1
|
Su Y, Luo Z, Sun D, Yang B, Li Q. The Force-Dependent Mechanism of an Integrin α4β7-MAdCAM-1 Interaction. Int J Mol Sci 2023; 24:16062. [PMID: 38003252 PMCID: PMC10670920 DOI: 10.3390/ijms242216062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
The interaction between integrin α4β7 and mucosal vascular addressin cell-adhesion molecule-1 (MAdCAM-1) facilitates the adhesion of circulating lymphocytes to the surface of high endothelial venules in inflammatory bowel diseases (IBDs). Lymphocyte adhesion is a multistep cascade involving the tethering, rolling, stable adhesion, crawling, and migration of cells, with integrin α4β7 being involved in rolling and stable adhesions. Targeting the integrin α4β7-MAdCAM-1 interaction may help decrease inflammation in IBDs. This interaction is regulated by force; however, the underlying mechanism remains unknown. Here, we investigate this mechanism using a parallel plate flow chamber and atomic force microscopy. The results reveal an initial increase in the lifetime of the integrin α4β7-MAdCAM-1 interaction followed by a decrease with an increasing force. This was manifested in a two-state curve regulated via a catch-bond-slip-bond conversion regardless of Ca2+ and/or Mg2+ availability. In contrast, the mean rolling velocity of cells initially decreased and then increased with the increasing force, indicating the flow-enhanced adhesion. Longer tether lifetimes of single bonds and lower rolling velocities mediated by multiple bonds were observed in the presence of Mg2+ rather than Ca2+. Similar results were obtained when examining the adhesion to substrates co-coated with chemokine CC motif ligand 25 and MAdCAM-1, as opposed to substrates coated with MAdCAM-1 alone. In conclusion, the integrin α4β7-MAdCAM-1 interaction occurs via ion- and cytokine-dependent flow-enhanced adhesion processes and is regulated via a catch-bond mechanism.
Collapse
Affiliation(s)
- Youmin Su
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| | - Zhiqing Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Dongshan Sun
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Bishan Yang
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
| | - Quhuan Li
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China; (Y.S.); (Z.L.); (D.S.)
- Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Du R, Li L, Ji J, Fan Y. Receptor-Ligand Binding: Effect of Mechanical Factors. Int J Mol Sci 2023; 24:ijms24109062. [PMID: 37240408 DOI: 10.3390/ijms24109062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/20/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Gaining insight into the in situ receptor-ligand binding is pivotal for revealing the molecular mechanisms underlying the physiological and pathological processes and will contribute to drug discovery and biomedical application. An important issue involved is how the receptor-ligand binding responds to mechanical stimuli. This review aims to provide an overview of the current understanding of the effect of several representative mechanical factors, such as tension, shear stress, stretch, compression, and substrate stiffness on receptor-ligand binding, wherein the biomedical implications are focused. In addition, we highlight the importance of synergistic development of experimental and computational methods for fully understanding the in situ receptor-ligand binding, and further studies should focus on the coupling effects of these mechanical factors.
Collapse
Affiliation(s)
- Ruotian Du
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| |
Collapse
|
3
|
Fang L, Zhao Y, Guo P, Fang Y, Wu J. MD Simulation Reveals Regulation of Mechanical Force and Extracellular Domain 2 on Binding of DNAM-1 to CD155. Molecules 2023; 28:molecules28062847. [PMID: 36985819 PMCID: PMC10053669 DOI: 10.3390/molecules28062847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Two extracellular domains of the adhesive receptor DNAM-1 are involved in various cellular biological processes through binding to ligand CD155, usually under a mechano-microenvironment. The first extracellular domain (D1) plays a key role in recognition, but the function of the second extracellular domain (D2) and effects of force on the interaction of DNAM-1 with CD155 remain unclear. We herein studied the interaction of DNAM-1 with CD155 by performing steered molecular dynamics (MD) simulations, and observed the roles of tensile force and D2 on the affinity of DNAM-1 to CD155. The results showed that D2 improved DNAM-1 affinity to CD155; the DNAM-1/CD155 complex had a high mechanical strength and a better mechanical stability for its conformational conservation either at pulling with constant velocity or under constant tensile force (≤100 pN); the catch-slip bond transition governed CD155 dissociation from DNAM-1; and, together with the newly assigned key residues in the binding site, force-induced conformation changes should be responsible for the mechanical regulation of DNAM-1's affinity to CD155. This work provided a novel insight in understanding the mechanical regulation mechanism and D2 function in the interaction of DNAM-1 with CD155, as well as their molecular basis, relevant transmembrane signaling, and cellular immune responses under a mechano-microenvironment.
Collapse
Affiliation(s)
- Liping Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yang Zhao
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Pei Guo
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Fang
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jianhua Wu
- Institute of Biomechanics, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Li L, Ji J, Song F, Hu J. Intercellular Receptor-ligand Binding: Effect of Protein-membrane Interaction. J Mol Biol 2023; 435:167787. [PMID: 35952805 DOI: 10.1016/j.jmb.2022.167787] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/04/2023]
Abstract
Gaining insights into the intercellular receptor-ligand binding is of great importance for understanding numerous physiological and pathological processes, and stimulating new strategies in drug design and discovery. In contrast to the in vitro protein interaction in solution, the anchored receptor and ligand molecules interact with membrane in situ, which affects the intercellular receptor-ligand binding. Here, we review theoretical, simulation and experimental works regarding the regulatory effects of protein-membrane interactions on intercellular receptor-ligand binding mainly from the following aspects: membrane fluctuations, membrane curvature, glycocalyx, and lipid raft. In addition, we discuss biomedical significances and possible research directions to advance the field and highlight the importance of understanding of coupling effects of these factors in pharmaceutical development.
Collapse
Affiliation(s)
- Long Li
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China; State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China
| | - Jing Ji
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education Beijing Advanced Innovation Center for Biomedical Engineering School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, 100190 Beijing, China; School of Engineering Science, University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, 210023 Nanjing, China.
| |
Collapse
|
5
|
Zheng S, Zou M, Shao Y, Wu H, Wu H, Wang X. Two-dimensional measurements of receptor-ligand interactions. Front Mol Biosci 2023; 10:1154074. [PMID: 36876050 PMCID: PMC9981951 DOI: 10.3389/fmolb.2023.1154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 02/19/2023] Open
Abstract
Gaining insight into the two-dimensional receptor-ligand interactions, which play a significant role in various pivotal biological processes such as immune response and cancer metastasis, will deepen our understanding of numerous physiological and pathological mechanisms and contribute to biomedical applications and drug design. A central issue involved is how to measure the in situ receptor-ligand binding kinetics. Here, we review several representative mechanical-based and fluorescence-based methods, and briefly discuss the strengths and weaknesses for each method. In addition, we emphasize the great importance of the combination of experimental and computational methods in studying the receptor-ligand interactions, and further studies should focus on the synergistic development of experimental and computational methods.
Collapse
Affiliation(s)
- Songjie Zheng
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Min Zou
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.,School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yingfeng Shao
- Institute of Mechanics, Chinese Academy of Sciences, Beijing, China
| | - Huaping Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Helong Wu
- College of Mechanical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xiaohuan Wang
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
Dong X, Peng S, Ling Y, Huang B, Tu W, Sun X, Li Q, Fang Y, Wu J. ATRA treatment slowed P-selectin-mediated rolling of flowing HL60 cells in a mechano-chemical-dependent manner. Front Immunol 2023; 14:1148543. [PMID: 37168856 PMCID: PMC10164934 DOI: 10.3389/fimmu.2023.1148543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
All-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) toward granulocytes may trigger APL differentiation syndrome (DS), but there is less knowledge about the mechano-chemical regulation mechanism of APL DS under the mechano-microenvironment. We found that ATRA-induced changes in proliferation, morphology, and adhesive molecule expression levels were either dose or stimulus time dependent. An optimal ATRA stimulus condition for differentiating HL60 cells toward neutrophils consisted of 1 × 10-6 M dose and 120 h of stimulus time. Under wall shear stresses, catch-slip bond transition governs P-selectin-mediated rolling for neutrophils and untreated or ATRA-treated (1 × 10-6 M, 120 h) HL60 cells. The ATRA stimuli slowed down the rolling of HL60 cells on immobilized P-selectin no matter whether ICAM-1 was engaged. The β2 integrin near the PSGL-1/P-selectin axis would be activated within sub-seconds for each cell group mentioned above, thus contributing to slow rolling. A faster β2 integrin activation rate and the higher expression levels of PSGL-1 and LFA-1 were assigned to induce the over-enhancement of ATRA-treated HL60 adhesion in flow, causing APL DS development. These findings provided an insight into the mechanical-chemical regulation for APL DS development via ATRA treatment of leukemia and a novel therapeutic strategy for APL DS through targeting the relevant adhesion molecules.
Collapse
Affiliation(s)
- Xiaoting Dong
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shiping Peng
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yingchen Ling
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Bing Huang
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenjian Tu
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Sun
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Quhuan Li
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Ying Fang, ; Jianhua Wu,
| | - Jianhua Wu
- Institute of Mechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Ying Fang, ; Jianhua Wu,
| |
Collapse
|
7
|
Tian Y, Seeto WJ, Páez-Arias MA, Hahn MS, Lipke EA. Endothelial colony forming cell rolling and adhesion supported by peptide-grafted hydrogels. Acta Biomater 2022; 152:74-85. [PMID: 36031035 DOI: 10.1016/j.actbio.2022.08.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/28/2022] [Accepted: 08/22/2022] [Indexed: 01/13/2023]
Abstract
The aim of this study was to investigate the ability of peptides and peptide combinations to support circulating endothelial colony forming cell (ECFC) rolling and adhesion under shear flow, informing biomaterial design in moving toward rapid cardiovascular device endothelialization. ECFCs have high proliferative capability and can differentiate into endothelial cells, making them a promising cell source for endothelialization. Both single peptides and peptide combinations designed to target integrins α4β1 and α5β1 were coupled to poly(ethylene glycol) hydrogels, and their performance was evaluated by monitoring velocity patterns during the ECFC rolling process, in addition to firm adhesion (capture). Tether percentage and velocity fluctuation, a parameter newly defined here, were found to be valuable in assessing cell rolling velocity patterns and when used in combination were able to predict cell capture. REDV-containing peptides binding integrin α4β1 have been previously shown to reduce ECFC rolling velocity but not to support firm adhesion. This study finds that the performance of REDV-containing peptides in facilitating ECFC dynamic adhesion and capture can be improved by combination with α5β1 integrin-binding peptides, which support ECFC static adhesion. Moreover, when similar in length, the peptide combinations may have synergistic effects in capturing ECFCs. With matching lengths, the peptide combinations including CRRETAWAC(cyclic)+REDV, P_RGDS+KSSP_REDV, and P_RGDS+P_REDV showed high values in both tether percentage and velocity fluctuation and improvement in ECFC capture compared to the single peptides at the shear rate of 20 s-1. These newly identified peptide combinations have the potential to be used as vascular device coatings to recruit ECFCs. STATEMENT OF SIGNIFICANCE: Restoration of functional endothelium following placement of stents and vascular grafts is critical for maintaining long-term patency. Endothelial colony forming cells (ECFCs) circulating in blood flow are a valuable cell source for rapid endothelialization. Here we identify and test novel peptides and peptide combinations that can potentially be used as coatings for vascular devices to support rolling and capture of ECFCs from flow. In addition to the widely used assessment of final ECFC adhesion, we also recorded the rolling process to quantitatively evaluate the interaction between ECFCs and the peptides, obtaining detailed performance of the peptides and gaining insight into effective capture molecule design. Peptide combinations targeting both integrin α4β1 and integrin α5β1 showed the highest percentages of ECFC capture.
Collapse
Affiliation(s)
- Yuan Tian
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Mayra A Páez-Arias
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA
| | - Mariah S Hahn
- Biomedical Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, 12180-3590, USA
| | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, 212 Ross Hall, Auburn, AL, 36849, USA.
| |
Collapse
|
8
|
Hu Z, Bie L, Gao J, Wang X. Insights into Selectin Inhibitor Design from Endogenous Isomeric Ligands of SLe a and SLe x. J Chem Inf Model 2021; 61:6085-6093. [PMID: 34905361 DOI: 10.1021/acs.jcim.1c01356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Selectins interact with cell-surface glycans to promote the initial tethering and rolling of leukocytes, and these interactions are targets for designs of inhibitors to neutralize diseases related to excessive inflammatory responses in many cardiovascular and immune dysfunctions, as well as tumor markers in different cancers. The isomeric endogenous tetrasaccharides, sialyl Lewis X (sLex) and sialyl Lewis A (sLea), are minimal sugar structures required for selectin binding. Understanding their subtle structural variances and significant advanced binding strengths of sLea over sLex could benefit the rational designs for selectin inhibitors. Modeling based on the E-selectin-sLex crystal structure in the present study demonstrated that the N-acetyl group of GlcNAc in sLex could form steric hindrances in the E-selectin-sLex complex, but the hydroxy methylene group of GlcNAc in sLea at the same position allows for stronger binding interactions. The subsequent designed inhibitor with a synthetic accessible linker molecule that has no exo-cyclic moieties replacing GlcNAc displayed comparable dynamic and energetic binding features to sLea. The present study deciphered the clues from endogenous isomeric sLea and sLex and provided insights into designing selectin inhibitors with simplified synthesis.
Collapse
Affiliation(s)
- Zhicheng Hu
- Cardiac Arrhythmia Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Lihua Bie
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
9
|
Jiang X, Sun X, Lin J, Ling Y, Fang Y, Wu J. MD Simulations on a Well-Built Docking Model Reveal Fine Mechanical Stability and Force-Dependent Dissociation of Mac-1/GPIbα Complex. Front Mol Biosci 2021; 8:638396. [PMID: 33968982 PMCID: PMC8100526 DOI: 10.3389/fmolb.2021.638396] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Interaction of leukocyte integrin macrophage-1 antigen (Mac-1) to platelet glycoprotein Ibα (GPIbα) is critical for platelet-leukocyte crosstalk in hemostasis and inflammatory responses to vessel injuries under hemodynamic environments. The mechano-regulation and its molecular basis for binding of Mac-1 to GPIbα remain unclear, mainly coming from the lack of crystal structure of the Mac-1/GPIbα complex. We herein built a Mac-1/GPIbα complex model through a novel computer strategy, which included a flexible molecular docking and system equilibrium followed by a "force-ramp + snapback" molecular dynamics (MD) simulation. With this model, a series of "ramp-clamp" steered molecular dynamics (SMD) simulations were performed to examine the GPIbα-Mac-1 interaction under various loads. The results demonstrated that the complex was mechano-stable for both the high rupture force (>250 pN) at a pulling velocity of 3 Å/ns and the conformational conservation under various constant tensile forces (≤75 pN); a catch-slip bond transition was predicted through the dissociation probability, examined with single molecular AFM measurements, reflected by the interaction energy and the interface H-bond number, and related to the force-induced allostery of the complex; besides the mutation-identified residues D222 and R218, the residues were also dominant in the binding of Mac-1 to GPIbα. This study recommended a valid computer strategy for building a likely wild-type docking model of a complex, provided a novel insight into the mechanical regulation mechanism and its molecular basis for the interaction of Mac-1 with GPIbα, and would be helpful for understanding the platelet-leukocyte interaction in hemostasis and inflammatory responses under mechano-microenvironments.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xiaoxi Sun
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jiangguo Lin
- Research Department of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yingchen Ling
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Fang
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Jianhua Wu
- Institute of Biomechanics/School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Li L, Hu J, Shi X, Różycki B, Song F. Interplay between cooperativity of intercellular receptor-ligand binding and coalescence of nanoscale lipid clusters in adhering membranes. SOFT MATTER 2021; 17:1912-1920. [PMID: 33416062 DOI: 10.1039/d0sm01904f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Adhesion of biological cells is mediated by the specific binding of receptors and ligands which are typically large proteins spanning through the plasma membranes of the contacting cells. The receptors and ligands can exhibit affinity for nanoscale lipid clusters that form within the plasma membrane. A central question is how these nanoscale lipid clusters physically affect and respond to the receptor-ligand binding during cell adhesion. Within the framework of classical statistical mechanics we find that the receptor-ligand binding reduces the threshold energy for lipid clusters to coalesce into mesoscale domains by up to ∼50%, and that the formation of these domains induces significant cooperativity of the receptor-ligand binding. The interplay between the receptor-ligand binding cooperativity and the lipid domain formation manifests acute sensitivity of the membrane system to changes in control parameters. This sensitivity can be crucial in cell signaling and immune responses.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China.
| | - Jinglei Hu
- Kuang Yaming Honors School and Institute for Brain Sciences, Nanjing University, Nanjing, China.
| | - Xinghua Shi
- National Center for Nanoscience and Technology of China, Beijing, China
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw, Poland.
| | - Fan Song
- State Key Laboratory of Nonlinear Mechanics and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, China. and School of Engineering Science, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
11
|
Birmingham KG, O'Melia MJ, Bordy S, Reyes Aguilar D, El-Reyas B, Lesinski G, Thomas SN. Lymph Node Subcapsular Sinus Microenvironment-On-A-Chip Modeling Shear Flow Relevant to Lymphatic Metastasis and Immune Cell Homing. iScience 2020; 23:101751. [PMID: 33241198 PMCID: PMC7672279 DOI: 10.1016/j.isci.2020.101751] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 10/11/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
A lymph node sinus-on-a-chip adhesion microfluidic platform that recapitulates the hydrodynamic microenvironment of the lymph node subcapsular sinus was engineered. This device was used to interrogate the effects of lymph node remodeling on cellular adhesion in fluid flow relevant to lymphatic metastasis. Wall shear stress levels analytically estimated and modeled after quiescent and diseased/inflamed lymph nodes were experimentally recapitulated using a flow-based microfluidic perfusion system to assess the effects of physiological flow fields on human metastatic cancer cell adhesion. Results suggest that both altered fluid flow profiles and presentation of adhesive ligands, which are predicted to manifest within the lymph node subcapsular sinus as a result of inflammation-induced remodeling, and the presence of lymph-borne monocytic cells may synergistically contribute to the dynamic extent of cell adhesion in flow relevant to lymph node invasion by cancer and monocytic immune cells during lymphatic metastasis.
Collapse
Affiliation(s)
- Katherine G. Birmingham
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Meghan J. O'Melia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Samantha Bordy
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David Reyes Aguilar
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
| | - Bassel El-Reyas
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Gregory Lesinski
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Susan N. Thomas
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, IBB 2310 315 Ferst Drive NW, Atlanta, GA 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Corresponding author
| |
Collapse
|
12
|
In vitro analysis of the trajectories of adhesive microbubbles approaching endothelial cells. J Colloid Interface Sci 2020; 578:758-767. [PMID: 32574909 DOI: 10.1016/j.jcis.2020.06.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/30/2020] [Accepted: 06/02/2020] [Indexed: 11/21/2022]
Abstract
Adhesion is a key process when ultrasound contrast agents, i.e. microbubbles, approach pathological tissues. A way to accomplish tumour targeting is to tether surface engineered microbubbles to endothelial cells of the up-regulated vascularization of cancer tissues. This can be achieved by coupling the microbubbles surface with the Arginine-Glycine-Aspartate, RGD, sequence. Such molecule interacts with the integrin receptors placed on the endothelial cells. Stability and trajectories of RGD modified lipid shelled MBs have been analysed in vitro using microchannels coated with human umbilical vein endothelial cells, HUVEC. In the microchannels realistic conditions, close to the physiological ones, were reproduced replicating shear rate, roughness comparable to the endothelium and channel size mimicking the postcapillary venules. In these conditions, the analysis of the trajectories close to the walls highlights a substantial difference between the modified MBs and the plain ones. Moreover, MBs adhesion has dynamic features recalling the motion of neutrophils engaged near the substrate such as rolling, translations and transient detachments. These findings are useful for the optimization of in vivo imaging and targeting functions.
Collapse
|
13
|
Biphasic Force-Regulated Phosphorylation Site Exposure and Unligation of ERM Bound with PSGL-1: A Novel Insight into PSGL-1 Signaling via Steered Molecular Dynamics Simulations. Int J Mol Sci 2020; 21:ijms21197064. [PMID: 32992803 PMCID: PMC7583015 DOI: 10.3390/ijms21197064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/20/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The PSGL-1-actin cytoskeleton linker proteins ezrin/radixin/moesin (ERM), an adaptor between P-selectin glycoprotein ligand-1 (PSGL-1) and spleen tyrosine kinase (Syk), is a key player in PSGL-1 signal, which mediates the adhesion and recruitment of leukocytes to the activated endothelial cells in flow. Binding of PSGL-1 to ERM initials intracellular signaling through inducing phosphorylation of Syk, but effects of tensile force on unligation and phosphorylation site exposure of ERM bound with PSGL-1 remains unclear. To answer this question, we performed a series of so-called “ramp-clamp” steered molecular dynamics (SMD) simulations on the radixin protein FERM domain of ERM bound with intracellular juxtamembrane PSGL-1 peptide. The results showed that, the rupture force of complex pulled with constant velocity was over 250 pN, which prevented the complex from breaking in front of pull-induced exposure of phosphorylation site on immunoreceptor tyrosine activation motif (ITAM)-like motif of ERM; the stretched complex structure under constant tensile forces <100 pN maintained on a stable quasi-equilibrium state, showing a high mechano-stabilization of the clamped complex; and, in consistent with the force-induced allostery at clamped stage, increasing tensile force (<50 pN) would decrease the complex dissociation probability but facilitate the phosphorylation site exposure, suggesting a force-enhanced biophysical connectivity of PSGL-1 signaling. These force-enhanced characters in both phosphorylation and unligation of ERM bound with PSGL-1 should be mediated by a catch-slip bond transition mechanism, in which four residue interactions on binding site were involved. This study might provide a novel insight into the transmembrane PSGL-1 signal, its biophysical connectivity and molecular structural basis for cellular immune responses in mechano-microenvironment, and showed a rational SMD-based computer strategy for predicting structure-function relation of protein under loads.
Collapse
|
14
|
Basmaeil YS, Bahattab E, Alshabibi MA, Abomaray FM, Abumaree M, Khatlani T. Human Decidua Basalis mesenchymal stem/stromal cells reverse the damaging effects of high level of glucose on endothelial cells in vitro. J Cell Mol Med 2020; 25:1838-1850. [PMID: 32500631 PMCID: PMC7882938 DOI: 10.1111/jcmm.15248] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported the therapeutic potential of mesenchymal stem/stromal cells (MSCs) from the maternal decidua basalis tissue of human term placenta (DBMSCs) to treat inflammatory diseases, such as atherosclerosis and cancer. DMSCs protect endothelial cell functions from the negative effects of oxidative stress mediators including hydrogen peroxide (H2O2) and monocytes. In addition, DBMSCs induce the generation of anti‐cancer immune cells known as M1 macrophages. Diabetes is another inflammatory disease where endothelial cells are injured by H2O2 produced by high level of glucose (hyperglycaemia), which is associated with development of thrombosis. Here, we investigated the ability of DBMSCs to reverse the damaging effects of high levels of glucose on endothelial cells. DBMSCs and endothelial cells were isolated from human placental and umbilical cord tissues, respectively. Endothelial cells were incubated with glucose in presence of DBMSCs, and their functions were evaluated. The effect of DBMSCs on glucose‐ treated endothelial cell expression of genes was also determined. DBMSCs reversed the effects of glucose on endothelial cell functions including proliferation, migration, angiogenesis and permeability. In addition, DBMSCs modified the expression of several genes mediating essential endothelial cell functions including survival, apoptosis, permeability and angiogenesis. We report the first evidence that DBMSCs protect the functions of endothelial cells from the damaging effects of glucose. Based on these results, we establish that DBMSCs are promising therapeutic agents to repair glucose‐induced endothelial cell injury in diabetes. However, these finding must be investigated further to determine the pathways underlying the protective role of DBMSCs on glucose‐stimulated endothelial cell Injury.
Collapse
Affiliation(s)
- Yasser S Basmaeil
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Eman Bahattab
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Manal A Alshabibi
- National Center for Stem Cell Technology, Life Sciences and Environment Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Fawaz M Abomaray
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
| | - Mohamed Abumaree
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia.,College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Tanvir Khatlani
- Stem Cells and Regenerative Medicine Department, King Abdullah International Medical Research Center, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| |
Collapse
|
15
|
Valentiner U, Knips J, Pries R, Clauditz T, Münscher A, Sauter G, Wollenberg B, Schumacher U. Selectin Binding Sites Are Involved in Cell Adhesive Properties of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2019; 11:cancers11111672. [PMID: 31661833 PMCID: PMC6896014 DOI: 10.3390/cancers11111672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/02/2019] [Accepted: 10/23/2019] [Indexed: 12/21/2022] Open
Abstract
The formation of distant metastases often determines the fate of patients with head and neck squamous cell carcinoma (HNSCC). The expression of cell adhesion molecules (CAMs) and their ligands of the leukocyte adhesion cascade has been associated with metastatic competence in several malignant entities. In this study, human HNSCC cell lines were analyzed in vitro and in a spontaneous metastatic xenograft model. Immunohistochemical analyses of several CAMs were performed on xenograft tumors and tissue microarrays (TMA) from 453 patients with head and neck squamous cell carcinomas with full histo-pathological and clinical follow-up data. UTSCC 24A and 24B cells bind to E-selectin in vitro, show E-selectin dependent binding to human umbilical vein endothelial cells (HUVECs), and express sLeX. All HNSCC cells engrafted into severe combined immunodeficient (SCID) mice, and UTSCC 24A cells formed sporadically spontaneous lung metastases. The expression of CAMs varied between the cell lines, but a correlation between tumor growth and metastatic potential did not exist. None of the CAMS or their ligands could be identified to be of prognostic relevance in the TMA study. The in vitro results indicate that E-selectin and sLeX are involved in the adhesion of HNSCC cells to endothelium. However, specific prognostic markers chosen from the leukocyte adhesion cascade for HNSCC were not identified.
Collapse
Affiliation(s)
- Ursula Valentiner
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Jillian Knips
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Ralph Pries
- Department of Ear, Nose and Throat, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Till Clauditz
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Adrian Münscher
- Department of Otolaryngology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Guido Sauter
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| | - Barbara Wollenberg
- Department of Ear, Nose and Throat, University Hospital Schleswig-Holstein, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany.
| |
Collapse
|
16
|
Li L, Hu J, Li L, Song F. Binding constant of membrane-anchored receptors and ligands that induce membrane curvatures. SOFT MATTER 2019; 15:3507-3514. [PMID: 30912540 DOI: 10.1039/c8sm02504e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell adhesion is crucial for immune response, tissue formation, and cell locomotion. The adhesion process is mediated by the specific binding of membrane-anchored receptor and ligand proteins. These adhesion proteins are in contact with the membranes and may generate curvature, which has been shown for a number of membrane proteins to play an important role in membrane remodeling. An important question remains of whether the local membrane curvatures induced by the adhesion proteins affect their binding. We've performed Monte Carlo simulations of a mesoscopic model for membrane adhesion via the specific binding of curvature-inducing receptors and ligands. We find that the curvatures induced by the adhesion proteins do affect their binding equilibrium constant. We presented a theory that takes into account the membrane deformations and protein-protein interactions due to the induced curvatures, and agrees quantitatively with our simulation results. Our study suggests that the ability to induce membrane curvatures represents a molecular property of the adhesion proteins and should be carefully considered in experimental characterization of the binding affinity.
Collapse
Affiliation(s)
- Long Li
- State Key Laboratory of Nonlinear Mechanics (LNM) and Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China.
| | | | | | | |
Collapse
|
17
|
Patten DA, Shetty S. More Than Just a Removal Service: Scavenger Receptors in Leukocyte Trafficking. Front Immunol 2018; 9:2904. [PMID: 30631321 PMCID: PMC6315190 DOI: 10.3389/fimmu.2018.02904] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
Scavenger receptors are a highly diverse superfamily of proteins which are grouped by their inherent ability to bind and internalize a wide array of structurally diverse ligands which can be either endogenous or exogenous in nature. Consequently, scavenger receptors are known to play important roles in host homeostasis, with common endogenous ligands including apoptotic cells, and modified low density lipoproteins (LDLs); additionally, scavenger receptors are key regulators of inflammatory diseases, such as atherosclerosis. Also, as a consequence of their affinity for a wide range of microbial products, their role in innate immunity is also being increasingly studied. However, in this review, a secondary function of a number of endothelial-expressed scavenger receptors is discussed. There is increasing evidence that some endothelial-expressed scavenger receptors are able to directly bind leukocyte-expressed ligands and subsequently act as adhesion molecules in the trafficking of leukocytes in lymphatic and vascular tissues. Here, we cover the current literature on this alternative role for endothelial-expressed scavenger receptors and also speculate on their therapeutic potential.
Collapse
Affiliation(s)
- Daniel A Patten
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Shishir Shetty
- National Institute for Health Research Birmingham Liver Biomedical Research Unit and Centre for Liver and Gastrointestinal Research, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
18
|
Li X, Chen W, Li P, Wei J, Cheng Y, Liu P, Yan Q, Xu X, Cui Y, Gu Z, Simoncini T, Fu X. Follicular Stimulating Hormone Accelerates Atherogenesis by Increasing Endothelial VCAM-1 Expression. Theranostics 2017; 7:4671-4688. [PMID: 29187895 PMCID: PMC5706091 DOI: 10.7150/thno.21216] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 09/08/2017] [Indexed: 01/02/2023] Open
Abstract
Rationale: Postmenopausal atherosclerosis (AS) has for decades been attributed to estrogen deficiency. Although the follicular stimulating hormone (FSH) levels rise sharply in parallel, the direct effect of FSH on AS has never been investigated. In this study, we explored the possible role of FSH in the development of AS. Methods: This was a prospective cohort study of 48 healthy premenopausal and 15 postmenopausal women. ApoE knockout mice were used as atherosclerosis model and human umbilical vascular endothelial cells (HUVECs) were cultured as cell model. Serum hormones and vascular cell adhesion molecule-1 (VCAM-1) levels were measured. Real-time PCR, histology for atherosclerotic lesions, immunofluorescence, luciferase assay, transfection experiments, flow chamber adhesion assay and western blot were performed. Results: In ApoE knockout mice, administration of FSH increased the atherosclerotic lesions and serum VCAM-1 concentration. Importantly, in blood samples of postmenopausal women, we detected significantly higher levels of FSH and VCAM-1 compared with those from premenopausal women, and there was a positive correlation between these two molecules. In cultured HUVECs, FSH receptor (FSHR) mRNA and protein expression were detected and FSH enhanced VCAM-1 expression. This effect was mediated by the activation of nuclear factor κB (NF-κB), which was sequentially enhanced by the activation of PI3K/Akt/mTOR cascade. FSH first enhanced GαS activity resulting in elevated cAMP level and PKA activity, which relayed the signals from FSHR to the PI3K/Akt/mTOR cascade. Furthermore, FSHR was detected in endothelial caveolae fraction and interacted with caveolin-1 and GαS. The disruption of caveolae or the silencing of caveolin-1 blocked FSH effects on signaling activation and VCAM-1 expression, suggesting the existence of a functional signaling module in membrane caveolae. Finally, FSH increased human monocyte adhesion to HUVECs which was reversed by the VCAM-1 neutralizing antibody. Conclusion: FSHR was located in the membrane caveolae of HUVECs and FSH promoted VCAM-1 expression via FSHR/GαS /cAMP/PKA and PI3K/Akt/mTOR/NF-κB pathway. This may contribute to the deleterious role of FSH in the development of AS in postmenopausal women.
Collapse
|
19
|
Mapping cell surface adhesion by rotation tracking and adhesion footprinting. Sci Rep 2017; 7:44502. [PMID: 28290531 PMCID: PMC5349612 DOI: 10.1038/srep44502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
Abstract
Rolling adhesion, in which cells passively roll along surfaces under shear flow, is a critical process involved in inflammatory responses and cancer metastasis. Surface adhesion properties regulated by adhesion receptors and membrane tethers are critical in understanding cell rolling behavior. Locally, adhesion molecules are distributed at the tips of membrane tethers. However, how functional adhesion properties are globally distributed on the individual cell’s surface is unknown. Here, we developed a label-free technique to determine the spatial distribution of adhesive properties on rolling cell surfaces. Using dark-field imaging and particle tracking, we extract the rotational motion of individual rolling cells. The rotational information allows us to construct an adhesion map along the contact circumference of a single cell. To complement this approach, we also developed a fluorescent adhesion footprint assay to record the molecular adhesion events from cell rolling. Applying the combination of the two methods on human promyelocytic leukemia cells, our results surprisingly reveal that adhesion is non-uniformly distributed in patches on the cell surfaces. Our label-free adhesion mapping methods are applicable to the variety of cell types that undergo rolling adhesion and provide a quantitative picture of cell surface adhesion at the functional and molecular level.
Collapse
|
20
|
Huang B, Ling Y, Lin J, Du X, Fang Y, Wu J. Force-dependent calcium signaling and its pathway of human neutrophils on P-selectin in flow. Protein Cell 2017; 8:103-113. [PMID: 28097631 PMCID: PMC5291781 DOI: 10.1007/s13238-016-0364-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 12/13/2016] [Indexed: 11/09/2022] Open
Abstract
P-selectin engagement of P-selectin glycoprotein ligand-1 (PSGL-1) causes circulating leukocytes to roll on and adhere to the vascular surface, and mediates intracellular calcium flux, a key but unclear event for subsequent arresting firmly at and migrating into the infection or injured tissue. Using a parallel plate flow chamber technique and intracellular calcium ion detector (Fluo-4 AM), the intracellular calcium flux of firmly adhered neutrophils on immobilized P-selectin in the absence of chemokines at various wall shear stresses was investigated here in real time by fluorescence microscopy. The results demonstrated that P-selectin engagement of PSGL-1 induced the intracellular calcium flux of firmly adhered neutrophils in flow, increasing P-selectin concentration enhanced cellular calcium signaling, and, force triggered, enhanced and quickened the cytoplasmic calcium bursting of neutrophils on immobilized P-selectin. This P-selectin-induced calcium signaling should come from intracellular calcium release rather than extracellular calcium influx, and be along the mechano-chemical signal pathway involving the cytoskeleton, moesin and Spleen tyrosine kinase (Syk). These results provide a novel insight into the mechano-chemical regulation mechanism for P-selectin-induced calcium signaling of neutrophils in flow.
Collapse
Affiliation(s)
- Bing Huang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Yingchen Ling
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Jiangguo Lin
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - Xin Du
- Hematology and Oncology Division, Guangdong General Hospital, Guangzhou, 510080, China
| | - Ying Fang
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| | - Jianhua Wu
- School of Bioscience & Bioengineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|