1
|
Garg A, Lavine KJ, Greenberg MJ. Assessing Cardiac Contractility From Single Molecules to Whole Hearts. JACC Basic Transl Sci 2024; 9:414-439. [PMID: 38559627 PMCID: PMC10978360 DOI: 10.1016/j.jacbts.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 04/04/2024]
Abstract
Fundamentally, the heart needs to generate sufficient force and power output to dynamically meet the needs of the body. Cardiomyocytes contain specialized structures referred to as sarcomeres that power and regulate contraction. Disruption of sarcomeric function or regulation impairs contractility and leads to cardiomyopathies and heart failure. Basic, translational, and clinical studies have adapted numerous methods to assess cardiac contraction in a variety of pathophysiological contexts. These tools measure aspects of cardiac contraction at different scales ranging from single molecules to whole organisms. Moreover, these studies have revealed new pathogenic mechanisms of heart disease leading to the development of novel therapies targeting contractility. In this review, the authors explore the breadth of tools available for studying cardiac contractile function across scales, discuss their strengths and limitations, highlight new insights into cardiac physiology and pathophysiology, and describe how these insights can be harnessed for therapeutic candidate development and translational.
Collapse
Affiliation(s)
- Ankit Garg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J. Greenberg
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
2
|
Iorga B, Kraft T. Why make a strong muscle weaker? J Gen Physiol 2021; 153:212267. [PMID: 34106212 PMCID: PMC8193566 DOI: 10.1085/jgp.202112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Bogdan Iorga
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany.,Department of Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Theresia Kraft
- Department of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Scellini B, Piroddi N, Dente M, Vitale G, Pioner JM, Coppini R, Ferrantini C, Poggesi C, Tesi C. Mavacamten has a differential impact on force generation in myofibrils from rabbit psoas and human cardiac muscle. J Gen Physiol 2021; 153:212024. [PMID: 33891673 PMCID: PMC8077167 DOI: 10.1085/jgp.202012789] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/04/2021] [Accepted: 03/30/2021] [Indexed: 12/20/2022] Open
Abstract
Mavacamten (MYK-461) is a small-molecule allosteric inhibitor of sarcomeric myosins being used in preclinical/clinical trials for hypertrophic cardiomyopathy treatment. A better understanding of its impact on force generation in intact or skinned striated muscle preparations, especially for human cardiac muscle, has been hindered by diffusional barriers. These limitations have been overcome by mechanical experiments using myofibrils subject to perturbations of the contractile environment by sudden solution changes. Here, we characterize the action of mavacamten in human ventricular myofibrils compared with fast skeletal myofibrils from rabbit psoas. Mavacamten had a fast, fully reversible, and dose-dependent negative effect on maximal Ca2+-activated isometric force at 15°C, which can be explained by a sudden decrease in the number of heads functionally available for interaction with actin. It also decreased the kinetics of force development in fast skeletal myofibrils, while it had no effect in human ventricular myofibrils. For both myofibril types, the effects of mavacamten were independent from phosphate in the low-concentration range. Mavacamten did not alter force relaxation of fast skeletal myofibrils, but it significantly accelerated the relaxation of human ventricular myofibrils. Lastly, mavacamten had no effect on resting tension but inhibited the ADP-stimulated force in the absence of Ca2+. Altogether, these effects outline a motor isoform-specific dependence of the inhibitory effect of mavacamten on force generation, which is mediated by a reduction in the availability of strongly actin-binding heads. Mavacamten may thus alter the interplay between thick and thin filament regulation mechanisms of contraction in association with the widely documented drug effect of stabilizing myosin motor heads into autoinhibited states.
Collapse
Affiliation(s)
- Beatrice Scellini
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Nicoletta Piroddi
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Marica Dente
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Giulia Vitale
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Josè Manuel Pioner
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Raffaele Coppini
- Department of Neuroscience, Psychology, Drug Sciences, and Child Health, University of Florence, Florence, Italy
| | - Cecilia Ferrantini
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Corrado Poggesi
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| | - Chiara Tesi
- Department of Experimental and Clinical Medicine, Division of Physiology, University of Florence, Florence, Italy
| |
Collapse
|
4
|
Lehman W, Rynkiewicz MJ, Moore JR. A new twist on tropomyosin binding to actin filaments: perspectives on thin filament function, assembly and biomechanics. J Muscle Res Cell Motil 2020; 41:23-38. [PMID: 30771202 PMCID: PMC6697252 DOI: 10.1007/s10974-019-09501-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Tropomyosin, best known for its role in the steric regulation of muscle contraction, polymerizes head-to-tail to form cables localized along the length of both muscle and non-muscle actin-based thin filaments. In skeletal and cardiac muscles, tropomyosin, under the control of troponin and myosin, moves in a cooperative manner between blocked, closed and open positions on filaments, thereby masking and exposing actin-binding sites necessary for myosin crossbridge head interactions. While the coiled-coil signature of tropomyosin appears to be simple, closer inspection reveals surprising structural complexity required to perform its role in steric regulation. For example, component α-helices of coiled coils are typically zippered together along a continuous core hydrophobic stripe. Tropomyosin, however, contains a number of anomalous, functionally controversial, core amino acid residues. We argue that the atypical residues at this interface, including clusters of alanines and a charged aspartate, are required for preshaping tropomyosin to readily fit to the surface of the actin filament, but do so without compromising tropomyosin rigidity once the filament is assembled. Indeed, persistence length measurements of tropomyosin are characteristic of a semi-rigid cable, in this case conducive to cooperative movement on thin filaments. In addition, we also maintain that tropomyosin displays largely unrecognized and residue-specific torsional variance, which is involved in optimizing contacts between actin and tropomyosin on the assembled thin filament. Corresponding twist-induced stiffness may also enhance cooperative translocation of tropomyosin across actin filaments. We conclude that anomalous core residues of tropomyosin facilitate thin filament regulatory behavior in a multifaceted way.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Michael J. Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts, U.S.A
| | - Jeffrey R. Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts, U.S.A
| |
Collapse
|
5
|
Kopylova GV, Matyushenko AM, Koubassova NA, Shchepkin DV, Bershitsky SY, Levitsky DI, Tsaturyan AK. Functional outcomes of structural peculiarities of striated muscle tropomyosin. J Muscle Res Cell Motil 2019; 41:55-70. [DOI: 10.1007/s10974-019-09552-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 08/17/2019] [Indexed: 12/27/2022]
|
6
|
Lehman W, Moore JR, Campbell SG, Rynkiewicz MJ. The Effect of Tropomyosin Mutations on Actin-Tropomyosin Binding: In Search of Lost Time. Biophys J 2019; 116:2275-2284. [PMID: 31130236 PMCID: PMC6588729 DOI: 10.1016/j.bpj.2019.05.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/14/2022] Open
Abstract
The initial binding of tropomyosin onto actin filaments and then its polymerization into continuous cables on the filament surface must be precisely tuned to overall thin-filament structure, function, and performance. Low-affinity interaction of tropomyosin with actin has to be sufficiently strong to localize the tropomyosin on actin, yet not so tight that regulatory movement on filaments is curtailed. Likewise, head-to-tail association of tropomyosin molecules must be favorable enough to promote tropomyosin cable formation but not so tenacious that polymerization precedes filament binding. Arguably, little molecular detail on early tropomyosin binding steps has been revealed since Wegner's seminal studies on filament assembly almost 40 years ago. Thus, interpretation of mutation-based actin-tropomyosin binding anomalies leading to cardiomyopathies cannot be described fully. In vitro, tropomyosin binding is masked by explosive tropomyosin polymerization once cable formation is initiated on actin filaments. In contrast, in silico analysis, characterizing molecular dynamics simulations of single wild-type and mutant tropomyosin molecules on F-actin, is not complicated by tropomyosin polymerization at all. In fact, molecular dynamics performed here demonstrates that a midpiece tropomyosin domain is essential for normal actin-tropomyosin interaction and that this interaction is strictly conserved in a number of tropomyosin mutant species. Elsewhere along these mutant molecules, twisting and bending corrupts the tropomyosin superhelices as they "lose their grip" on F-actin. We propose that residual interactions displayed by these mutant tropomyosin structures with actin mimic ones that occur in early stages of thin-filament generation, as if the mutants are recapitulating the assembly process but in reverse. We conclude therefore that an initial binding step in tropomyosin assembly onto actin involves interaction of the essential centrally located domain.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Stuart G Campbell
- Departments of Biomedical Engineering and Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Michael J Rynkiewicz
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
7
|
Lehman W, Li X, Kiani FA, Moore JR, Campbell SG, Fischer S, Rynkiewicz MJ. Precise Binding of Tropomyosin on Actin Involves Sequence-Dependent Variance in Coiled-Coil Twisting. Biophys J 2018; 115:1082-1092. [PMID: 30195938 DOI: 10.1016/j.bpj.2018.08.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 11/17/2022] Open
Abstract
Often considered an archetypal dimeric coiled coil, tropomyosin nonetheless exhibits distinctive "noncanonical" core residues located at the hydrophobic interface between its component α-helices. Notably, a charged aspartate, D137, takes the place of nonpolar residues otherwise present. Much speculation has been offered to rationalize potential local coiled-coil instability stemming from D137 and its effect on regulatory transitions of tropomyosin over actin filaments. Although experimental approaches such as electron cryomicroscopy reconstruction are optimal for defining average tropomyosin positions on actin filaments, to date, these methods have not captured the dynamics of tropomyosin residues clustered around position 137 or elsewhere. In contrast, computational biochemistry, involving molecular dynamics simulation, is a compelling choice to extend the understanding of local and global tropomyosin behavior on actin filaments at high resolution. Here, we report on molecular dynamics simulation of actin-free and actin-associated tropomyosin, showing noncanonical residue D137 as a locus for tropomyosin twist variation, with marked effects on actin-tropomyosin interactions. We conclude that D137-sponsored coiled-coil twisting is likely to optimize electrostatic side-chain contacts between tropomyosin and actin on the assembled thin filament, while offsetting disparities between tropomyosin pseudorepeat and actin subunit periodicities. We find that D137 has only minor local effects on tropomyosin coiled-coil flexibility, (i.e., on its flexural mobility). Indeed, D137-associated overtwisting may actually augment tropomyosin stiffness on actin filaments. Accordingly, such twisting-induced stiffness of tropomyosin is expected to enhance cooperative regulatory translocation of the tropomyosin cable over actin.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts.
| | - Xiaochuan Li
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Farooq A Kiani
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Jeffrey R Moore
- Department of Biological Sciences, University of Massachusetts-Lowell, Lowell, Massachusetts
| | - Stuart G Campbell
- Departments of Biomedical Engineering & Cellular and Molecular Physiology, Yale University, New Haven, Connecticut
| | - Stefan Fischer
- Interdisciplinary Center for Scientific Computing, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Michael J Rynkiewicz
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
8
|
Matyushenko AM, Shchepkin DV, Kopylova GV, Bershitsky SY, Koubassova NA, Tsaturyan AK, Levitsky DI. Functional role of the core gap in the middle part of tropomyosin. FEBS J 2018; 285:871-886. [PMID: 29278453 DOI: 10.1111/febs.14369] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 12/20/2017] [Indexed: 11/30/2022]
Abstract
Tropomyosin (Tpm) is an α-helical coiled-coil actin-binding protein playing an essential role in the regulation of muscle contraction. The middle part of the Tpm molecule has some specific features, such as the presence of noncanonical residues as well as a substantial gap at the interhelical interface, which are believed to destabilize a coiled-coil and impart structural flexibility to this part of the molecule. To study how the gap affects structural and functional properties of α-striated Tpm (the Tpm1.1 isoform that is expressed in cardiac and skeletal muscles) we replaced large conserved apolar core residues located at both sides of the gap with smaller ones by mutations M127A/I130A and M141A/Q144A. We found that in contrast with the stabilizing substitutions D137L and G126R studied earlier, these substitutions have no appreciable influence on thermal unfolding and domain structure of the Tpm molecule. They also do not affect actin-binding properties of Tpm. However, they strongly increase sliding velocity of regulated actin filaments in an in vitro motility assay and cause an oversensitivity of the velocity to Ca2+ similar to the stabilizing substitutions D137L and G126R. Molecular dynamics shows that the substitutions studied here increase bending stiffness of the coiled-coil structure of Tpm, like that of G126R/D137L, probably due to closure of the interhelical gap in the area of the substitutions. Our results clearly indicate that the conserved middle part of Tpm is important for the fine tuning of the Ca2+ regulation of actin-myosin interaction in muscle.
Collapse
Affiliation(s)
- Alexander M Matyushenko
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, Russia
| | | | | | - Dmitrii I Levitsky
- A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia.,A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia
| |
Collapse
|