1
|
Maciunas LJ, Rotsides P, D'Lauro EJ, Brady S, Beld J, Loll PJ. The VanS sensor histidine kinase from type-B VRE recognizes vancomycin directly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.09.548278. [PMID: 37503228 PMCID: PMC10369886 DOI: 10.1101/2023.07.09.548278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
V ancomycin- r esistant e nterococci (VRE) are among the most common causes of nosocomial infections and have been prioritized as targets for new therapeutic development. Many genetically distinct types of VRE have been identified; however, they all share a common suite of resistance genes that function together to confer resistance to vancomycin. Expression of the resistance phenotype is controlled by the VanRS two-component system. This system senses the presence of the antibiotic, and responds by initiating transcription of resistance genes. VanS is a transmembrane sensor histidine kinase, and plays a fundamental role in antibiotic resistance by detecting vancomycin or its effects; it then transduces this signal to the VanR transcription factor, thereby alerting the organism to the presence of the antibiotic. Despite the critical role played by VanS, fundamental questions remain about its function, and in particular about how it senses vancomycin. Here, we focus on a purified VanRS system from one of the most clinically prevalent forms of VRE, type B. We show that in a native-like membrane environment, the autokinase activity of type-B VanS is strongly stimulated by vancomycin. We additionally demonstrate that this effect is mediated by a direct physical interaction between the antibiotic and the type-B VanS protein, and localize the interacting region to the protein's periplasmic domain. This represents the first time that a direct sensing mechanism has been confirmed for any VanS protein. Significance Statement When v ancomycin- r esistant e nterococci (VRE) sense the presence of vancomycin, they remodel their cell walls to block antibiotic binding. This resistance phenotype is controlled by the VanS protein, a histidine kinase that senses the antibiotic or its effects and signals for transcription of resistance genes. However, the mechanism by which VanS detects the antibiotic has remained unclear, with no consensus emerging as to whether the protein interacts directly with vancomycin, or instead detects some downstream consequence of vancomycin's action. Here, we show that for one of the most clinically relevant types of VRE, type B, VanS is activated by direct binding of the antibiotic. Such mechanistic insights will likely prove useful in circumventing vancomycin resistance.
Collapse
|
2
|
Shaw AL, Parson MAH, Truebestein L, Jenkins ML, Leonard TA, Burke JE. ATP-competitive and allosteric inhibitors induce differential conformational changes at the autoinhibitory interface of Akt1. Structure 2023; 31:343-354.e3. [PMID: 36758543 DOI: 10.1016/j.str.2023.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/21/2022] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Akt is a master regulator of pro-growth signaling in the cell. Akt is activated by phosphoinositides that disrupt the autoinhibitory interface between the kinase and pleckstrin homology (PH) domains and then is phosphorylated at T308 and S473. Akt hyperactivation is oncogenic, which has spurred development of potent and selective inhibitors as therapeutics. Using hydrogen deuterium exchange mass spectrometry (HDX-MS), we interrogated the conformational changes upon binding Akt ATP-competitive and allosteric inhibitors. We compared inhibitors against three different states of Akt1. The allosteric inhibitor caused substantive conformational changes and restricts membrane binding. ATP-competitive inhibitors caused extensive allosteric conformational changes, altering the autoinhibitory interface and leading to increased membrane binding, suggesting that the PH domain is more accessible for membrane binding. This work provides unique insight into the autoinhibitory conformation of the PH and kinase domain and conformational changes induced by Akt inhibitors and has important implications for the design of Akt targeted therapeutics.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, the University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria; Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, the University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
3
|
Pendleton A, Yeo WS, Alqahtani S, DiMaggio DA, Stone CJ, Li Z, Singh VK, Montgomery CP, Bae T, Brinsmade SR. Regulation of the Sae Two-Component System by Branched-Chain Fatty Acids in Staphylococcus aureus. mBio 2022; 13:e0147222. [PMID: 36135382 PMCID: PMC9600363 DOI: 10.1128/mbio.01472-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus aureus is a ubiquitous Gram-positive bacterium and an opportunistic human pathogen. S. aureus pathogenesis relies on a complex network of regulatory factors that adjust gene expression. Two important factors in this network are CodY, a repressor protein responsive to nutrient availability, and the SaeRS two-component system (TCS), which responds to neutrophil-produced factors. Our previous work revealed that CodY regulates the secretion of many toxins indirectly via Sae through an unknown mechanism. We report that disruption of codY results in increased levels of phosphorylated SaeR (SaeR~P) and that codY mutant cell membranes contain a higher percentage of branched-chain fatty acids (BCFAs) than do wild-type membranes, prompting us to hypothesize that changes to membrane composition modulate the activity of the SaeS sensor kinase. Disrupting the lpdA gene encoding dihydrolipoyl dehydrogenase, which is critical for BCFA synthesis, significantly reduced the abundance of SaeR, phosphorylated SaeR, and BCFAs in the membrane, resulting in reduced toxin production and attenuated virulence. Lower SaeR levels could be explained in part by reduced stability. Sae activity in the lpdA mutant could be complemented genetically and chemically with exogenous short- or full-length BCFAs. Intriguingly, lack of lpdA also alters the activity of other TCSs, suggesting a specific BCFA requirement managing the basal activity of multiple TCSs. These results reveal a novel method of posttranscriptional virulence regulation via BCFA synthesis, potentially linking CodY activity to multiple virulence regulators in S. aureus. IMPORTANCE Two-component systems (TCSs) are an essential way that bacteria sense and respond to their environment. These systems are usually composed of a membrane-bound histidine kinase that phosphorylates a cytoplasmic response regulator. Because most of the histidine kinases are embedded in the membrane, lipids can allosterically regulate the activity of these sensors. In this study, we reveal that branched-chain fatty acids (BCFAs) are required for the activation of multiple TCSs in Staphylococcus aureus. Using both genetic and biochemical data, we show that the activity of the virulence activator SaeS and the phosphorylation of its response regulator SaeR are reduced in a branched-chain keto-acid dehydrogenase complex mutant and that defects in BCFA synthesis have far-reaching consequences for exotoxin secretion and virulence. Finally, we show that mutation of the global nutritional regulator CodY alters BCFA content in the membrane, revealing a potential mechanism of posttranscriptional regulation of the Sae system by CodY.
Collapse
Affiliation(s)
| | - Won-Sik Yeo
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Shahad Alqahtani
- Department of Biology, Georgetown University, Washington, DC, USA
| | | | - Carl J. Stone
- Department of Biology, Georgetown University, Washington, DC, USA
| | - Zhaotao Li
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Vineet K. Singh
- Department of Microbiology and Immunology, A.T. Still University of Health Sciences, Kirksville, Missouri, USA
| | - Christopher P. Montgomery
- Center for Microbial Pathogenesis, Abigail Wexner Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Taeok Bae
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, Indiana, USA
| | | |
Collapse
|
4
|
Kenney LJ. How Can a Histidine Kinase Respond to Mechanical Stress? Front Microbiol 2021; 12:655942. [PMID: 34335491 PMCID: PMC8320348 DOI: 10.3389/fmicb.2021.655942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bacteria respond to physical forces perceived as mechanical stress as part of their comprehensive environmental sensing strategy. Histidine kinases can then funnel diverse environmental stimuli into changes in gene expression through a series of phosphorelay reactions. Because histidine kinases are most often embedded in the inner membrane, they can be sensitive to changes in membrane tension that occurs, for example, in response to osmotic stress, or when deformation of the cell body occurs upon encountering a surface before forming biofilms, or inside the host in response to shear stress in the kidney, intestine, lungs, or blood stream. A summary of our recent work that links the histidine kinase EnvZ to mechanical changes in the inner membrane is provided and placed in a context of other bacterial systems that respond to mechanical stress.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
5
|
Peacock RB, Komives EA. Hydrogen/Deuterium Exchange and Nuclear Magnetic Resonance Spectroscopy Reveal Dynamic Allostery on Multiple Time Scales in the Serine Protease Thrombin. Biochemistry 2021; 60:3441-3448. [PMID: 34159782 DOI: 10.1021/acs.biochem.1c00277] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A deeper understanding of how hydrogen/deuterium exchange mass spectrometry (HDX-MS) reveals allostery is important because HDX-MS can reveal allostery in systems that are not amenable to nuclear magnetic resonance (NMR) spectroscopy. We were able to study thrombin and its complex with thrombomodulin, an allosteric regulator, by both HDX-MS and NMR. In this Perspective, we compare and contrast the results from both experiments and from molecular dynamics simulations. NMR detects changes in the chemical environment around the protein backbone N-H bond vectors, providing residue-level information about the conformational exchange between distinct states. HDX-MS detects changes in amide proton solvent accessibility and H-bonding. Taking advantage of NMR relaxation dispersion measurements of the time scale of motions, we draw conclusions about the motions reflected in HDX-MS experiments. Both experiments detect allostery, but they reveal different components of the allosteric transition. The insights gained from integrating NMR and HDX-MS into thrombin dynamics enable a clearer interpretation of the evidence for allostery revealed by HDX-MS in larger protein complexes and assemblies that are not amenable to NMR.
Collapse
Affiliation(s)
- Riley B Peacock
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0378, United States
| |
Collapse
|
6
|
Aguayo-Ortiz R, Espinoza-Fonseca LM. Linking Biochemical and Structural States of SERCA: Achievements, Challenges, and New Opportunities. Int J Mol Sci 2020; 21:ijms21114146. [PMID: 32532023 PMCID: PMC7313052 DOI: 10.3390/ijms21114146] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Sarcoendoplasmic reticulum calcium ATPase (SERCA), a member of the P-type ATPase family of ion and lipid pumps, is responsible for the active transport of Ca2+ from the cytoplasm into the sarcoplasmic reticulum lumen of muscle cells, into the endoplasmic reticulum (ER) of non-muscle cells. X-ray crystallography has proven to be an invaluable tool in understanding the structural changes of SERCA, and more than 70 SERCA crystal structures representing major biochemical states (defined by bound ligand) have been deposited in the Protein Data Bank. Consequently, SERCA is one of the best characterized components of the calcium transport machinery in the cell. Emerging approaches in the field, including spectroscopy and molecular simulation, now help integrate and interpret this rich structural information to understand the conformational transitions of SERCA that occur during activation, inhibition, and regulation. In this review, we provide an overview of the crystal structures of SERCA, focusing on identifying metrics that facilitate structure-based categorization of major steps along the catalytic cycle. We examine the integration of crystallographic data with different biophysical approaches and computational methods to link biochemical and structural states of SERCA that are populated in the cell. Finally, we discuss the challenges and new opportunities in the field, including structural elucidation of functionally important and novel regulatory complexes of SERCA, understanding the structural basis of functional divergence among homologous SERCA regulators, and bridging the gap between basic and translational research directed toward therapeutic modulation of SERCA.
Collapse
|
7
|
Kenney LJ, Anand GS. EnvZ/OmpR Two-Component Signaling: An Archetype System That Can Function Noncanonically. EcoSal Plus 2020; 9:10.1128/ecosalplus.ESP-0001-2019. [PMID: 32003321 PMCID: PMC7192543 DOI: 10.1128/ecosalplus.esp-0001-2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Indexed: 01/09/2023]
Abstract
Two-component regulatory systems represent the major paradigm for signal transduction in prokaryotes. The simplest systems are composed of a sensor kinase and a response regulator. The sensor is often a membrane protein that senses a change in environmental conditions and is autophosphorylated by ATP on a histidine residue. The phosphoryl group is transferred onto an aspartate of the response regulator, which activates the regulator and alters its output, usually resulting in a change in gene expression. In this review, we present a historical view of the archetype EnvZ/OmpR two-component signaling system, and then we provide a new view of signaling based on our recent experiments. EnvZ responds to cytoplasmic signals that arise from changes in the extracellular milieu, and OmpR acts canonically (requiring phosphorylation) to regulate the porin genes and noncanonically (without phosphorylation) to activate the acid stress response. Herein, we describe how insights gleaned from stimulus recognition and response in EnvZ are relevant to nearly all sensor kinases and response regulators.
Collapse
Affiliation(s)
- Linda J Kenney
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555
- Mechanobiology Institute, T-Lab, National University of Singapore, Singapore
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
8
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
9
|
Matsudaira PT, Verma CS. Editorial. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 143:1-4. [PMID: 30951764 DOI: 10.1016/j.pbiomolbio.2019.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Paul T Matsudaira
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; Centre for BioImaging Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore.
| | - Chandra S Verma
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore.
| |
Collapse
|
10
|
Bolla JR, Agasid MT, Mehmood S, Robinson CV. Membrane Protein-Lipid Interactions Probed Using Mass Spectrometry. Annu Rev Biochem 2019; 88:85-111. [PMID: 30901263 DOI: 10.1146/annurev-biochem-013118-111508] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Membrane proteins that exist in lipid bilayers are not isolated molecular entities. The lipid molecules that surround them play crucial roles in maintaining their full structural and functional integrity. Research directed at investigating these critical lipid-protein interactions is developing rapidly. Advancements in both instrumentation and software, as well as in key biophysical and biochemical techniques, are accelerating the field. In this review, we provide a brief outline of structural techniques used to probe protein-lipid interactions and focus on the molecular aspects of these interactions obtained from native mass spectrometry (native MS). We highlight examples in which lipids have been shown to modulate membrane protein structure and show how native MS has emerged as a complementary technique to X-ray crystallography and cryo-electron microscopy. We conclude with a short perspective on future developments that aim to better understand protein-lipid interactions in the native environment.
Collapse
Affiliation(s)
- Jani Reddy Bolla
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Mark T Agasid
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Shahid Mehmood
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| | - Carol V Robinson
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom;
| |
Collapse
|
11
|
Ghosh M, Wang LC, Huber RG, Gao Y, Morgan LK, Tulsian NK, Bond PJ, Kenney LJ, Anand GS. Engineering an Osmosensor by Pivotal Histidine Positioning within Disordered Helices. Structure 2019; 27:302-314.e4. [PMID: 30503779 DOI: 10.1016/j.str.2018.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 08/18/2018] [Accepted: 10/18/2018] [Indexed: 10/27/2022]
Abstract
Histidine kinases (HKs) funnel diverse environmental stimuli into a single autophosphorylation event at a conserved histidine residue. The HK EnvZ is a global sensor of osmolality and cellular acid pH. In previous studies, we discovered that osmosensing in EnvZ was mediated through osmolyte-induced stabilization of the partially disordered helical backbone spanning the conserved histidine autophosphorylation site (His243). Here, we describe how backbone stabilization leads to changes in the microenvironment of His243, resulting in enhanced autophosphorylation through relief of inhibition and repositioning of critical side chains and imidazole rotamerization. The conserved His-Asp/Glu dyad within the partially structured helix is equally geared to respond to acid pH, an alternative environmental stimulus in bacteria. This high-resolution "double-clamp" switch model proposes that a His-Asp/Glu dyad functions as an integrative node for regulating autophosphorylation in HKs. Because the His-Asp/Glu dyad is highly conserved in HKs, this study provides a universal model for describing HK function.
Collapse
Affiliation(s)
- Madhubrata Ghosh
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, Singapore 138669, Singapore
| | - Loo Chien Wang
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Roland G Huber
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore
| | - Yunfeng Gao
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Leslie K Morgan
- Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | - Nikhil Kumar Tulsian
- Department of Biochemistry, National University of Singapore, 28 Medical Drive, Singapore 117546, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Bioinformatics Institute (A(∗)STAR), 30 Biopolis Street, Matrix, Singapore 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Linda J Kenney
- Mechanobiology Institute, 5A Engineering Drive 1, Singapore 117411, Singapore; Jesse Brown Veteran Affairs Medical Center, 820 S. Damen Avenue, Chicago, IL 60612, USA; Department of Microbiology and Immunology, University of Illinois-Chicago, 835 S. Wolcott Avenue, Chicago, IL 60612, USA; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
12
|
Kenney LJ. The role of acid stress in Salmonella pathogenesis. Curr Opin Microbiol 2019; 47:45-51. [DOI: 10.1016/j.mib.2018.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/10/2018] [Accepted: 11/15/2018] [Indexed: 11/29/2022]
|
13
|
Chakraborty S, Kenney LJ. A New Role of OmpR in Acid and Osmotic Stress in Salmonella and E. coli. Front Microbiol 2018; 9:2656. [PMID: 30524381 PMCID: PMC6262077 DOI: 10.3389/fmicb.2018.02656] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022] Open
Abstract
Bacteria survive and respond to diverse environmental conditions and during infection inside the host by systematic regulation of stress response genes. E. coli and S. Typhimurium can undergo large changes in intracellular osmolality (up to 1.8 Osmol/kg) and can tolerate cytoplasmic acidification to at least pHi 5.6. Recent analyses of single cells challenged a long held view that bacteria respond to extracellular acid stress by rapid acidification followed by a rapid recovery. It is now appreciated that both S. Typhimurium and E. coli maintain an acidic cytoplasm through the actions of the outer membrane protein regulator OmpR via its regulation of distinct signaling pathways. However, a comprehensive comparison of OmpR regulons between S. Typhimurium and E. coli is lacking. In this study, we examined the expression profiles of wild-type and ompR null strains of the intracellular pathogen S. Typhimurium and a commensal E. coli in response to acid and osmotic stress. Herein, we classify distinct OmpR regulons and also identify shared OmpR regulatory pathways between S. Typhimurium and E. coli in response to acid and osmotic stress. Our study establishes OmpR as a key regulator of bacterial virulence, growth and metabolism, in addition to its role in regulating outer membrane proteins.
Collapse
Affiliation(s)
- Smarajit Chakraborty
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Linda J. Kenney
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
- Department of Biochemistry, National University of Singapore, Singapore, Singapore
- Departments of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
- Bioengineering, University of Illinois at Chicago, Chicago, IL, United States
- Jesse Brown Veterans Administration Medical Center, Chicago, IL, United States
- *Correspondence: Linda J. Kenney,
| |
Collapse
|
14
|
The role of polyproline motifs in the histidine kinase EnvZ. PLoS One 2018; 13:e0199782. [PMID: 29953503 PMCID: PMC6023141 DOI: 10.1371/journal.pone.0199782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Although distinct amino acid motifs containing consecutive prolines (polyP) cause ribosome stalling, which necessitates recruitment of the translation elongation factor P (EF-P), they occur strikingly often in bacterial proteomes. For example, polyP motifs are found in more than half of all histidine kinases in Escherichia coli K-12, which raises the question of their role(s) in receptor function. Here we have investigated the roles of two polyP motifs in the osmosensor and histidine kinase EnvZ. We show that the IPPPL motif in the HAMP domain is required for dimerization of EnvZ. Moreover, replacement of the prolines in this motif by alanines disables the receptor’s sensor function. The second motif, VVPPA, which is located in the periplasmic domain, was found to be required for interaction with the modulator protein MzrA. Our study also reveals that polyP-dependent stalling has little effect on EnvZ levels. Hence, both polyP motifs in EnvZ are primarily involved in protein-protein interaction. Furthermore, while the first motif occurs in almost all EnvZ homologues, the second motif is only found in species that have MzrA, indicating co-evolution of the two proteins.
Collapse
|
15
|
Abstract
Membrane proteins interact with a myriad of lipid species in the biological membrane, leading to a bewildering number of possible protein-lipid assemblies. Despite this inherent complexity, the identification of specific protein-lipid interactions and the crucial role of lipids in the folding, structure, and function of membrane proteins is emerging from an increasing number of reports. Fundamental questions remain, however, regarding the ability of specific lipid binding events to membrane proteins to alter remote binding sites for lipids of a different type, a property referred to as allostery [Monod J, Wyman J, Changeux JP (1965) J Mol Biol 12:88-118]. Here, we use native mass spectrometry to determine the allosteric nature of heterogeneous lipid binding events to membrane proteins. We monitored individual lipid binding events to the ammonia channel (AmtB) from Escherichia coli, enabling determination of their equilibrium binding constants. We found that different lipid pairs display a range of allosteric modulation. In particular, the binding of phosphatidylethanolamine and cardiolipin-like molecules to AmtB exhibited the largest degree of allosteric modulation, inspiring us to determine the cocrystal structure of AmtB in this lipid environment. The 2.45-Å resolution structure reveals a cardiolipin-like molecule bound to each subunit of the trimeric complex. Mutation of a single residue in AmtB abolishes the positive allosteric modulation observed for binding phosphatidylethanolamine and cardiolipin-like molecules. Our results demonstrate that specific lipid-protein interactions can act as allosteric modulators for the binding of different lipid types to integral membrane proteins.
Collapse
|
16
|
Lehning CE, Heidelberger JB, Reinhard J, Nørholm MHH, Draheim RR. A Modular High-Throughput In Vivo Screening Platform Based on Chimeric Bacterial Receptors. ACS Synth Biol 2017; 6:1315-1326. [PMID: 28372360 DOI: 10.1021/acssynbio.6b00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR) is a globally relevant problem that requires novel approaches. Two-component systems are a promising, yet untapped target for novel antibacterials. They are prevalent in bacteria and absent in mammals, and their activity can be modulated upon perception of various stimuli. Screening pre-existing compound libraries could reveal small molecules that inhibit stimulus-perception by virulence-modulating receptors, reduce signal output from essential receptors or identify artificial stimulatory ligands for novel SHKs that are involved in virulence. Those small molecules could possess desirable therapeutic properties to combat MDR. We propose that a modular screening platform in which the periplasmic domain of the targeted receptors are fused to the cytoplasmic domain of a well-characterized receptor that governs fluorescence reporter genes could be employed to rapidly screen currently existing small molecule libraries. Here, we have examined two previously created Tar-EnvZ chimeras and a novel NarX-EnvZ chimera. We demonstrate that it is possible to couple periplasmic stimulus-perceiving domains to an invariable cytoplasmic domain that governs transcription of a dynamic fluorescent reporter system. Furthermore, we show that aromatic tuning, or repositioning the aromatic residues at the end of the second transmembrane helix (TM2), modulates baseline signal output from the tested chimeras and even restores output from a nonfunctional NarX-EnvZ chimera. Finally, we observe an inverse correlation between baseline signal output and the degree of response to cognate stimuli. In summary, we propose that the platform described here, a fluorescent Escherichia coli reporter strain with plasmid-based expression of the aromatically tuned chimeric receptors, represents a synthetic biology approach to rapidly screen pre-existing compound libraries for receptor-modulating activities.
Collapse
Affiliation(s)
- Christina E. Lehning
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | | - John Reinhard
- Buchmann
Institute for Molecular Life Sciences, Goethe University Frankfurt, Max-von-Laue-Straße 15, D-60438, Frankfurt, Germany
| | - Morten H. H. Nørholm
- Novo
Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, DK-2800, Kgs. Lyngby, Denmark
| | | |
Collapse
|