1
|
Fessler F, Wittmann M, Simmchen J, Stocco A. Autonomous engulfment of active colloids by giant lipid vesicles. SOFT MATTER 2024. [PMID: 38938147 DOI: 10.1039/d4sm00337c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Our ability to design artificial micro/nanomachines able to perform sophisticated tasks crucially depends on our understanding of their interaction with biosystems and their compatibility with the biological environment. Here, we design Janus colloids fuelled only by glucose and light, which can autonomously interact with cell-like compartments and trigger endocytosis. We evidence the crucial role played by the far-field hydrodynamic interaction arising from the puller/pusher swimming mode and adhesion. We show that a large contact time between the active particle and the lipid membrane is required to observe the engulfment of a particle inside a floppy giant lipid vesicle. Active Janus colloids showing relatively small velocities and a puller type swimming mode are able to target giant vesicles, deform their membranes and subsequently get stably engulfed. An instability arising from the unbound membrane segment is responsible for the transition between partial and complete stable engulfment. These experiments shed light on the physical criteria required for autonomous active particle engulfment in giant vesicles, which can serve as general principles in disciplines ranging from drug delivery and microbial infection to nanomedicine.
Collapse
Affiliation(s)
- Florent Fessler
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| | - Martin Wittmann
- Physical Chemistry, TU Dresden, Zellescher Weg 19, 01069 Dresden, Germany
| | - Juliane Simmchen
- Pure and Applied Chemistry, University of Strathclyde, Cathedral Street, Glasgow, UK
| | - Antonio Stocco
- Institut Charles Sadron, CNRS UPR-22, 23 rue du Loess, Strasbourg, France.
| |
Collapse
|
2
|
Aleksanyan M, Faizi HA, Kirmpaki MA, Vlahovska PM, Riske KA, Dimova R. Assessing membrane material properties from the response of giant unilamellar vesicles to electric fields. ADVANCES IN PHYSICS: X 2022; 8:2125342. [PMID: 36211231 PMCID: PMC9536468 DOI: 10.1080/23746149.2022.2125342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023] Open
Abstract
Knowledge of the material properties of membranes is crucial to understanding cell viability and physiology. A number of methods have been developed to probe membranes in vitro, utilizing the response of minimal biomimetic membrane models to an external perturbation. In this review, we focus on techniques employing giant unilamellar vesicles (GUVs), model membrane systems, often referred to as minimal artificial cells because of the potential they offer to mimick certain cellular features. When exposed to electric fields, GUV deformation, dynamic response and poration can be used to deduce properties such as bending rigidity, pore edge tension, membrane capacitance, surface shear viscosity, excess area and membrane stability. We present a succinct overview of these techniques, which require only simple instrumentation, available in many labs, as well as reasonably facile experimental implementation and analysis.
Collapse
Affiliation(s)
- Mina Aleksanyan
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
- Institute for Chemistry and Biochemistry, Free University of Berlin, 14195 Berlin, Germany
| | - Hammad A Faizi
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Maria-Anna Kirmpaki
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Petia M Vlahovska
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, USA
| | - Karin A Riske
- Departamento de Biofísica, Universidade Federal de São Paulo, São Paulo, 04039-032 Brazil
| | - Rumiana Dimova
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| |
Collapse
|
3
|
Thomas N, Agrawal A. A lateral electric field inhibits gel-to-fluid transition in lipid bilayers. SOFT MATTER 2022; 18:6437-6442. [PMID: 35983708 DOI: 10.1039/d2sm00740a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report evidence of lateral electric field-induced changes in the phase transition temperatures of lipid bilayers. Our atomic scale molecular dynamics simulations show that a lateral electric field increases the melting temperatures of DPPC, POPC and POPE bilayers. Remarkably, these shifts in the melting temperatures are only induced by lateral electric fields, and not normal electric fields. This mechanism could provide new mechanistic insights into lipid-lipid and lipid-protein interactions in the presence of endogenous and exogenous electric fields.
Collapse
Affiliation(s)
- Nidhin Thomas
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Ashutosh Agrawal
- Department of Mechanical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
4
|
Halder A, Karmakar S. An evidence of pores in phospholipid membrane induced by an antimicrobial peptide NK-2. Biophys Chem 2022; 282:106759. [PMID: 35008010 DOI: 10.1016/j.bpc.2022.106759] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/27/2021] [Accepted: 01/02/2022] [Indexed: 11/19/2022]
Abstract
NK-2, a peptide derived from a cationic core region of NK-lysin, has emerged as a promising candidate for new antibiotics. In contrast to classical antibiotics, antimicrobial peptides target bacterial membranes and disintegrate the membrane by forming the transmembrane pores. However, complete understanding of the precise mechanisms of cellular apoptosis and molecular basis of membrane selectivity is still in dispute. In the present study, we have shown that NK-2 forms trans-membrane pores on negatively charged phospholipid membranes using phase contrast microscopy. As bacteria mimicking membranes, we have chosen large unilamellar vesicles (LUV) and giant unilamellar vesicles (GUV) composed of negatively charged phospholipid, dioleoyl phosphatidyl glycerol (DOPG) and neutral phospholipid, dioleoyl phophatidylcholine (DOPC). Leakage of internal fluid of giant unilamellar vesicles (GUV), leading to decrease in intensity in the halo region of phase contrast micrographs, suggests the formation of transmembrane pores. No such reduction of intensity in the halo region of DOPC was observed, indicating, neutral vesicles does not exhibit pores. Rate constant reckoned from the decaying intensity in the halo region was found to be 0.007 s-1. Further, significant interaction of NK-2 with anionic membranes has been envisaged from zeta potential and dynamic light scattering. Binding free energy and other interaction parameters have been delineated using theoretical ansatz. A proliferation of average Size of anionic LUV on increasing NK-2 concentration indicates membrane-membrane interaction leading to peptide induced large aggregates of vesicles.
Collapse
Affiliation(s)
- Animesh Halder
- Soft matter and Biophysics Laboratory, Department of Physics, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Sanat Karmakar
- Soft matter and Biophysics Laboratory, Department of Physics, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata 700032, India.
| |
Collapse
|
5
|
Investigation of Shape Transformations of Vesicles, Induced by Their Adhesion to Flat Substrates Characterized by Different Adhesion Strength. Int J Mol Sci 2021; 22:ijms222413406. [PMID: 34948201 PMCID: PMC8706551 DOI: 10.3390/ijms222413406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/29/2022] Open
Abstract
The adhesion of lipid vesicles to a rigid flat surface is investigated. We examine the influence of the membrane spontaneous curvature, adhesion strength, and the reduced volume on the stability and shape transformations of adhered vesicles. The minimal strength of the adhesion necessary to stabilize the shapes of adhered vesicles belonging to different shape classes is determined. It is shown that the budding of an adhered vesicle may be induced by the change of the adhesion strength. The importance of the free vesicle shape for its susceptibility to adhesion is discussed.
Collapse
|
6
|
Bibissidis N, Betlem K, Cordoyiannis G, Bonhorst FPV, Goole J, Raval J, Daniel M, Góźdź W, Iglič A, Losada-Pérez P. Correlation between adhesion strength and phase behaviour in solid-supported lipid membranes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Murakami K, Ebihara R, Kono T, Chiba T, Sakuma Y, Ziherl P, Imai M. Morphologies of Vesicle Doublets: Competition among Bending Elasticity, Surface Tension, and Adhesion. Biophys J 2020; 119:1735-1748. [PMID: 33080225 DOI: 10.1016/j.bpj.2020.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/20/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022] Open
Abstract
To study the mechanical laws governing the form of multicellular organisms, we examine the morphology of adhering vesicle doublets as the simplest model system. We monitor the morphological transformations of doublets induced by changes of adhesion strength and volume/area ratio, which are controlled by intermembrane interactions and thermal area expansion, respectively. When we increase the temperature in the weak adhesion regime, a dumbbell flat-contact doublet is transformed to a parallel-prolate doublet, whereas in the strong adhesion regime, heating transforms the dumbbell flat-contact doublet into a spherical sigmoid-contact doublet. We reproduce the observed doublet morphologies by numerically minimizing the total energy, including the contact-potential adhesion term as well as the surface and bending terms, using the Surface Evolver package. From the reproduced morphologies, we extract the adhesion strength, the surface tension, and the volume/area ratio of the vesicles, which reveals the detailed mechanisms of the morphological transitions in doublets.
Collapse
Affiliation(s)
- Kei Murakami
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Ryuta Ebihara
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Takuma Kono
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Toshikaze Chiba
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Yuka Sakuma
- Department of Physics, Tohoku University, Aoba, Sendai, Japan
| | - Primož Ziherl
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia; Jožef Stefan Institute, Ljubljana, Slovenia
| | - Masayuki Imai
- Department of Physics, Tohoku University, Aoba, Sendai, Japan.
| |
Collapse
|
8
|
Tolosa-Díaz A, Almendro-Vedia VG, Natale P, López-Montero I. The GDP-Bound State of Mitochondrial Mfn1 Induces Membrane Adhesion of Apposing Lipid Vesicles through a Cooperative Binding Mechanism. Biomolecules 2020; 10:biom10071085. [PMID: 32708307 PMCID: PMC7407159 DOI: 10.3390/biom10071085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondria are double-membrane organelles that continuously undergo fission and fusion. Outer mitochondrial membrane fusion is mediated by the membrane proteins mitofusin 1 (Mfn1) and mitofusin 2 (Mfn2), carrying a GTP hydrolyzing domain (GTPase) and two coiled-coil repeats. The detailed mechanism on how the GTP hydrolysis allows Mfns to approach adjacent membranes into proximity and promote their fusion is currently under debate. Using model membranes built up as giant unilamellar vesicles (GUVs), we show here that Mfn1 promotes membrane adhesion of apposing lipid vesicles. The adhesion forces were sustained by the GDP-bound state of Mfn1 after GTP hydrolysis. In contrast, the incubation with the GDP:AlF4−, which mimics the GTP transition state, did not induce membrane adhesion. Due to the flexible nature of lipid membranes, the adhesion strength depended on the surface concentration of Mfn1 through a cooperative binding mechanism. We discuss a possible scenario for the outer mitochondrial membrane fusion based on the modulated action of Mfn1.
Collapse
Affiliation(s)
- Andrés Tolosa-Díaz
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Víctor G. Almendro-Vedia
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
- Correspondence: (P.N.); (I.L.-M.)
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; (A.T.-D.); (V.G.A.-V.)
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Avenida de Córdoba s/n, 28041 Madrid, Spain
- Correspondence: (P.N.); (I.L.-M.)
| |
Collapse
|
9
|
Witt H, Vache M, Cordes A, Janshoff A. Detachment of giant liposomes - coupling of receptor mobility and membrane shape. SOFT MATTER 2020; 16:6424-6433. [PMID: 32588015 DOI: 10.1039/d0sm00863j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cellular adhesion is an intricate physical process controlled by ligand-receptor affinity, density, mobility, and external forces transmitted through the elastic properties of the cell. As a model for cellular adhesion we study the detachment of cell-sized liposomes and membrane-coated silica beads from supported bilayers using atomic force microscopy. Adhesion between the two surfaces is mediated by the interaction between the adhesive lipid anchored saccharides lactosylceramide and the ganglioside GM3. We found that force-distance curves of liposome detachment have a very peculiar, partially concave shape, reminiscent of the nonlinear extension of polymers. By contrast, detachment of membrane coated beads led to force-distance curves similar to the detachment of living cells. Theoretical modelling of the enforced detachment suggests that the non-convex force curve shape arises from the mobility of ligands provoking a switch of shapes from spherical to unduloidal during detachment.
Collapse
Affiliation(s)
- Hannes Witt
- Max Planck Institute for Dynamics and Self-Organization, Am Faßberg, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
10
|
Oda A, Watanabe C, Aoki N, Yanagisawa M. Liposomal adhesion via electrostatic interactions and osmotic deflation increase membrane tension and lipid diffusion coefficient. SOFT MATTER 2020; 16:4549-4554. [PMID: 32364199 DOI: 10.1039/d0sm00416b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Membrane adhesion is a ubiquitous phenomenon in cells and is related to various biological events such as migration, morphogenesis, and differentiation. To understand the physicochemical aspects of membrane adhesion, liposome-liposome adhesion and liposome-substrate adhesion have been studied. Although membrane adhesion has been shown to increase membrane tension and inhibit lipid diffusion, the relationship between these changes and the degree of membrane adhesion have not been quantified. Here, we analyzed the dependence of membrane tension and lipid diffusion on the degree of membrane adhesion, i.e., area fraction of the adherent region. For this purpose, we developed a simple method to prepare adhered liposomes by simple electrostatic interactions between the membranes and by osmotic deflation. We found that the membrane tension of the adhered liposomes increases slightly with an increase in the area fraction of the adherent region. In addition, the lipid diffusion coefficient of the adhered liposomes is larger than that of isolated liposomes, which is consistent with the theoretical prediction. The analysis provides a framework to understand the correlation between cell adhesion and bio-membrane properties such as membrane tension and molecular diffusion.
Collapse
Affiliation(s)
- Atsushi Oda
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Chiho Watanabe
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan.
| | - Natsumi Aoki
- Department of Applied Physics, Tokyo University of Agriculture and Technology, Naka-cho 2-24-16, Koganei, Tokyo 184-8588, Japan
| | - Miho Yanagisawa
- Komaba Institute for Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan. and Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| |
Collapse
|
11
|
Robinson T, Dittrich PS. Observations of Membrane Domain Reorganization in Mechanically Compressed Artificial Cells. Chembiochem 2019; 20:2666-2673. [PMID: 31087814 PMCID: PMC7612542 DOI: 10.1002/cbic.201900167] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 01/01/2023]
Abstract
Giant unilamellar vesicles (GUVs) are considered to be the gold standard for assembling artificial cells from the bottom up. In this study, we investigated the behavior of such biomimetic vesicles as they were subjected to mechanical compression. A microfluidic device is presented that comprises a trap to capture GUVs and a microstamp that is deflected downwards to mechanically compress the trapped vesicle. After characterization of the device, we show that single-phase GUVs can be controllably compressed to a high degree of deformation (D=0.40) depending on the pressure applied to the microstamp. A permeation assay was implemented to show that vesicle bursting is prevented by water efflux. Next, we mechanically compressed GUVs with co-existing liquid-ordered and liquid-disordered membrane phases. Upon compression, we observed that the normally stable lipid domains reorganized themselves across the surface and fused into larger domains. This phenomenon, observed here in a model membrane system, not only gives us insights into how the multicomponent membranes of artificial cells behave, but might also have interesting consequences for the role of lipid rafts in biological cells that are subjected to compressive forces in a natural environment.
Collapse
Affiliation(s)
- Tom Robinson
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
- Present address: Department of Theory, Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Petra S Dittrich
- ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058, Basel, Switzerland
| |
Collapse
|
12
|
Majhenc J, Božič B. Characteristics of phospholipid vesicles enhanced by adhesion on an annular region. Phys Rev E 2019; 99:052416. [PMID: 31212483 DOI: 10.1103/physreve.99.052416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Indexed: 11/07/2022]
Abstract
Phospholipid vesicle membranes are simple models used to study the mechanical properties of cell membranes. The shapes of flaccid vesicles can exhibit very diverse forms. When researching very flaccid vesicles, axisymmetrical vesicles with the membranes adhered to an annular region can also be observed. A phase diagram of such shapes was studied for different values of the vesicle parameters, i.e., the adhesion constant, the vesicle volume-to-membrane ratio, the volume ratio between the polar and the equatorial parts, and the equilibrium difference between the membrane monolayers. The energies of the annular shapes with respect to the vesicle parameters were closely examined and compared with the energies of the discocyte and stomatocyte shapes. The requirements for the existence of such annular shapes were also given for adhesion-free vesicle membranes. The results show that the adhesion between the lipid bilayers stabilizes the observed shapes, which belong to the locally stable branch of the annular vesicles. The value obtained for the adhesion constant of the SOPC membrane is 3×10^{-9}J/m^{2}.
Collapse
Affiliation(s)
- Janja Majhenc
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| | - Bojan Božič
- Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
13
|
Robinson T. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review. ACTA ACUST UNITED AC 2019; 3:e1800318. [PMID: 32648705 DOI: 10.1002/adbi.201800318] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/22/2019] [Indexed: 01/04/2023]
Abstract
One of the goals of synthetic biology is the bottom-up construction of an artificial cell, the successful realization of which could shed light on how cellular life emerged and could also be a useful tool for studying the function of modern cells. Using liposomes as biomimetic containers is particularly promising because lipid membranes are biocompatible and much of the required machinery can be reconstituted within them. Giant lipid vesicles have been used extensively in other fields such as biophysics and drug discovery, but their use as artificial cells has only recently seen an increase. Despite the prevalence of giant vesicles, many experiments remain challenging or impossible due to their delicate nature compared to biological cells. This review aims to highlight the effectiveness of microfluidic technologies in handling and analyzing giant vesicles. The advantages and disadvantages of different microfluidic approaches and what new insights can be gained from various applications are introduced. Finally, future directions are discussed in which the unique combination of microfluidics and giant lipid vesicles can push forward the bottom-up construction of artificial cells.
Collapse
Affiliation(s)
- Tom Robinson
- Department of Theory & Bio-Systems, Max Planck Institute of Colloids and Interfaces, Potsdam, 14424, Germany
| |
Collapse
|
14
|
Dimova R. Giant Vesicles and Their Use in Assays for Assessing Membrane Phase State, Curvature, Mechanics, and Electrical Properties. Annu Rev Biophys 2019; 48:93-119. [DOI: 10.1146/annurev-biophys-052118-115342] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Giant unilamellar vesicles represent a promising and extremely useful model biomembrane system for systematic measurements of mechanical, thermodynamic, electrical, and rheological properties of lipid bilayers as a function of membrane composition, surrounding media, and temperature. The most important advantage of giant vesicles over other model membrane systems is that the membrane responses to external factors such as ions, (macro)molecules, hydrodynamic flows, or electromagnetic fields can be directly observed under the microscope. Here, we briefly review approaches for giant vesicle preparation and describe several assays used for deducing the membrane phase state and measuring a number of material properties, with further emphasis on membrane reshaping and curvature.
Collapse
Affiliation(s)
- Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
15
|
Omidvar R, Römer W. Glycan-decorated protocells: novel features for rebuilding cellular processes. Interface Focus 2019; 9:20180084. [PMID: 30842879 PMCID: PMC6388021 DOI: 10.1098/rsfs.2018.0084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
In synthetic biology approaches, lipid vesicles are widely used as protocell models. While many compounds have been encapsulated in vesicles (e.g. DNA, cytoskeleton and enzymes), the incorporation of glycocalyx components in the lipid bilayer has attracted much less attention so far. In recent years, glycoconjugates have been integrated in the membrane of giant unilamellar vesicles (GUVs). These minimal membrane systems have largely contributed to shed light on the molecular mechanisms of cellular processes. In this review, we first introduce several preparation and biophysical characterization methods of GUVs. Then, we highlight specific applications of protocells investigating glycolipid-mediated endocytosis of toxins, viruses and bacteria. In addition, we delineate how prototissues have been assembled from glycan-decorated protocells by using lectin-mediated cross-linking of opposed glycoreceptors (e.g. glycolipids and glycopeptides). In future applications, glycan-decorated protocells might be useful for investigating cell-cell interactions (e.g. adhesion and communication). We also speculate about the implication of lectin-glycoreceptor interactions in membrane fusion processes.
Collapse
Affiliation(s)
- Ramin Omidvar
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104 Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
16
|
Bartelt SM, Chervyachkova E, Ricken J, Wegner SV. Mimicking Adhesion in Minimal Synthetic Cells. ACTA ACUST UNITED AC 2019; 3:e1800333. [DOI: 10.1002/adbi.201800333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/12/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Solveig M. Bartelt
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| | | | - Julia Ricken
- Max Planck Institute for Medical Research Jahnstraße 29 69120 Heidelberg Germany
| | - Seraphine V. Wegner
- Max Planck Institute of Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
17
|
Maan R, Loiseau E, Bausch AR. Adhesion of Active Cytoskeletal Vesicles. Biophys J 2018; 115:2395-2402. [PMID: 30455042 PMCID: PMC6301914 DOI: 10.1016/j.bpj.2018.10.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 11/08/2022] Open
Abstract
Regulation of adhesion is a ubiquitous feature of living cells, observed during processes such as motility, antigen recognition, or rigidity sensing. At the molecular scale, a myriad of mechanisms are necessary to recruit and activate the essential proteins, whereas at the cellular scale, efficient regulation of adhesion relies on the cell's ability to adapt its global shape. To understand the role of shape remodeling during adhesion, we use a synthetic biology approach to design a minimal experimental model, starting with a limited number of building blocks. We assemble cytoskeletal vesicles whose size, reduced volume, and cytoskeletal contractility can be independently tuned. We show that these cytoskeletal vesicles can sustain strong adhesion to solid substrates only if the actin cortex is actively remodeled significantly. When the cytoskeletal vesicles are deformed under hypertonic osmotic pressure, they develop a crumpled geometry with deformations. In the presence of molecular motors, these deformations are dynamic in nature, and the excess membrane area generated thereby can be used to gain adhesion energy. The cytoskeletal vesicles are able to attach to the rigid glass surfaces even under strong adhesive forces just like the cortex-free vesicles. The balance of deformability and adhesion strength is identified to be key to enable cytoskeletal vesicles to adhere to solid substrates.
Collapse
Affiliation(s)
- Renu Maan
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Department of Bionanoscience, Kavli Institute of NanoScience, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Etienne Loiseau
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany; Aix-Marseille Université, CNRS, CINAM, Marseille, France
| | - Andreas R Bausch
- Lehrstuhl für Biophysik E27, Physik-Department, Technische Universität München, Garching, Germany.
| |
Collapse
|
18
|
Toledo-Fuentes X, Molinaro C, Cecchet F. Interfacial charges drive the organization of supported lipid membranes and their interaction with nanoparticles. Colloids Surf B Biointerfaces 2018; 172:254-261. [DOI: 10.1016/j.colsurfb.2018.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/10/2018] [Accepted: 08/11/2018] [Indexed: 12/27/2022]
|
19
|
Bartelt SM, Steinkühler J, Dimova R, Wegner SV. Light-Guided Motility of a Minimal Synthetic Cell. NANO LETTERS 2018; 18:7268-7274. [PMID: 30350637 DOI: 10.1021/acs.nanolett.8b03469] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cell motility is an important but complex process; as cells move, new adhesions form at the front and adhesions disassemble at the back. To replicate this dynamic and spatiotemporally controlled asymmetry of adhesions and achieve motility in a minimal synthetic cell, we controlled the adhesion of a model giant unilamellar vesicle (GUV) to the substrate with light. For this purpose, we immobilized the proteins iLID and Micro, which interact under blue light and dissociate from each other in the dark, on a substrate and a GUV, respectively. Under blue light, the protein interaction leads to adhesion of the vesicle to the substrate, which is reversible in the dark. The high spatiotemporal control provided by light, allowed partly illuminating the GUV and generating an asymmetry in adhesions. Consequently, the GUV moves into the illuminated area, a process that can be repeated over multiple cycles. Thus, our system reproduces the dynamic spatiotemporal distribution of adhesions and establishes mimetic motility of a synthetic cell.
Collapse
Affiliation(s)
- Solveig M Bartelt
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| | - Jan Steinkühler
- Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Rumiana Dimova
- Theory and Bio-Systems , Max Planck Institute of Colloids and Interfaces , Science Park Golm, 14424 Potsdam , Germany
| | - Seraphine V Wegner
- Max Planck Institute for Polymer Research , Ackermannweg 10 , 55128 Mainz , Germany
| |
Collapse
|
20
|
Almendro-Vedia VG, García C, Ahijado-Guzmán R, de la Fuente-Herreruela D, Muñoz-Úbeda M, Natale P, Viñas MH, Albuquerque RQ, Guerrero-Martínez A, Monroy F, Pilar Lillo M, López-Montero I. Supramolecular zippers elicit interbilayer adhesion of membranes producing cell death. Biochim Biophys Acta Gen Subj 2018; 1862:2824-2834. [PMID: 30251671 PMCID: PMC6202437 DOI: 10.1016/j.bbagen.2018.08.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 08/03/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Abstract
Background The fluorescent dye 10-N-nonyl acridine orange (NAO) is widely used as a mitochondrial marker. NAO was reported to have cytotoxic effects in cultured eukaryotic cells when incubated at high concentrations. Although the biochemical response of NAO-induced toxicity has been well identified, the underlying molecular mechanism has not yet been explored in detail. Methods We use optical techniques, including fluorescence confocal microscopy and lifetime imaging microscopy (FLIM) both in model membranes built up as giant unilamellar vesicles (GUVs) and cultured cells. These experiments are complemented with computational studies to unravel the molecular mechanism that makes NAO cytotoxic. Results We have obtained direct evidence that NAO promotes strong membrane adhesion of negatively charged vesicles. The attractive forces are derived from van der Waals interactions between anti-parallel H-dimers of NAO molecules from opposing bilayers. Semi-empirical calculations have confirmed the supramolecular scenario by which anti-parallel NAO molecules form a zipper of bonds at the contact region. The membrane remodeling effect of NAO, as well as the formation of H-dimers, was also confirmed in cultured fibroblasts, as shown by the ultrastructure alteration of the mitochondrial cristae. Conclusions We conclude that membrane adhesion induced by NAO stacking accounts for the supramolecular basis of its cytotoxicity. General significance Mitochondria are a potential target for cancer and gene therapies. The alteration of the mitochondrial structure by membrane remodeling agents able to form supramolecular assemblies via adhesion properties could be envisaged as a new therapeutic strategy. NAO promotes interbilayer adhesion of negatively charged lipid vesicles. Membrane adhesion derives from the self-assembly of NAO into antiparallel H-dimers. The adhesion strength promoted by antiparallel H-aggregates is 10−6 J/m2. The formation of NAO H-aggregates produces cell death in fibroblasts. The molecular mechanism of NAO cytotoxicity relies on the adhesion ability of H-dimers.
Collapse
Affiliation(s)
- Víctor G Almendro-Vedia
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Carolina García
- Dto. Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Rubén Ahijado-Guzmán
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Diego de la Fuente-Herreruela
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Mónica Muñoz-Úbeda
- Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Paolo Natale
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - Montserrat H Viñas
- ETS de Sistemas Informáticos, Universidad Politécnica de Madrid, Alan Turing s/n, 28031 Madrid, Spain
| | - Rodrigo Queiroz Albuquerque
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, L3 3AF Liverpool, United Kingdom; São Carlos Institute of Chemistry, University of São Paulo (USP), 13566-590 São Carlos, Brazil
| | - Andrés Guerrero-Martínez
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Francisco Monroy
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain
| | - M Pilar Lillo
- Dto. Química Física Biológica, Instituto de Química-Física "Rocasolano" (CSIC), Serrano 119, 28006 Madrid, Spain
| | - Iván López-Montero
- Dto. Química Física, Universidad Complutense de Madrid, Avenida Complutense s/n, 28040 Madrid, Spain; Instituto de Investigación Hospital Doce de Octubre (i+12), Avenida de Córdoba s/n, 28041 Madrid, Spain.
| |
Collapse
|
21
|
Steinkühler J, De Tillieux P, Knorr RL, Lipowsky R, Dimova R. Charged giant unilamellar vesicles prepared by electroformation exhibit nanotubes and transbilayer lipid asymmetry. Sci Rep 2018; 8:11838. [PMID: 30087440 PMCID: PMC6081385 DOI: 10.1038/s41598-018-30286-z] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
Giant unilamellar vesicles (GUVs) are increasingly used as a versatile research tool to investigate membrane structure, morphology and phase state. In these studies, GUV preparation is typically enhanced by an externally applied electric field, a process called electroformation. We find that upon osmotic deflation, GUVs electroformed from charged and neutral lipids exhibit inward pointing lipid nanotubes, suggesting negative spontaneous curvature of the membrane. By quenching a fluorescent analog of the charged lipid, zeta potential measurements and experiments with the lipid marker annexin A5, we show that electroformed GUVs exhibit an asymmetric lipid distribution across the bilayer leaflets. The asymmetry is lost either after storing electroformed GUVs at room temperature for one day or by applying higher voltages and temperatures during electroformation. GUVs having the same lipid composition but grown via gel-assisted swelling do not show asymmetric lipid distribution. We discuss possible mechanisms for the generation and relaxation of lipid asymmetry, as well as implications for studies using electroformed vesicles. The observed effects allow to control the molecular assembly of lipid bilayer leaflets. Vesicle tubulation as reported here is an example of protein-free reshaping of membranes and is caused by compositional lipid asymmetry between leaflets.
Collapse
Affiliation(s)
- Jan Steinkühler
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Philippe De Tillieux
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
- Department of Electrical Engineering, Polytechnique Montreal, Montreal, Quebec, H3T 1J4, Canada
| | - Roland L Knorr
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Reinhard Lipowsky
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany
| | - Rumiana Dimova
- Department of Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
22
|
Villringer S, Madl J, Sych T, Manner C, Imberty A, Römer W. Lectin-mediated protocell crosslinking to mimic cell-cell junctions and adhesion. Sci Rep 2018; 8:1932. [PMID: 29386533 PMCID: PMC5792463 DOI: 10.1038/s41598-018-20230-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023] Open
Abstract
Cell adhesion is a crucial feature of all multicellular organisms, as it allows cells to organise themselves into tissues to carry out specific functions. Here, we present a mimetic approach that uses multivalent lectins with opposing binding sites to crosslink glycan-functionalised giant unilamellar vesicles. The crosslinking process drives the progression from contact puncta into elongated protocellular junctions, which form the vesicles into polygonal clusters resembling tissues. Due to their carbohydrate specificity, different lectins can be engaged in parallel with both natural and synthetic glycoconjugates to generate complex interfaces with distinct lectin domains. In addition, the formation of protocellular junctions can be combined with adhesion to a functionalised support by other ligand-receptor interactions to render increased stability against fluid flow. Furthermore, we consider that adhesion is a complex process of attraction and repulsion by doping the vesicles with a PEG-modified lipid, and demonstrate a dose-dependent decrease of lectin binding and formation of protocellular junctions. We suggest that the engineering of prototissues through lectin-glycan interactions is an important step towards synthetic minimal tissues and in designing artificial systems to reconstruct the fundamental functions of biology.
Collapse
Affiliation(s)
- Sarah Villringer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Josef Madl
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
| | - Taras Sych
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, 67401, Illkirch Cedex, France
| | - Christina Manner
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Focal Area of Infection Biology, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Anne Imberty
- CNRS, CERMAV, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Winfried Römer
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- Bioss - Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Freiburg Center for Interactive Materials and Bioinspired Technology (FIT), Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
| |
Collapse
|
23
|
Kong X, Lu D, Wu J, Liu Z. A theoretical study on the morphological phase diagram of supported lipid bilayers. Phys Chem Chem Phys 2017. [DOI: 10.1039/c7cp03383d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A morphological phase diagram is constructed using classical density function theory (CDFT).
Collapse
Affiliation(s)
- Xian Kong
- Key Laboratory of Industrial Biocatalysis
- Chinese Ministry of Education and Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Diannan Lu
- Key Laboratory of Industrial Biocatalysis
- Chinese Ministry of Education and Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| | - Jianzhong Wu
- Department of Chemical and Environmental Engineering
- University of California
- Riverside, California 92521
- USA
| | - Zheng Liu
- Key Laboratory of Industrial Biocatalysis
- Chinese Ministry of Education and Department of Chemical Engineering
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|