize this bias, which is most prevalent when the ratio of forward and reverse rates is far from unity. We find deviations in k(F) at high rates, due to unobserved transitions from short- to long-lived states, and at low rates, due to the corresponding unobserved transitions from long- to short-lived states. These missing events introduce erroneous curvature in log(k) vs F that leads to incorrect landscape parameter determination. To correct the measured k(F), we derive a pair of model-independent analytical formulas. The first correction accounts for unobserved transitions from short- to long-lived states, but does surprisingly little to correct the erroneous energy-landscape parameters. Only by subsequently applying the second formula, which corrects the corresponding reverse process, do we recover the expected k(F) and energy-landscape quantities. Going forward, these corrections should be applied to transition-rate data whenever the highest measured rate is not at least an order of magnitude slower than the effective temporal resolution.
Collapse
Affiliation(s)
- David R Jacobson
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
| | - Thomas T Perkins
- JILA, National Institute of Standards and Technology and University of Colorado, Boulder, Colorado 80309, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| |
Collapse
|
13
|
Berezhkovskii AM, Makarov DE. From Nonequilibrium Single-Molecule Trajectories to Underlying Dynamics. J Phys Chem Lett 2020; 11:1682-1688. [PMID: 32017851 DOI: 10.1021/acs.jpclett.9b03705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Single-molecule observations of biomolecular dynamics and folding are commonly rationalized using the model of diffusive dynamics on a free-energy landscape, which is inferred via the Boltzmann inversion of the equilibrium distribution of the experimental observable. Can the same model be applied to high-resolution single-molecule trajectories of molecular machines that lack thermal equilibrium so that the Boltzmann inversion method is inapplicable? In this Letter, we discuss two approaches to reconstructing the underlying free-energy landscape in such nonequilibrium systems and explore the performance of this model in application to trajectories with complex underlying dynamics.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
- Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
14
|
Freitas FC, Junio de Oliveira R. Extension-Dependent Drift Velocity and Diffusion (DrDiff) Directly Reconstructs the Folding Free Energy Landscape of Atomic Force Microscopy Experiments. J Phys Chem Lett 2020; 11:800-807. [PMID: 31928018 DOI: 10.1021/acs.jpclett.9b02146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Two equilibrium force microscopy trajectories [q(t)] of high-precision single-molecule spectroscopy assays were analyzed: the pulling of an HIV RNA hairpin and of a 3-aa sequence of the bacteriorhodopsin membrane protein. Both present hundreds of two-state folding transitions, and their free-energy [F(q)] landscapes were previously obtained by deconvolving time signals with the inverse Boltzmann and pfold methods. In this letter, the two F profiles were reconstructed directly from the measured time-series by the drift-diffusion (DrDiff) framework that characterized the effective conformational drift-velocity [v(q)] and diffusion [D(q)] coefficients. The two thermodynamic F profiles reconstructed with DrDiff directly from q(t) were in good agreement with those previously obtained from the deconvolved time signals. q(t) trajectories simulated with a two-dimensional framework in which the diffusion coefficient of the pulling setup (q coordinate) differed from the molecule (x coordinate) were also analyzed by DrDiff. The performance in reconstructing F was investigated in different conditions of diffusion anisotropy in the simulated time-series using Brownian dynamics. In addition, recently developed theories were used in order to evaluate the quality of the analysis performed in the experimental time series: the memory effects and the intrinsic biomolecular dynamic properties after connecting the probe to the molecule. With the 2-dimensional diffusive models and the additional analyses, it is proposed that the different physical regimes imposed by the stiffer probes of the two biomolecules will have an impact in the measured extension-dependent D and, thus, in the reconstruction of F by DrDiff. Stiffer AFM probes may reflect the molecular behavior more faithfully and reconstruction of F might be more successful. The reported quantities extracted directly from q(t) highlights the current state of the biomolecule characterization by force spectroscopy experiments: it is still challenging despite the recent advances, yet it is very promising.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , 38064-200 MG , Brazil
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação , Universidade Federal do Triângulo Mineiro , Uberaba , 38064-200 MG , Brazil
| |
Collapse
|
15
|
Pyo AGT, Woodside MT. Memory effects in single-molecule force spectroscopy measurements of biomolecular folding. Phys Chem Chem Phys 2019; 21:24527-24534. [PMID: 31663550 DOI: 10.1039/c9cp04197d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Folding is generally assumed to be a Markov process, without memory. When the molecular motion is coupled to that of a probe as in single-molecule force spectroscopy (SMFS) experiments, however, theory predicts that the coupling to a second Markov process should induce memory when monitoring a projection of the full multi-dimensional motion onto a reduced coordinate. We developed a method to evaluate the time constant of the induced memory from its effects on the autocorrelation function, which can be readily determined from experimental data. Applying this method to both simulated SMFS measurements and experimental trajectories of DNA hairpin folding measured by optical tweezers as a model system, we validated the prediction that the linker induces memory. For these measurements, the timescale of the induced memory was found to be similar to the time required for the force probe to respond to changes in the molecule, and in the regime where the experimentally observed dynamics were not significantly perturbed by probe-molecule coupling artifacts. Memory effects are thus a general feature of SMFS measurements induced by the mechanical connection between the molecule and force probe that should be considered when interpreting experimental data.
Collapse
Affiliation(s)
- Andrew G T Pyo
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| | | |
Collapse
|
16
|
Covino R, Woodside MT, Hummer G, Szabo A, Cossio P. Molecular free energy profiles from force spectroscopy experiments by inversion of observed committors. J Chem Phys 2019; 151:154115. [PMID: 31640370 DOI: 10.1063/1.5118362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In single-molecule force spectroscopy experiments, a biomolecule is attached to a force probe via polymer linkers and the total extension of the molecule plus apparatus is monitored as a function of time. In a typical unfolding experiment at constant force, the total extension jumps between two values that correspond to the folded and unfolded states of the molecule. For several biomolecular systems, the committor, which is the probability to fold starting from a given extension, has been used to extract the molecular activation barrier (a technique known as "committor inversion"). In this work, we study the influence of the force probe, which is much larger than the molecule being measured, on the activation barrier obtained by committor inversion. We use a two-dimensional framework in which the diffusion coefficient of the molecule and of the pulling device can differ. We systematically study the free energy profile along the total extension obtained from the committor by numerically solving the Onsager equation and using Brownian dynamics simulations. We analyze the dependence of the extracted barrier on the linker stiffness, molecular barrier height, and diffusion anisotropy and, thus, establish the range of validity of committor inversion. Along the way, we showcase the committor of 2-dimensional diffusive models and illustrate how it is affected by barrier asymmetry and diffusion anisotropy.
Collapse
Affiliation(s)
- Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| | - Pilar Cossio
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| |
Collapse
|
17
|
Hoffer NQ, Woodside MT. Probing microscopic conformational dynamics in folding reactions by measuring transition paths. Curr Opin Chem Biol 2019; 53:68-74. [PMID: 31479831 DOI: 10.1016/j.cbpa.2019.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 07/08/2019] [Accepted: 07/20/2019] [Indexed: 12/20/2022]
Abstract
Transition paths comprise those parts of a folding trajectory where the molecule passes through the high-energy transition states separating folded and unfolded conformations. The transition states determine the folding kinetics and mechanism but are difficult to observe because of their brief duration. Single-molecule experiments have in recent years begun to characterize transition paths in folding reactions, allowing the microscopic conformational dynamics that occur as a molecule traverses the energy barriers to be probed directly. Here we review single-molecule fluorescence and force spectroscopy measurements of transition-path properties, including the time taken to traverse the paths, the local velocity along them, the path shapes, and the variability within these measurements reflecting differences between individual barrier crossings. We discuss how these measurements have been related to theories of folding as diffusion over an energy landscape to deduce properties such as the diffusion coefficient, and how they are being combined with simulations to obtain enhanced atomistic understanding of folding. The richly detailed information available from transition path measurements holds great promise for improved understanding of microscopic mechanisms in folding.
Collapse
Affiliation(s)
- Noel Q Hoffer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada.
| |
Collapse
|
18
|
Mechanical unfolding of spectrin reveals a super-exponential dependence of unfolding rate on force. Sci Rep 2019; 9:11101. [PMID: 31366931 PMCID: PMC6668576 DOI: 10.1038/s41598-019-46525-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 06/18/2019] [Indexed: 11/12/2022] Open
Abstract
We investigated the mechanical unfolding of single spectrin molecules over a broad range of loading rates and thus unfolding forces by combining magnetic tweezers with atomic force microscopy. We find that the mean unfolding force increases logarithmically with loading rate at low loading rates, but the increase slows at loading rates above 1pN/s. This behavior indicates an unfolding rate that increases exponentially with the applied force at low forces, as expected on the basis of one-dimensional models of protein unfolding. At higher forces, however, the increase of the unfolding rate with the force becomes faster than exponential, which may indicate anti-Hammond behavior where the structures of the folded and transition states become more different as their free energies become more similar. Such behavior is rarely observed and can be explained by either a change in the unfolding pathway or as a reflection of a multidimensional energy landscape of proteins under force.
Collapse
|
19
|
Eckels EC, Tapia-Rojo R, Rivas-Pardo JA, Fernández JM. The Work of Titin Protein Folding as a Major Driver in Muscle Contraction. Annu Rev Physiol 2019; 80:327-351. [PMID: 29433413 DOI: 10.1146/annurev-physiol-021317-121254] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Single-molecule atomic force microscopy and magnetic tweezers experiments have demonstrated that titin immunoglobulin (Ig) domains are capable of folding against a pulling force, generating mechanical work that exceeds that produced by a myosin motor. We hypothesize that upon muscle activation, formation of actomyosin cross bridges reduces the force on titin, causing entropic recoil of the titin polymer and triggering the folding of the titin Ig domains. In the physiological force range of 4-15 pN under which titin operates in muscle, the folding contraction of a single Ig domain can generate 200% of the work of entropic recoil and occurs at forces that exceed the maximum stalling force of single myosin motors. Thus, titin operates like a mechanical battery, storing elastic energy efficiently by unfolding Ig domains and delivering the charge back by folding when the motors are activated during a contraction. We advance the hypothesis that titin folding and myosin activation act as inextricable partners during muscle contraction.
Collapse
Affiliation(s)
- Edward C Eckels
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; , .,Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University Medical Center, New York, NY 10032, USA
| | - Rafael Tapia-Rojo
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; ,
| | | | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; ,
| |
Collapse
|
20
|
Measuring the average shape of transition paths during the folding of a single biological molecule. Proc Natl Acad Sci U S A 2019; 116:8125-8130. [PMID: 30952784 DOI: 10.1073/pnas.1816602116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transition paths represent the parts of a reaction where the energy barrier separating products and reactants is crossed. They are essential to understanding reaction mechanisms, yet many of their properties remain unstudied. Here, we report measurements of the average shape of transition paths, studying the folding of DNA hairpins as a model system for folding reactions. Individual transition paths were detected in the folding trajectories of hairpins with different sequences held under tension in optical tweezers, and path shapes were computed by averaging all transitions in the time domain, 〈t(x)〉, or by averaging transitions of a given duration in the extension domain, 〈x(t|τ)〉 τ Whereas 〈t(x)〉 was close to straight, with only a subtle curvature, 〈x(t|τ)〉 τ had more pronounced curvature that fit well to theoretical expectations for the dominant transition path, returning diffusion coefficients similar to values obtained previously from independent methods. Simulations suggested that 〈t(x)〉 provided a less reliable representation of the path shape than 〈x(t|τ)〉 τ , because it was far more sensitive to the effects of coupling the molecule to the experimental force probe. Intriguingly, the path shape variance was larger for some hairpins than others, indicating sequence-dependent changes in the diversity of transition paths reflective of differences in the character of the energy barriers, such as the width of the barrier saddle-point or the presence of parallel paths through multiple barriers between the folded and unfolded states. These studies of average path shapes point the way forward for probing the rich information contained in path shape fluctuations.
Collapse
|
21
|
Foster DAN, Petrosyan R, Pyo AGT, Hoffmann A, Wang F, Woodside MT. Probing Position-Dependent Diffusion in Folding Reactions Using Single-Molecule Force Spectroscopy. Biophys J 2019; 114:1657-1666. [PMID: 29642035 DOI: 10.1016/j.bpj.2018.02.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 02/27/2018] [Indexed: 01/02/2023] Open
Abstract
Folding of proteins and nucleic acids involves a diffusive search over a multidimensional conformational energy landscape for the minimal-energy structure. When examining the projection of conformational motions onto a one-dimensional reaction coordinate, as done in most experiments, the diffusion coefficient D is generally position dependent. However, it has proven challenging to measure such position-dependence experimentally. We investigated the position-dependence of D in the folding of DNA hairpins as a simple model system in two ways: first, by analyzing the round-trip time to return to a given extension in constant-force extension trajectories measured by force spectroscopy, and second, by analyzing the fall time required to reach a given extension in force jump measurements. These methods yielded conflicting results: the fall time implied a fairly constant D, but the round-trip time implied variations of over an order of magnitude. Comparison of experiments with computational simulations revealed that both methods were strongly affected by experimental artifacts inherent to force spectroscopy measurements, which obscured the intrinsic position-dependence of D. Lastly, we applied Kramers's theory to the kinetics of hairpins with energy barriers located at different positions along the hairpin stem, as a crude probe of D at different stem positions, and we found that D did not vary much as the barrier was moved along the reaction coordinate. This work underlines the difficulties faced when trying to deduce position-dependent diffusion coefficients from experimental folding trajectories.
Collapse
Affiliation(s)
- Daniel A N Foster
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Rafayel Petrosyan
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew G T Pyo
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Armin Hoffmann
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Feng Wang
- National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada; National Institute for Nanotechnology, National Research Council, Edmonton, Alberta, Canada.
| |
Collapse
|
22
|
Abstract
In a typical single-molecule force spectroscopy experiment, the ends of the
molecule of interest are connected by long polymer linkers to a pair of
mesoscopic beads trapped in the focus of two laser beams. At constant force
load, the total extension, i.e., the end-to-end distance of the molecule plus
linkers, is measured as a function of time. In the simplest systems, the
measured extension fluctuates about two values characteristic of folded and
unfolded states, with occasional transitions between them. We have recently
shown that molecular (un)folding rates can be recovered from such trajectories,
with a small linker correction, as long as the characteristic time of the bead
fluctuations is shorter than the residence time in the unfolded (folded) state.
Here, we show that accurate measurements of the molecular transition path times
require an even faster apparatus response. Transition paths, the trajectory
segments in which the molecule (un)folds, are properly resolved only if the
beads fluctuate more rapidly than the end-to-end distance of the molecule.
Therefore, over a wide regime, the measured rates may be meaningful but not the
transition path times. Analytic expressions for the measured mean transition
path times are obtained for systems diffusing anisotropically on a
two-dimensional free energy surface. The transition path times depend on the
properties both of the molecule and of the pulling device.
Collapse
Affiliation(s)
- Pilar Cossio
- Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia, Medellín, Colombia
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Attila Szabo
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0520, USA
| |
Collapse
|
23
|
Medina E, Satija R, Makarov DE. Transition Path Times in Non-Markovian Activated Rate Processes. J Phys Chem B 2018; 122:11400-11413. [DOI: 10.1021/acs.jpcb.8b07361] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Neupane K, Hoffer NQ, Woodside MT. Measuring the Local Velocity along Transition Paths during the Folding of Single Biological Molecules. PHYSICAL REVIEW LETTERS 2018; 121:018102. [PMID: 30028173 DOI: 10.1103/physrevlett.121.018102] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Indexed: 06/08/2023]
Abstract
Transition paths are the most interesting part of folding reactions but remain little studied. We measured the local velocity along transition paths in DNA hairpin folding using optical tweezers. The velocity distribution agreed well with diffusive theories, yielding the diffusion coefficient. We used the average velocity to calculate the transmission factor in transition-state theory (TST), finding observed rates that were ∼10^{5}-fold slower than predicted by TST. This work quantifies the importance of barrier recrossing events and highlights the effectiveness of the diffusive model of folding.
Collapse
Affiliation(s)
- Krishna Neupane
- Department of Physics, University of Alberta, Edmonton Alberta, T6G 2E1, Canada
| | - Noel Q Hoffer
- Department of Physics, University of Alberta, Edmonton Alberta, T6G 2E1, Canada
| | - M T Woodside
- Department of Physics, University of Alberta, Edmonton Alberta, T6G 2E1, Canada
| |
Collapse
|
25
|
Satija R, Das A, Makarov DE. Transition path times reveal memory effects and anomalous diffusion in the dynamics of protein folding. J Chem Phys 2018; 147:152707. [PMID: 29055292 DOI: 10.1063/1.4993228] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Recent single-molecule experiments probed transition paths of biomolecular folding and, in particular, measured the time biomolecules spend while crossing their free energy barriers. A surprising finding from these studies is that the transition barriers crossed by transition paths, as inferred from experimentally observed transition path times, are often lower than the independently determined free energy barriers. Here we explore memory effects leading to anomalous diffusion as a possible origin of this discrepancy. Our analysis of several molecular dynamics trajectories shows that the dynamics of common reaction coordinates used to describe protein folding is subdiffusive, at least at sufficiently short times. We capture this effect using a one-dimensional fractional Brownian motion (FBM) model, in which the system undergoes a subdiffusive process in the presence of a potential of mean force, and show that this model yields much broader distributions of transition path times with stretched exponential long-time tails. Without any adjustable parameters, these distributions agree well with the transition path times computed directly from protein trajectories. We further discuss how the FBM model can be tested experimentally.
Collapse
Affiliation(s)
- Rohit Satija
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Atanu Das
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
26
|
Berezhkovskii AM, Makarov DE. Communication: Transition-path velocity as an experimental measure of barrier crossing dynamics. J Chem Phys 2018; 148:201102. [PMID: 29865813 DOI: 10.1063/1.5030427] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental observation of transition paths-short events when the system of interest crosses the free energy barrier separating reactants from products-provides an opportunity to probe the dynamics of barrier crossing. Yet limitations in the experimental time resolution usually result in observing trajectories that are smoothed out, recross the transition state fewer times, and exhibit apparent velocities that are much lower than the instantaneous ones. Here we show that it is possible to define (and measure) an effective transition-path velocity which preserves exact information about barrier crossing dynamics in the following sense: the exact transition rate can be written in a form resembling that given by transition-state theory, with the mean thermal velocity replaced by the transition-path velocity. In addition, the transition-path velocity (i) ensures the exact local value of the unidirectional reactive flux at equilibrium and (ii) leads to the exact mean transition-path time required for the system to cross the barrier region separating reactants from products. We discuss the coordinate dependence of the transition path velocity and derive analytical expressions for it in the case of diffusive dynamics. These results can be used to discriminate among models of barrier crossing dynamics in single-molecule force spectroscopy studies.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
27
|
Berezhkovskii AM, Makarov DE. Communication: Coordinate-dependent diffusivity from single molecule trajectories. J Chem Phys 2018; 147:201102. [PMID: 29195291 DOI: 10.1063/1.5006456] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Single-molecule observations of biomolecular folding are commonly interpreted using the model of one-dimensional diffusion along a reaction coordinate, with a coordinate-independent diffusion coefficient. Recent analysis, however, suggests that more general models are required to account for single-molecule measurements performed with high temporal resolution. Here, we consider one such generalization: a model where the diffusion coefficient can be an arbitrary function of the reaction coordinate. Assuming Brownian dynamics along this coordinate, we derive an exact expression for the coordinate-dependent diffusivity in terms of the splitting probability within an arbitrarily chosen interval and the mean transition path time between the interval boundaries. This formula can be used to estimate the effective diffusion coefficient along a reaction coordinate directly from single-molecule trajectories.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
28
|
Chung HS. Transition Path Times Measured by Single-Molecule Spectroscopy. J Mol Biol 2017; 430:409-423. [PMID: 28551335 DOI: 10.1016/j.jmb.2017.05.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/18/2017] [Indexed: 11/28/2022]
Abstract
The transition path is a tiny fraction of a molecular trajectory during which the free-energy barrier is crossed. It is a single-molecule property and contains all mechanistic information of folding processes of biomolecules such as proteins and nucleic acids. However, the transition path has been difficult to probe because it is short and rarely visited when transitions actually occur. Recent technical advances in single-molecule spectroscopy have made it possible to directly probe transition paths, which has opened up new theoretical and experimental approaches to investigating folding mechanisms. This article reviews recent single-molecule fluorescence and force spectroscopic measurements of transition path times and their connection to both theory and simulations.
Collapse
Affiliation(s)
- Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 5 Memorial Dr., Bethesda, MD 20892-0520, USA.
| |
Collapse
|
29
|
Direct measurement of sequence-dependent transition path times and conformational diffusion in DNA duplex formation. Proc Natl Acad Sci U S A 2017; 114:1329-1334. [PMID: 28115714 DOI: 10.1073/pnas.1611602114] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The conformational diffusion coefficient, D, sets the timescale for microscopic structural changes during folding transitions in biomolecules like nucleic acids and proteins. D encodes significant information about the folding dynamics such as the roughness of the energy landscape governing the folding and the level of internal friction in the molecule, but it is challenging to measure. The most sensitive measure of D is the time required to cross the energy barrier that dominates folding kinetics, known as the transition path time. To investigate the sequence dependence of D in DNA duplex formation, we measured individual transition paths from equilibrium folding trajectories of single DNA hairpins held under tension in high-resolution optical tweezers. Studying hairpins with the same helix length but with G:C base-pair content varying from 0 to 100%, we determined both the average time to cross the transition paths, τtp, and the distribution of individual transit times, PTP(t). We then estimated D from both τtp and PTP(t) from theories assuming one-dimensional diffusive motion over a harmonic barrier. τtp decreased roughly linearly with the G:C content of the hairpin helix, being 50% longer for hairpins with only A:T base pairs than for those with only G:C base pairs. Conversely, D increased linearly with helix G:C content, roughly doubling as the G:C content increased from 0 to 100%. These results reveal that G:C base pairs form faster than A:T base pairs because of faster conformational diffusion, possibly reflecting lower torsional barriers, and demonstrate the power of transition path measurements for elucidating the microscopic determinants of folding.
Collapse
|
30
|
The Power of Force: Insights into the Protein Folding Process Using Single-Molecule Force Spectroscopy. J Mol Biol 2016; 428:4245-4257. [PMID: 27639437 DOI: 10.1016/j.jmb.2016.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023]
Abstract
One of the major challenges in modern biophysics is observing and understanding conformational changes during complex molecular processes, from the fundamental protein folding to the function of molecular machines. Single-molecule techniques have been one of the major driving forces of the huge progress attained in the last few years. Recent advances in resolution of the experimental setups, aided by theoretical developments and molecular dynamics simulations, have revealed a much higher degree of complexity inside these molecular processes than previously reported using traditional ensemble measurements. This review sums up the evolution of these developments and gives an outlook on prospective discoveries.
Collapse
|