1
|
Huang X, Ma Z, He D, Han X, Liu X, Dong Q, Tan C, Yu B, Sun T, Nordenskiöld L, Lu L, Miao Y, Hou X. Molecular condensation of the CO/NF-YB/NF-YC/FT complex gates floral transition in Arabidopsis. EMBO J 2025; 44:225-250. [PMID: 39567828 PMCID: PMC11696179 DOI: 10.1038/s44318-024-00293-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/22/2024] Open
Abstract
The plant master photoperiodic regulator CONSTANS (CO) interacts with Nuclear Factor-Y subunits B2 (NF-YB2) and C9 (NF-YC9) and transcriptionally activates the florigen gene FLOWERING LOCUS T (FT), regulating floral transition. However, the molecular mechanism of the functional four-component complex assembly in the nucleus remains elusive. We report that co-phase separation of CO with NF-YB2/NF-YC9/FT precisely controls heterogeneous CO assembly and FT transcriptional activation. In response to light signals, CO proteins form functional percolation clusters from a diffuse distribution in a B-box-motif-dependent manner. Multivalent coassembly with NF-YC9 and NF-YB2 prevents inhibitory condensate formation and is necessary to maintain proper CO assembly and material properties. The intrinsically disordered region (IDR) of NF-YC9, containing a polyglutamine motif, fine-tunes the functional properties of CO/NF-YB/NF-YC condensates. Specific FT promoter recognition with polyelectrolyte partitioning also enables the fluidic functional properties of CO/NF-YB/NF-YC/FT condensates. Our findings offer novel insights into the tunable macromolecular condensation of the CO/NF-YB/NF-YC/FT complex in controlling flowering in the photoperiod control.
Collapse
Affiliation(s)
- Xiang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Danxia He
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Xu Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Qiong Dong
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Tiedong Sun
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lars Nordenskiöld
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 636921, Singapore.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.
- University of the Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Mersch SA, McCue C, Aristidou A, Sheets ED, Boersma AJ, Heikal AA. Translational diffusion, molecular brightness, and energy transfer analysis of mEGFP-linker-mScarlet-I crowding biosensor using fluorescence correlation spectroscopy. Phys Chem Chem Phys 2024; 26:28808-28818. [PMID: 39530201 DOI: 10.1039/d4cp03850a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recently, we have investigated the sensitivity of an mEGFP-linker-mScarlet-I construct (GE2.3) in response to macromolecular crowding using ensemble time-resolved two-photon (2P) fluorescence measurements [Mersch et al., Phys. Chem. Chem. Phys. 2024, 26(5), 3927-3940] as a point of reference for developing a single-molecule approach for Förster resonance energy transfer (FRET). Here, we investigate the fluorescence fluctuations, FRET, molecular brightness, and translational diffusion of GE2.3 as a model system using fluorescence correlation spectroscopy (FCS), at the single molecule level, as a function of the excitation and detection wavelengths of the donor (mEGFP) and the acceptor (mScarlet-I). We hypothesize that the molecular brightness (number of fluorescence photons per molecule) of the donor of GE2.3, in the presence and absence of the acceptor, would be distinct due to FRET at the single-molecule level. To test this hypothesis, we used wavelength-dependent FCS to quantify the molecular brightness of intact and enzymatically cleaved GE2.3 as a function of Ficoll-70 (a crowding agent, 0-300 g L-1) at room temperature. Our results indicate that the molecular brightness of intact GE2.3 in a buffer is smaller than that of the cleaved counterpart under 488-nm excitation of the donor, which is attributed to FRET. In contrast, the molecular brightness of both cleaved and intact GE2.3 seems to be the same under the 561-nm excitation of the acceptor due to the absence of FRET. Our results also show that the FRET efficiency of GE2.3 increases as the concentration of Ficoll increases up to 200 g L-1, which agrees with our previous time-resolved 2P-fluorescence measurements. Fluctuation autocorrelation analysis shows that the translational diffusion of intact and cleaved GE2.3 sensors deviates from the Stokes-Einstein model in Ficoll crowded solutions. Additionally, we highlight the multiscale translational and rotational diffusion coefficients of GE2.3 in terms of the average distance between neighboring Ficoll molecules, over the same concentration range, to elucidate the spatio-temporal scaling aspect of FRET and protein-protein interactions. These single-molecule studies would be beneficial for future studies in living cells, where very low GE2.3 expression levels will be required as compared with ensemble, time-resolved 2P-fluorescence measurements.
Collapse
Affiliation(s)
- Sarah A Mersch
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Clint McCue
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Alexandros Aristidou
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| |
Collapse
|
3
|
Losa J, Heinemann M. Contribution of different macromolecules to the diffusion of a 40 nm particle in Escherichia coli. Biophys J 2024; 123:1211-1221. [PMID: 38555507 PMCID: PMC11140462 DOI: 10.1016/j.bpj.2024.03.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/20/2024] [Accepted: 03/28/2024] [Indexed: 04/02/2024] Open
Abstract
Due to the high concentration of proteins, nucleic acids, and other macromolecules, the bacterial cytoplasm is typically described as a crowded environment. However, the extent to which each of these macromolecules individually affects the mobility of macromolecular complexes, and how this depends on growth conditions, is presently unclear. In this study, we sought to quantify the crowding experienced by an exogenous 40 nm fluorescent particle in the cytoplasm of E. coli under different growth conditions. By performing single-particle tracking measurements in cells selectively depleted of DNA and/or mRNA, we determined the contribution to crowding of mRNA, DNA, and remaining cellular components, i.e., mostly proteins and ribosomes. To estimate this contribution to crowding, we quantified the difference of the particle's diffusion coefficient in conditions with and without those macromolecules. We found that the contributions of the three classes of components were of comparable magnitude, being largest in the case of proteins and ribosomes. We further found that the contributions of mRNA and DNA to crowding were significantly larger than expected based on their volumetric fractions alone. Finally, we found that the crowding contributions change only slightly with the growth conditions. These results reveal how various cellular components partake in crowding of the cytoplasm and the consequences this has for the mobility of large macromolecular complexes.
Collapse
Affiliation(s)
- José Losa
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
4
|
Mersch SA, Bergman S, Sheets ED, Boersma AJ, Heikal AA. Two-photon excited-state dynamics of mEGFP-linker-mScarlet-I crowding biosensor in controlled environments. Phys Chem Chem Phys 2024; 26:3927-3940. [PMID: 38231116 DOI: 10.1039/d3cp04733d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Macromolecular crowding affects many cellular processes such as diffusion, biochemical reaction kinetics, protein-protein interactions, and protein folding. Mapping the heterogeneous, dynamic crowding in living cells or tissues requires genetically encoded, site-specific, crowding sensors that are compatible with quantitative, noninvasive fluorescence micro-spectroscopy. Here, we carried out time-resolved 2P-fluorescence measurements of a new mEGFP-linker-mScarlet-I macromolecular crowding construct (GE2.3) to characterize its environmental sensitivity in biomimetic crowded solutions (Ficoll-70, 0-300 g L-1) via Förster resonance energy transfer (FRET) analysis. The 2P-fluorescence lifetime of the donor (mEGFP) was measured under magic-angle polarization, in the presence (intact) and absence (enzymatically cleaved) of the acceptor (mScarlet-I), as a function of the Ficoll-70 concentration. The FRET efficiency was used to quantify the sensitivity of GE2.3 to macromolecular crowding and to determine the environmental dependence of the mEGFP-mScarlet-I distance. We also carried out time-resolved 2P-fluorescence depolarization anisotropy to examine both macromolecular crowding and linker flexibility effects on GE2.3 rotational dynamics within the context of the Stokes-Einstein model as compared with theoretical predictions based on its molecular weight. These time-resolved 2P-fluorescence depolarization measurements and conformational population analyses of GE2.3 were also used to estimate the free energy gain upon the structural collapse in crowded environment. Our results further the development of a rational engineering design for bioenvironmental sensors without the interference of cellular autofluorescence. Additionally, these results in well-defined environments will inform our future in vivo studies of genetically encoded GE2.3 towards the mapping of the crowded intracellular environment under different physiological conditions.
Collapse
Affiliation(s)
- Sarah A Mersch
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Sarah Bergman
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Arnold J Boersma
- Cellular Protein Chemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN 55812, USA.
| |
Collapse
|
5
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Majumdar S, Rastogi H, Chowdhury PK. Bridging Soft Interaction and Excluded Volume in Crowded Milieu through Subtle Protein Dynamics. J Phys Chem B 2024; 128:716-730. [PMID: 38226816 DOI: 10.1021/acs.jpcb.3c07266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The impact of macromolecular crowding on biological macromolecules has been elucidated through the excluded volume phenomenon and soft interactions. However, it has often been difficult to provide a clear demarcation between the two regions. Here, using temperature-dependent dynamics (local and global) of the multidomain protein human serum albumin (HSA) in the presence of commonly used synthetic crowders (Dextran 40, PEG 8, Ficoll 70, and Dextran 70), we have shown the presence of a transition that serves as a bridge between the soft and hard regimes. The bridging region is independent of the crowder identity and displays no apparent correlation with the critical overlap concentration of the polymeric crowding agents. Moreover, the dynamics of domains I and II and the protein gating motion respond differently, thereby bringing to the fore the asymmetry underlying the crowder influence on HSA. In addition, solvent-coupled and decoupled protein motions indicate the heterogeneity of the dynamic landscape in the crowded milieu. We also propose an intriguing correlation between protein stability and dynamics, with increased global stability being accompanied by eased local domain motion.
Collapse
Affiliation(s)
- Shubhangi Majumdar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Harshita Rastogi
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Pramit K Chowdhury
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
7
|
Löwe M, Hänsch S, Hachani E, Schmitt L, Weidtkamp-Peters S, Kedrov A. Probing macromolecular crowding at the lipid membrane interface with genetically-encoded sensors. Protein Sci 2023; 32:e4797. [PMID: 37779215 PMCID: PMC10578116 DOI: 10.1002/pro.4797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/25/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Biochemical processes within the living cell occur in a highly crowded environment, where macromolecules, first of all proteins and nucleic acids, occupy up to 30% of the volume. The phenomenon of macromolecular crowding is not an exclusive feature of the cytoplasm and can be observed in the densely protein-packed, nonhomogeneous cellular membranes and at the membrane interfaces. Crowding affects diffusional and conformational dynamics of proteins within the lipid bilayer, alters kinetic and thermodynamic properties of biochemical reactions, and modulates the membrane organization. Despite its importance, the non-invasive quantification of the membrane crowding is not trivial. Here, we developed a genetically-encoded fluorescence-based sensor for probing the macromolecular crowding at the membrane interfaces. Two sensor variants, both composed of fluorescent proteins and a membrane anchor, but differing by flexible linker domains were characterized in vitro, and the procedures for the membrane reconstitution were established. Steric pressure induced by membrane-tethered synthetic and protein crowders altered the sensors' conformation, causing increase in the intramolecular Förster's resonance energy transfer. Notably, the effect of protein crowders only weakly correlated with their molecular weight, suggesting that other factors, such as shape and charge contribute to the crowding via the quinary interactions. Finally, measurements performed in inner membrane vesicles of Escherichia coli validated the crowding-dependent dynamics of the sensors in the physiologically relevant environment. The sensors offer broad opportunities to study interfacial crowding in a complex environment of native membranes, and thus add to the toolbox of methods for studying membrane dynamics and proteostasis.
Collapse
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center for Advanced imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Eymen Hachani
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Alexej Kedrov
- Synthetic Membrane Systems, Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Joron K, Viegas JO, Haas-Neill L, Bier S, Drori P, Dvir S, Lim PSL, Rauscher S, Meshorer E, Lerner E. Fluorescent protein lifetimes report densities and phases of nuclear condensates during embryonic stem-cell differentiation. Nat Commun 2023; 14:4885. [PMID: 37573411 PMCID: PMC10423231 DOI: 10.1038/s41467-023-40647-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023] Open
Abstract
Fluorescent proteins (FP) are frequently used for studying proteins inside cells. In advanced fluorescence microscopy, FPs can report on additional intracellular variables. One variable is the local density near FPs, which can be useful in studying densities within cellular bio-condensates. Here, we show that a reduction in fluorescence lifetimes of common monomeric FPs reports increased levels of local densities. We demonstrate the use of this fluorescence-based variable to report the distribution of local densities within heterochromatin protein 1α (HP1α) in mouse embryonic stem cells (ESCs), before and after early differentiation. We find that local densities within HP1α condensates in pluripotent ESCs are heterogeneous and cannot be explained by a single liquid phase. Early differentiation, however, induces a change towards a more homogeneous distribution of local densities, which can be explained as a liquid-like phase. In conclusion, we provide a fluorescence-based method to report increased local densities and apply it to distinguish between homogeneous and heterogeneous local densities within bio-condensates.
Collapse
Affiliation(s)
- Khalil Joron
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Juliane Oliveira Viegas
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Liam Haas-Neill
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Sariel Bier
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Paz Drori
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Shani Dvir
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Patrick Siang Lin Lim
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel
| | - Sarah Rauscher
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Physics, University of Toronto, Toronto, ON, M5S 1A7, Canada
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, ON, M5S 3H6, Canada
| | - Eran Meshorer
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
- Edmond and Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Eitan Lerner
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Faculty of Mathematics & Science, The Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
- The Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
9
|
Chen F, Shen S, Cao X, Zhang L, Liu L, Yang D, Shi Y, He W, Yao X, Liu D. Predicting assembly mode of membraneless organelles by a FRET-based crowding sensor. Signal Transduct Target Ther 2023; 8:227. [PMID: 37302992 DOI: 10.1038/s41392-023-01435-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 06/13/2023] Open
Affiliation(s)
- Feng Chen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Siyuan Shen
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xu Cao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Liang Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Lunxu Liu
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Daoke Yang
- Cancer Hospital of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yunyu Shi
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Wei He
- Department of Thoracic Surgery/Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, 610065, China.
| | - Xuebiao Yao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Dan Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
10
|
Condensation of SEUSS promotes hyperosmotic stress tolerance in Arabidopsis. Nat Chem Biol 2022; 18:1361-1369. [DOI: 10.1038/s41589-022-01196-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022]
|
11
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Marrink SJ, Monticelli L, Melo MN, Alessandri R, Tieleman DP, Souza PCT. Two decades of Martini: Better beads, broader scope. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials University of Groningen Groningen The Netherlands
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| | - Manuel N. Melo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa Oeiras Portugal
| | - Riccardo Alessandri
- Pritzker School of Molecular Engineering University of Chicago Chicago Illinois USA
| | - D. Peter Tieleman
- Centre for Molecular Simulation and Department of Biological Sciences University of Calgary Alberta Canada
| | - Paulo C. T. Souza
- Molecular Microbiology and Structural Biochemistry (MMSB ‐ UMR 5086) CNRS & University of Lyon Lyon France
| |
Collapse
|
13
|
Wan Q, Mouton SN, Veenhoff LM, Boersma AJ. A FRET-based method for monitoring structural transitions in protein self-organization. CELL REPORTS METHODS 2022; 2:100184. [PMID: 35475219 PMCID: PMC8960284 DOI: 10.1016/j.crmeth.2022.100184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/12/2021] [Accepted: 02/24/2022] [Indexed: 11/04/2022]
Abstract
Proteins assemble into a variety of dynamic and functional structures. Their structural transitions are often challenging to distinguish inside cells, particularly with a high spatiotemporal resolution. Here, we present a fluorescence resonance energy transfer (FRET)-based method for continuous and high-throughput monitoring of protein self-assemblies to reveal well-resolved transient intermediate states. Intermolecular FRET with both the donor and acceptor proteins at the same target protein provides high sensitivity while retaining the advantage of straightforward ratiometric imaging. We apply this method to monitor self-assembly of three proteins. We show that the mutant Huntingtin exon1 (mHttex1) first forms less-ordered assemblies, which develop into fibril-like aggregates, and demonstrate that the chaperone protein DNAJB6b increases the critical saturation concentration of mHttex1. We also monitor the structural changes in fused in sarcoma (FUS) condensates. This method adds to the toolbox for protein self-assembly structure and kinetics determination, and implementation with native or non-native proteins can inform studies involving protein condensation or aggregation.
Collapse
Affiliation(s)
- Qi Wan
- DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| | - Sara N. Mouton
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnold J. Boersma
- DWI – Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| |
Collapse
|
14
|
Rivas G, Minton A. Influence of Nonspecific Interactions on Protein Associations: Implications for Biochemistry In Vivo. Annu Rev Biochem 2022; 91:321-351. [PMID: 35287477 DOI: 10.1146/annurev-biochem-040320-104151] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular interior is composed of a variety of microenvironments defined by distinct local compositions and composition-dependent intermolecular interactions. We review the various types of nonspecific interactions between proteins and between proteins and other macromolecules and supramolecular structures that influence the state of association and functional properties of a given protein existing within a particular microenvironment at a particular point in time. The present state of knowledge is summarized, and suggestions for fruitful directions of research are offered. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Germán Rivas
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Madrid, Spain;
| | - Allen Minton
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
15
|
Mantovanelli L, Gaastra BF, Poolman B. Fluorescence-based sensing of the bioenergetic and physicochemical status of the cell. CURRENT TOPICS IN MEMBRANES 2021; 88:1-54. [PMID: 34862023 DOI: 10.1016/bs.ctm.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fluorescence-based sensors play a fundamental role in biological research. These sensors can be based on fluorescent proteins, fluorescent probes or they can be hybrid systems. The availability of a very large dataset of fluorescent molecules, both genetically encoded and synthetically produced, together with the structural insights on many sensing domains, allowed to rationally design a high variety of sensors, capable of monitoring both molecular and global changes in living cells or in in vitro systems. The advancements in the fluorescence-imaging field helped researchers to obtain a deeper understanding of how and where specific changes occur in a cell or in vitro by combining the readout of the fluorescent sensors with the spatial information provided by fluorescent microscopy techniques. In this review we give an overview of the state of the art in the field of fluorescent biosensors and fluorescence imaging techniques, and eventually guide the reader through the choice of the best combination of fluorescent tools and techniques to answer specific biological questions. We particularly focus on sensors for probing the bioenergetics and physicochemical status of the cell.
Collapse
Affiliation(s)
- Luca Mantovanelli
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
16
|
Lecinski S, Shepherd JW, Frame L, Hayton I, MacDonald C, Leake MC. Investigating molecular crowding during cell division and hyperosmotic stress in budding yeast with FRET. CURRENT TOPICS IN MEMBRANES 2021; 88:75-118. [PMID: 34862033 PMCID: PMC7612257 DOI: 10.1016/bs.ctm.2021.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cell division, aging, and stress recovery triggers spatial reorganization of cellular components in the cytoplasm, including membrane bound organelles, with molecular changes in their compositions and structures. However, it is not clear how these events are coordinated and how they integrate with regulation of molecular crowding. We use the budding yeast Saccharomyces cerevisiae as a model system to study these questions using recent progress in optical fluorescence microscopy and crowding sensing probe technology. We used a Förster Resonance Energy Transfer (FRET) based sensor, illuminated by confocal microscopy for high throughput analyses and Slimfield microscopy for single-molecule resolution, to quantify molecular crowding. We determine crowding in response to cellular growth of both mother and daughter cells, in addition to osmotic stress, and reveal hot spots of crowding across the bud neck in the burgeoning daughter cell. This crowding might be rationalized by the packing of inherited material, like the vacuole, from mother cells. We discuss recent advances in understanding the role of crowding in cellular regulation and key current challenges and conclude by presenting our recent advances in optimizing FRET-based measurements of crowding while simultaneously imaging a third color, which can be used as a marker that labels organelle membranes. Our approaches can be combined with synchronized cell populations to increase experimental throughput and correlate molecular crowding information with different stages in the cell cycle.
Collapse
Affiliation(s)
- Sarah Lecinski
- Department of Physics, University of York, York, United Kingdom
| | - Jack W Shepherd
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom
| | - Lewis Frame
- School of Natural Sciences, University of York, York, United Kingdom
| | - Imogen Hayton
- Department of Biology, University of York, York, United Kingdom
| | - Chris MacDonald
- Department of Biology, University of York, York, United Kingdom
| | - Mark C Leake
- Department of Physics, University of York, York, United Kingdom; Department of Biology, University of York, York, United Kingdom.
| |
Collapse
|
17
|
Miyagi T, Yamanaka Y, Harada Y, Narumi S, Hayamizu Y, Kuroda M, Kanekura K. An improved macromolecular crowding sensor CRONOS for detection of crowding changes in membrane-less organelles under stressed conditions. Biochem Biophys Res Commun 2021; 583:29-34. [PMID: 34717122 DOI: 10.1016/j.bbrc.2021.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 10/23/2021] [Indexed: 10/20/2022]
Abstract
Membrane-less organelles (MLOs) formed by liquid-liquid phase separation (LLPS) play pivotal roles in biological processes. During LLPS, proteins and nucleotides are extremely condensed, resulting in changes in their conformation and biological functions. Disturbed LLPS homeostasis in MLOs is thought to associate with fatal diseases such as amyotrophic lateral sclerosis. Therefore, it is important to detect changes in the degree of crowding in MLOs. However, it has not been investigated well due to the lack of an appropriate method. To address this, we developed a genetically encoded macromolecular crowding sensor CRONOS (crowding sensor with mNeonGreen and mScarlet-I) that senses the degree of macromolecular crowding in MLOs using a fluorescence resonance energy transfer (FRET) system. CRONOS is a bright biosensor with a wide dynamic range and successfully detects changes in the macromolecular volume fraction in solution. By fusing to the scaffold protein of each MLO, we delivered CRONOS to MLO of interest and detected previously undescribed differences in the degree of crowding in each MLO. CRONOS also detected changes in the degree of macromolecular crowding in nucleolus induced by environmental stress or inhibition of transcription. These findings suggest that CRONOS can be a useful tool for the determination of molecular crowding and detection of pathological changes in MLOs in live cells.
Collapse
Affiliation(s)
- Tamami Miyagi
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yoshiaki Yamanaka
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Yuichiro Harada
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Satoshi Narumi
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo, 157-8535, Japan
| | - Yuhei Hayamizu
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| | - Kohsuke Kanekura
- Department of Molecular Pathology, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan.
| |
Collapse
|
18
|
Kay TM, Aplin CP, Simonet R, Beenken J, Miller RC, Libal C, Boersma AJ, Sheets ED, Heikal AA. Molecular Brightness Approach for FRET Analysis of Donor-Linker-Acceptor Constructs at the Single Molecule Level: A Concept. Front Mol Biosci 2021; 8:730394. [PMID: 34595208 PMCID: PMC8476790 DOI: 10.3389/fmolb.2021.730394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
In this report, we have developed a simple approach using single-detector fluorescence autocorrelation spectroscopy (FCS) to investigate the Förster resonance energy transfer (FRET) of genetically encoded, freely diffusing crTC2.1 (mTurquoise2.1-linker-mCitrine) at the single molecule level. We hypothesize that the molecular brightness of the freely diffusing donor (mTurquoise2.1) in the presence of the acceptor (mCitrine) is lower than that of the donor alone due to FRET. To test this hypothesis, the fluorescence fluctuation signal and number of molecules of freely diffusing construct were measured using FCS to calculate the molecular brightness of the donor, excited at 405 nm and detected at 475/50 nm, in the presence and absence of the acceptor. Our results indicate that the molecular brightness of cleaved crTC2.1 in a buffer is larger than that of the intact counterpart under 405-nm excitation. The energy transfer efficiency at the single molecule level is larger and more spread in values as compared with the ensemble-averaging time-resolved fluorescence measurements. In contrast, the molecular brightness of the intact crTC2.1, under 488 nm excitation of the acceptor (531/40 nm detection), is the same or slightly larger than that of the cleaved counterpart. These FCS-FRET measurements on freely diffusing donor-acceptor pairs are independent of the precise time constants associated with autocorrelation curves due to the presence of potential photophysical processes. Ultimately, when used in living cells, the proposed approach would only require a low expression level of these genetically encoded constructs, helping to limit potential interference with the cell machinery.
Collapse
Affiliation(s)
- Taryn M Kay
- Department of Physics and Astronomy, University of Minnesota Duluth, Duluth, MN, United States
| | - Cody P Aplin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Rowan Simonet
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Julie Beenken
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Robert C Miller
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Christin Libal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN, United States
| |
Collapse
|
19
|
Goetz SK, Mahamid J. Visualizing Molecular Architectures of Cellular Condensates: Hints of Complex Coacervation Scenarios. Dev Cell 2021; 55:97-107. [PMID: 33049214 DOI: 10.1016/j.devcel.2020.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/15/2020] [Accepted: 09/05/2020] [Indexed: 02/09/2023]
Abstract
In the last decade, liquid-liquid phase separation has emerged as a fundamental principle in the organization of crowded cellular environments into functionally distinct membraneless compartments. It is now established that biomolecules can condense into various physical phases, traditionally defined for simple polymer systems, and more recently elucidated by techniques employed in life sciences. We review pioneering cryo-electron tomography studies that have begun to unravel a wide spectrum of molecular architectures, ranging from amorphous to crystalline assemblies, that underlie cellular condensates. These observations bring into question current interpretations of microscopic phase behavior. Furthermore, by examining emerging concepts of non-classical phase separation pathways in small-molecule crystallization, we draw parallels with biomolecular condensation that highlight aspects not yet fully explored. In particular, transient and metastable intermediates that might be challenging to capture experimentally inside cells could be probed through computational simulations and enable a multi-scale understanding of the subcellular organization governed by distinct phases.
Collapse
Affiliation(s)
- Sara Kathrin Goetz
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Im Neuenheimer Feld 234, 69120 Heidelberg, Germany
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
20
|
Basak S, Sakia N, Dougherty L, Guo Z, Wu F, Mindlin F, Lary JW, Cole JL, Ding F, Bowen ME. Probing Interdomain Linkers and Protein Supertertiary Structure In Vitro and in Live Cells with Fluorescent Protein Resonance Energy Transfer. J Mol Biol 2021; 433:166793. [PMID: 33388290 DOI: 10.1016/j.jmb.2020.166793] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 12/03/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
Many proteins are composed of independently-folded domains connected by flexible linkers. The primary sequence and length of such linkers can set the effective concentration for the tethered domains, which impacts rates of association and enzyme activity. The length of such linkers can be sensitive to environmental conditions, which raises questions as to how studies in dilute buffer relate to the highly-crowded cellular environment. To examine the role of linkers in domain separation, we measured Fluorescent Protein-Fluorescence Resonance Energy Transfer (FP-FRET) for a series of tandem FPs that varied in the length of their interdomain linkers. We used discrete molecular dynamics to map the underlying conformational distribution, which revealed intramolecular contact states that we confirmed with single molecule FRET. Simulations found that attached FPs increased linker length and slowed conformational dynamics relative to the bare linkers. This makes the CLYs poor sensors of inherent linker properties. However, we also showed that FP-FRET in CLYs was sensitive to solvent quality and macromolecular crowding making them potent environmental sensors. Finally, we targeted the same proteins to the plasma membrane of living mammalian cells to measure FP-FRET in cellulo. The measured FP-FRET when tethered to the plasma membrane was the same as that in dilute buffer. While caveats remain regarding photophysics, this suggests that the supertertiary conformational ensemble of these CLY proteins may not be affected by this specific cellular environment.
Collapse
Affiliation(s)
- Sujit Basak
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Nabanita Sakia
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA
| | - Laura Dougherty
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Zhuojun Guo
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Fang Wu
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Frank Mindlin
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA
| | - Jeffrey W Lary
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA
| | - James L Cole
- National Analytical Ultracentrifugation Facility, University of Connecticut, Storrs, CT 06269, USA; Department of Molecular and Cell Biology, and Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634-0978, USA
| | - Mark E Bowen
- Department of Physiology & Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA.
| |
Collapse
|
21
|
Gräwe A, Stein V. Linker Engineering in the Context of Synthetic Protein Switches and Sensors. Trends Biotechnol 2020; 39:731-744. [PMID: 33293101 DOI: 10.1016/j.tibtech.2020.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
Linkers play critical roles in the construction of synthetic protein switches and sensors as they functionally couple a receptor with an actuator. With an increasing number of molecular toolboxes and experimental strategies becoming available that can be applied to engineer protein switches and sensors with tailored response functions, optimising the connecting linkers remains an idiosyncratic and empiric process. This review aims to provide an in-depth analysis of linker motifs, the biophysical properties they confer, and how they impact the performance of synthetic protein switches and sensors while identifying trends, mechanisms, and strategies that underlie the most potent switches and sensors.
Collapse
Affiliation(s)
- Alexander Gräwe
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Viktor Stein
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany; Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany.
| |
Collapse
|
22
|
Moses D, Yu F, Ginell GM, Shamoon NM, Koenig PS, Holehouse AS, Sukenik S. Revealing the Hidden Sensitivity of Intrinsically Disordered Proteins to their Chemical Environment. J Phys Chem Lett 2020; 11:10131-10136. [PMID: 33191750 PMCID: PMC8092420 DOI: 10.1021/acs.jpclett.0c02822] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Intrinsically disordered protein-regions (IDRs) make up roughly 30% of the human proteome and are central to a wide range of biological processes. Given a lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent exposed. This extensive surface area, coupled with the absence of strong intramolecular contacts, makes IDRs inherently sensitive to their chemical environment. We report a combined experimental, computational, and analytical framework for high-throughput characterization of IDR sensitivity. Our framework reveals that IDRs can expand or compact in response to changes in their solution environment. Importantly, the direction and magnitude of conformational change depend on both protein sequence and cosolute identity. For example, some solutes such as short polyethylene glycol chains exert an expanding effect on some IDRs and a compacting effect on others. Despite this complex behavior, we can rationally interpret IDR responsiveness to solution composition changes using relatively simple polymer models. Our results imply that solution-responsive IDRs are ubiquitous and can provide an additional layer of regulation to biological systems.
Collapse
Affiliation(s)
- David Moses
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
| | - Feng Yu
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Garrett M. Ginell
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
| | | | - Patrick S. Koenig
- Quantitative Systems Biology Program, University of California, Merced, CA
| | - Alex S. Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, MO
| | - Shahar Sukenik
- Chemistry and Chemical Biology Program, University of California, Merced, CA
- Center for Cellular and Biomolecular Machines (CCBM), University of California, Merced, CA
- Quantitative Systems Biology Program, University of California, Merced, CA
| |
Collapse
|
23
|
Cambré A, Aertsen A. Bacterial Vivisection: How Fluorescence-Based Imaging Techniques Shed a Light on the Inner Workings of Bacteria. Microbiol Mol Biol Rev 2020; 84:e00008-20. [PMID: 33115939 PMCID: PMC7599038 DOI: 10.1128/mmbr.00008-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The rise in fluorescence-based imaging techniques over the past 3 decades has improved the ability of researchers to scrutinize live cell biology at increased spatial and temporal resolution. In microbiology, these real-time vivisections structurally changed the view on the bacterial cell away from the "watery bag of enzymes" paradigm toward the perspective that these organisms are as complex as their eukaryotic counterparts. Capitalizing on the enormous potential of (time-lapse) fluorescence microscopy and the ever-extending pallet of corresponding probes, initial breakthroughs were made in unraveling the localization of proteins and monitoring real-time gene expression. However, later it became clear that the potential of this technique extends much further, paving the way for a focus-shift from observing single events within bacterial cells or populations to obtaining a more global picture at the intra- and intercellular level. In this review, we outline the current state of the art in fluorescence-based vivisection of bacteria and provide an overview of important case studies to exemplify how to use or combine different strategies to gain detailed information on the cell's physiology. The manuscript therefore consists of two separate (but interconnected) parts that can be read and consulted individually. The first part focuses on the fluorescent probe pallet and provides a perspective on modern methodologies for microscopy using these tools. The second section of the review takes the reader on a tour through the bacterial cell from cytoplasm to outer shell, describing strategies and methods to highlight architectural features and overall dynamics within cells.
Collapse
Affiliation(s)
- Alexander Cambré
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| | - Abram Aertsen
- KU Leuven, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, Leuven, Belgium
| |
Collapse
|
24
|
Pittas T, Zuo W, Boersma AJ. Engineering crowding sensitivity into protein linkers. Methods Enzymol 2020; 647:51-81. [PMID: 33482994 DOI: 10.1016/bs.mie.2020.09.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The intracellular environment contains a high concentration of biomacromolecules that present steric barriers and ample surface area for weak chemical interactions. Consequently, these forces influence protein conformations and protein self-assembly, with an outcome that depends on the sum of the effects resulting from crowding. Linkers are disordered domains that lack tertiary structure, and this flexible nature would render them susceptible to compression or extension under crowded conditions, compared to the equilibrium conformation in a dilute buffer. The change in distance between the linked proteins can become essential where it attenuates protein activity. In this chapter, we first discuss the experimental findings in vitro and in the cell on how linkers and other relevant macromolecules are affected by crowding. We focus on the dependence on the linker's size, flexibility, and the intra- and intermolecular interactions. Although the experimental data on the systematic variation of proteins in a buffer and cells is limited, extrapolating the available insights allows us to propose a protocol on how to engineer the directionality of crowding effects in the linker. Finally, we describe a straightforward experimental protocol on the determination of crowding sensitivity in a buffer and cell.
Collapse
Affiliation(s)
- Theodoros Pittas
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Weiyan Zuo
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany
| | - Arnold J Boersma
- DWI-Leibniz Institute for Interactive Materials, Aachen, Germany; Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
25
|
Löwe M, Kalacheva M, Boersma AJ, Kedrov A. The more the merrier: effects of macromolecular crowding on the structure and dynamics of biological membranes. FEBS J 2020; 287:5039-5067. [DOI: 10.1111/febs.15429] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Maryna Löwe
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| | | | | | - Alexej Kedrov
- Synthetic Membrane Systems Institute of Biochemistry Heinrich Heine University Düsseldorf Germany
| |
Collapse
|
26
|
Léger C, Yahia-Ammar A, Susumu K, Medintz IL, Urvoas A, Valerio-Lepiniec M, Minard P, Hildebrandt N. Picomolar Biosensing and Conformational Analysis Using Artificial Bidomain Proteins and Terbium-to-Quantum Dot Förster Resonance Energy Transfer. ACS NANO 2020; 14:5956-5967. [PMID: 32216328 DOI: 10.1021/acsnano.0c01410] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although antibodies remain a primary recognition element in all forms of biosensing, functional limitations arising from their size, stability, and structure have motivated the development and production of many different artificial scaffold proteins for biological recognition. However, implementing such artificial binders into functional high-performance biosensors remains a challenging task. Here, we present the design and application of Förster resonance energy transfer (FRET) nanoprobes comprising small artificial proteins (αRep bidomains) labeled with a Tb complex (Tb) donor on the C-terminus and a semiconductor quantum dot (QD) acceptor on the N-terminus. Specific binding of one or two protein targets to the αReps induced a conformational change that could be detected by time-resolved Tb-to-QD FRET. These single-probe FRET switches were used in a separation-free solution-phase assay to quantify different protein targets at sub-nanomolar concentrations and to measure the conformational changes with sub-nanometer resolution. Probing ligand-receptor binding under physiological conditions at very low concentrations in solution is a special feature of FRET that can be efficiently combined with other structural characterization methods to develop, understand, and optimize artificial biosensors. Our results suggest that the αRep FRET nanoprobes have a strong potential for their application in advanced diagnostics and intracellular live-cell imaging of ligand-receptor interactions.
Collapse
Affiliation(s)
- Corentin Léger
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Akram Yahia-Ammar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Agathe Urvoas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Marie Valerio-Lepiniec
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Philippe Minard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Niko Hildebrandt
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
- nanoFRET.com, Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse), Université de Rouen Normandie, CNRS, INSA, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
27
|
Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020. [DOI: 10.1007/s12038-020-0010-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Takahashi S, Sugimoto N. Stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells. Chem Soc Rev 2020; 49:8439-8468. [DOI: 10.1039/d0cs00594k] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides the biophysicochemical background and recent advances in stability prediction of canonical and non-canonical structures of nucleic acids in various molecular environments and cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
| | - Naoki Sugimoto
- Frontier Institute for Biomolecular Engineering Research (FIBER)
- Konan University
- Kobe
- Japan
- Graduate School of Frontiers of Innovative Research in Science and Technology (FIRST)
| |
Collapse
|
29
|
Bhattarai A, Emerson IA. Dynamic conformational flexibility and molecular interactions of intrinsically disordered proteins. J Biosci 2020; 45:29. [PMID: 32020911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Intrinsically disordered proteins (IDPs) are highly flexible and undergo disorder to order transition upon binding. They are highly abundant in human proteomes and play critical roles in cell signaling and regulatory processes. This review mainly focuses on the dynamics of disordered proteins including their conformational heterogeneity, protein-protein interactions, and the phase transition of biomolecular condensates that are central to various biological functions. Besides, the role of RNA-mediated chaperones in protein folding and stability of IDPs were also discussed. Finally, we explored the dynamic binding interface of IDPs as novel therapeutic targets and the effect of small molecules on their interactions.
Collapse
Affiliation(s)
- Anil Bhattarai
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | | |
Collapse
|
30
|
Alberti S, Gladfelter A, Mittag T. Considerations and Challenges in Studying Liquid-Liquid Phase Separation and Biomolecular Condensates. Cell 2019; 176:419-434. [PMID: 30682370 DOI: 10.1016/j.cell.2018.12.035] [Citation(s) in RCA: 1593] [Impact Index Per Article: 265.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/05/2018] [Accepted: 12/19/2018] [Indexed: 12/20/2022]
Abstract
Evidence is now mounting that liquid-liquid phase separation (LLPS) underlies the formation of membraneless compartments in cells. This realization has motivated major efforts to delineate the function of such biomolecular condensates in normal cells and their roles in contexts ranging from development to age-related disease. There is great interest in understanding the underlying biophysical principles and the specific properties of biological condensates with the goal of bringing insights into a wide range of biological processes and systems. The explosion of physiological and pathological contexts involving LLPS requires clear standards for their study. Here, we propose guidelines for rigorous experimental characterization of LLPS processes in vitro and in cells, discuss the caveats of common experimental approaches, and point out experimental and theoretical gaps in the field.
Collapse
Affiliation(s)
- Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany; Technische Universität Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Biotechnology Center, 01307 Dresden, Germany.
| | - Amy Gladfelter
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Tanja Mittag
- Department for Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
31
|
Sikkema HR, Gaastra BF, Pols T, Poolman B. Cell Fuelling and Metabolic Energy Conservation in Synthetic Cells. Chembiochem 2019; 20:2581-2592. [PMID: 31381223 DOI: 10.1002/cbic.201900398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 12/14/2022]
Abstract
We are aiming for a blue print for synthesizing (moderately complex) subcellular systems from molecular components and ultimately for constructing life. However, without comprehensive instructions and design principles, we rely on simple reaction routes to operate the essential functions of life. The first forms of synthetic life will not make every building block for polymers de novo according to complex pathways, rather they will be fed with amino acids, fatty acids and nucleotides. Controlled energy supply is crucial for any synthetic cell, no matter how complex. Herein, we describe the simplest pathways for the efficient generation of ATP and electrochemical ion gradients. We have estimated the demand for ATP by polymer synthesis and maintenance processes in small cell-like systems, and we describe circuits to control the need for ATP. We also present fluorescence-based sensors for pH, ionic strength, excluded volume, ATP/ADP, and viscosity, which allow the major physicochemical conditions inside cells to be monitored and tuned.
Collapse
Affiliation(s)
- Hendrik R Sikkema
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bauke F Gaastra
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Tjeerd Pols
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
32
|
Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors. Curr Opin Struct Biol 2019; 57:31-38. [DOI: 10.1016/j.sbi.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022]
|
33
|
Guin D, Gruebele M. Weak Chemical Interactions That Drive Protein Evolution: Crowding, Sticking, and Quinary Structure in Folding and Function. Chem Rev 2019; 119:10691-10717. [PMID: 31356058 DOI: 10.1021/acs.chemrev.8b00753] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In recent years, better instrumentation and greater computing power have enabled the imaging of elusive biomolecule dynamics in cells, driving many advances in understanding the chemical organization of biological systems. The focus of this Review is on interactions in the cell that affect both biomolecular stability and function and modulate them. The same protein or nucleic acid can behave differently depending on the time in the cell cycle, the location in a specific compartment, or the stresses acting on the cell. We describe in detail the crowding, sticking, and quinary structure in the cell and the current methods to quantify them both in vitro and in vivo. Finally, we discuss protein evolution in the cell in light of current biophysical evidence. We describe the factors that drive protein evolution and shape protein interaction networks. These interactions can significantly affect the free energy, ΔG, of marginally stable and low-population proteins and, due to epistasis, direct the evolutionary pathways in an organism. We finally conclude by providing an outlook on experiments to come and the possibility of collaborative evolutionary biology and biophysical efforts.
Collapse
Affiliation(s)
- Drishti Guin
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States
| | - Martin Gruebele
- Department of Chemistry , University of Illinois , Urbana , Illinois 61801 , United States.,Department of Physics , University of Illinois , Urbana , Illinois 61801 , United States.,Center for Biophysics and Quantitative Biology , University of Illinois , Urbana , Illinois 61801 , United States
| |
Collapse
|
34
|
Abstract
Crowding of the subcellular environment by macromolecules is thought to promote protein aggregation and phase separation. A challenge is how to parameterize the degree of crowding of the cell interior or artificial solutions that is relevant to these reactions. Here I review colloid osmotic pressure as a crowding metric. This pressure is generated by solutions of macromolecules in contact with pores that are permeable to water and ions but not macromolecules. It generates depletion forces that push macromolecules together in crowded solutions and thus promotes aggregation and phase separation. I discuss measurements of colloid osmotic pressure inside cells using the nucleus, the cytoplasmic gel, and fluorescence resonant energy transfer (FRET) biosensors as osmometers, which return a range of values from 1 to 20 kPa. I argue for a low value, 1-2 kPa, in frog eggs and perhaps more generally. This value is close to the linear range on concentration-pressure curves and is thus not crowded from an osmotic perspective. I discuss the implications of a low crowding pressure inside cells for phase separation biology, buffer design, and proteome evolution. I also discuss a pressure-tension model for nuclear shape, where colloid osmotic pressure generated by nuclear protein import inflates the nucleus.
Collapse
Affiliation(s)
- T J Mitchison
- Marine Biological Laboratory, Woods Hole, MA 02543.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
35
|
Junker NO, Vaghefikia F, Albarghash A, Höfig H, Kempe D, Walter J, Otten J, Pohl M, Katranidis A, Wiegand S, Fitter J. Impact of Molecular Crowding on Translational Mobility and Conformational Properties of Biological Macromolecules. J Phys Chem B 2019; 123:4477-4486. [PMID: 31059260 DOI: 10.1021/acs.jpcb.9b01239] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Effects of molecular crowding on structural and dynamical properties of biological macromolecules do depend on the concentration of crowding agents but also on the molecular mass and the structural compactness of the crowder molecules. By employing fluorescence correlation spectroscopy (FCS), we investigated the translational mobility of several biological macromolecules ranging from 17 kDa to 2.7 MDa. Polyethylene glycol and Ficoll polymers of different molecular masses were used in buffer solutions to mimic a crowded environment. The reduction in translational mobility of the biological tracer molecules was analyzed as a function of crowder volume fractions and was generally more pronounced in PEG as compared to Ficoll solutions. For several crowding conditions, we observed a molecular sieving effect, in which the diffusion coefficient of larger tracer molecules is reduced to a larger extent than predicted by the Stokes-Einstein relation. By employing a FRET-based biosensor, we also showed that a multiprotein complex is significantly compacted in the presence of macromolecular crowders. Importantly, with respect to sensor in vivo applications, ligand concentration determining sensors would need a crowding specific calibration in order to deliver correct cytosolic ligand concentration.
Collapse
Affiliation(s)
- Niklas O Junker
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Farzaneh Vaghefikia
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Alyazan Albarghash
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Henning Höfig
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Daryan Kempe
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | - Julia Walter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| | | | | | | | - Simone Wiegand
- Physikalische Chemie , Universität zu Köln , 50923 Köln , Germany
| | - Jörg Fitter
- I. Physikalisches Institut (IA) , RWTH Aachen University , 52074 Aachen , Germany
| |
Collapse
|
36
|
Decreased Effective Macromolecular Crowding in Escherichia coli Adapted to Hyperosmotic Stress. J Bacteriol 2019; 201:JB.00708-18. [PMID: 30833357 PMCID: PMC6482933 DOI: 10.1128/jb.00708-18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/21/2019] [Indexed: 11/20/2022] Open
Abstract
Bacteria adapt to ever-changing environmental conditions such as osmotic stress and energy limitation. It is not well understood how biomolecules reorganize themselves inside Escherichia coli under these conditions. An altered biochemical organization would affect macromolecular crowding, which could influence reaction rates and diffusion of macromolecules. In cells adapted to osmotic upshift, protein diffusion is indeed faster than expected on the basis of the biopolymer volume fraction. We now probe the effects of macromolecular crowding in cells adapted to osmotic stress or depleted in metabolic energy with a genetically encoded fluorescence-based probe. We find that the effective macromolecular crowding in adapted and energy-depleted cells is lower than in unstressed cells, indicating major alterations in the biochemical organization of the cytoplasm. Escherichia coli adapts to changing environmental osmolality to survive and maintain growth. It has been shown that the diffusion of green fluorescent protein (GFP) in cells adapted to osmotic upshifts is higher than expected from the increase in biopolymer volume fraction. To better understand the physicochemical state of the cytoplasm in adapted cells, we now follow the macromolecular crowding during adaptation with fluorescence resonance energy transfer (FRET)-based sensors. We apply an osmotic upshift and find that after an initial increase, the apparent crowding decreases over the course of hours to arrive at a value lower than that before the osmotic upshift. Crowding relates to cell volume until cell division ensues, after which a transition in the biochemical organization occurs. Analysis of single cells by microfluidics shows that changes in cell volume, elongation, and division are most likely not the cause for the transition in organization. We further show that the decrease in apparent crowding upon adaptation is similar to the apparent crowding in energy-depleted cells. Based on our findings in combination with literature data, we suggest that adapted cells have indeed an altered biochemical organization of the cytoplasm, possibly due to different effective particle size distributions and concomitant nanoscale heterogeneity. This could potentially be a general response to accommodate higher biopolymer fractions yet retaining crowding homeostasis, and it could apply to other species or conditions as well. IMPORTANCE Bacteria adapt to ever-changing environmental conditions such as osmotic stress and energy limitation. It is not well understood how biomolecules reorganize themselves inside Escherichia coli under these conditions. An altered biochemical organization would affect macromolecular crowding, which could influence reaction rates and diffusion of macromolecules. In cells adapted to osmotic upshift, protein diffusion is indeed faster than expected on the basis of the biopolymer volume fraction. We now probe the effects of macromolecular crowding in cells adapted to osmotic stress or depleted in metabolic energy with a genetically encoded fluorescence-based probe. We find that the effective macromolecular crowding in adapted and energy-depleted cells is lower than in unstressed cells, indicating major alterations in the biochemical organization of the cytoplasm.
Collapse
|
37
|
Clarkson CG, Johnson A, Leggett GJ, Geoghegan M. Slow polymer diffusion on brush-patterned surfaces in aqueous solution. NANOSCALE 2019; 11:6052-6061. [PMID: 30869707 DOI: 10.1039/c9nr00341j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A model system for the investigation of diffusional transport in compartmentalized nanosystems is described. Arrays of "corrals" enclosed within poly[oligo(ethylene glycol)methyl ether methacrylate] (POEGMA) "walls" were fabricated using double-exposure interferometric lithography to deprotect aminosilane films protected by a nitrophenyl group. In exposed regions, removal of the nitrophenyl group enabled attachment of an initiator for the atom-transfer radical polymerization of end-grafted POEGMA (brushes). Diffusion coefficients for poly(ethylene glycol) in these corrals were obtained by fluorescence correlation spectroscopy. Two modes of surface diffusion were observed: one which is similar to diffusion on the unpatterned surface and a very slow mode of surface diffusion that becomes increasingly important as confinement increases. Diffusion within the POEGMA brushes does not significantly contribute to the results.
Collapse
|
38
|
Schwarz J, J Leopold H, Leighton R, Miller RC, Aplin CP, Boersma AJ, Heikal AA, Sheets ED. Macromolecular crowding effects on energy transfer efficiency and donor-acceptor distance of hetero-FRET sensors using time-resolved fluorescence. Methods Appl Fluoresc 2019; 7:025002. [PMID: 30690439 DOI: 10.1088/2050-6120/ab0242] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Living cells are crowded with macromolecules and organelles, which affect a myriad of biochemical processes. As a result, there is a need for sensitive molecular sensors for quantitative, site-specific assessment of macromolecular crowding. Here, we investigated the excited-state dynamics of recently developed hetero-FRET sensors (mCerulean3-linker-mCitrine) in homogeneous and heterogeneous environments using time-resolved fluorescence measurements, which are compatible with fluorescence lifetime imaging microscopy (FLIM). The linker in these FRET constructs, which tether the mCerulean3 (the donor) and mCitrine (the acceptor), vary in both length and flexibility. Glycerol and Ficoll-70 solutions were used for homogeneous and heterogeneous environments, respectively, at variable concentrations. The wavelength-dependent studies suggest that the 425-nm excitation and the 475-nm emission of the donor are best suited for quantitative assessment of the energy transfer efficiency and the donor-acceptor distance of these FRET probes. Under the same experimental conditions, the enzymatically cleaved counterpart of these probes was used as a control as well as a means to account for the changes in the environmental refractive indices. Our results indicate that the energy transfer efficiency of these FRET probes increases as the linker becomes shorter and more flexible in pure buffer at room temperature. In addition, the FRET probes favor a compact structure with enhanced energy transfer efficiency and a shorter donor-acceptor distance in the heterogeneous, polymer-crowded environment due to steric hindrance. In contrast, the stretched conformation of these FRET probes is more favorable in the viscous, homogeneous environment with a reduced energy transfer efficiency and relatively larger donor-acceptor distance as compared with those in pure buffer, which was attributed to a reduced structural fluctuation of the mCerulean3-mCitrine FRET pair in the viscous, more restrictive glycerol-enriched buffer. Our findings will help to advance the potential of these hetero-FRET probes using FLIM for spatio-temporal assessment of the compartmentalized crowding in living cells.
Collapse
Affiliation(s)
- Jacob Schwarz
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, MN, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Takahashi S, Yamamoto J, Kitamura A, Kinjo M, Sugimoto N. Characterization of Intracellular Crowding Environments with Topology-Based DNA Quadruplex Sensors. Anal Chem 2019; 91:2586-2590. [PMID: 30624050 DOI: 10.1021/acs.analchem.8b04177] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular crowding creates a unique environment in cells and imposes physical constraints such as the excluded volume effect, water activity, and dielectric constant that can affect the structure and function of biomolecules. It is therefore important to develop a method for quantifying the effects of molecular crowding in cells. In this study, we developed a Förster resonance energy transfer (FRET) probe based on a guanine-quadruplex (G4) DNA motif that shows distinct FRET signals in response to crowding conditions in the presence of salt and poly(ethylene glycol). FRET efficiencies varied in different solutions, reflecting the dependence of G4 stability and topology on salt concentration and water activity. In living cells, FRET signals in the nucleus were higher than those in the cytosol; the signals in membraneless nuclear compartments (i.e., nucleolus) were especially high, suggesting that a decrease in water activity is important for the crowding effect in the nucleus. Thus, the use of DNA sensors with variable structures can elucidate the local effects of molecular crowding in cells.
Collapse
Affiliation(s)
- Shuntaro Takahashi
- FIBER (Frontier Institute for Biomolecular Engineering Research) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| | - Johtaro Yamamoto
- Biomedical Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , 1-1-1 Higashi , Tsukuba , Ibaraki , 305-8566 , Japan
| | - Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science , Hokkaido University , Sapporo , 001-0021 , Japan
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science , Hokkaido University , Sapporo , 001-0021 , Japan
| | - Naoki Sugimoto
- FIBER (Frontier Institute for Biomolecular Engineering Research) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan.,FIRST (Graduate School of Frontiers of Innovative Research in Science and Technology) , Konan University , 7-1-20 Minatojima-Minamimachi , Chuo-ku, Kobe 650-0047 , Japan
| |
Collapse
|
40
|
Leopold HJ, Leighton R, Schwarz J, Boersma AJ, Sheets ED, Heikal AA. Crowding Effects on Energy-Transfer Efficiencies of Hetero-FRET Probes As Measured Using Time-Resolved Fluorescence Anisotropy. J Phys Chem B 2019; 123:379-393. [PMID: 30571116 DOI: 10.1021/acs.jpcb.8b09829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Macromolecular crowding is prevalent in all living cells due to the presence of large biomolecules and organelles. Cellular crowding is heterogeneous and is known to influence biomolecular transport, biochemical reactions, and protein folding. Emerging evidence suggests that some cell pathologies may be correlated with compartmentalized crowding. As a result, there is a need for robust biosensors that are sensitive to crowding as well as quantitative, noninvasive fluorescence methods that are compatible with living cells studies. Here, we have developed a model that describes the rotational dynamics of hetero-Förster resonance energy transfer (FRET) biosensors as a means to determine the energy-transfer efficiency and donor-acceptor distance. The model was tested on wavelength-dependent time-resolved fluorescence anisotropy of hetero-FRET probes (mCerulean3-linker-mCitrine) with variable linkers in both crowded (Ficoll-70) and viscous (glycerol) solutions at room temperature. Our results indicate that the energy-transfer efficiencies of these FRET probes increase as the linker becomes shorter and more flexible in pure buffer at room temperature. In addition, the FRET probes favor compact structures with enhanced energy-transfer efficiencies and a shorter donor-acceptor distance in the heterogeneous, polymer-crowded environment due to steric hindrance. In contrast, the extended conformation of these FRET probes is more favorable in viscous, homogeneous environments with a reduced energy-transfer efficiency compared to those in pure buffer, which we attribute to reduced structural fluctuations of the mCerulean3-mCitrine FRET pair in the glycerol-enriched buffer. Our results represent an important step toward the application of quantitative and noninvasive time-resolved fluorescence anisotropy of hetero-FRET probes to investigate compartmentalized macromolecular crowding and protein-protein interactions in living cells as well as in controlled environments.
Collapse
Affiliation(s)
- Hannah J Leopold
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Ryan Leighton
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Jacob Schwarz
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Arnold J Boersma
- DW1-Leibniz Institute for Interactive Materials , Forckenbeckstr. 50 , 52056 Aachen , Germany
| | - Erin D Sheets
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| | - Ahmed A Heikal
- Department of Chemistry and Biochemistry, Swenson College of Science and Engineering , University of Minnesota Duluth , Duluth , Minnesota 55812 , United States
| |
Collapse
|
41
|
Effect of macromolecular crowding on the conformational behaviour of a porphyrin rotor. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Abstract
Martini is a coarse-grained (CG) force field suitable for molecular dynamics (MD) simulations of (bio)molecular systems. It is based on mapping of two to four heavy atoms to one CG particle. The effective interactions between the CG particles are parametrized to reproduce partitioning free energies of small chemical compounds between polar and apolar phases. In this chapter, a summary of the key elements of this CG force field is presented, followed by an example of practical application: a lipoplex-membrane fusion experiment. Formulated as hands-on practice, this chapter contains guidelines to build CG models of important biological systems, such as asymmetric bilayers and double-stranded DNA. Finally, a series of notes containing useful information, limitations, and tips are described in the last section.
Collapse
Affiliation(s)
- Bart M H Bruininks
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Paulo C T Souza
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
43
|
Liu B, Mavrova SN, van den Berg J, Kristensen SK, Mantovanelli L, Veenhoff LM, Poolman B, Boersma AJ. Influence of Fluorescent Protein Maturation on FRET Measurements in Living Cells. ACS Sens 2018; 3:1735-1742. [PMID: 30168711 PMCID: PMC6167724 DOI: 10.1021/acssensors.8b00473] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Förster resonance
energy transfer (FRET)-based sensors are
a valuable tool to quantify cell biology, yet it remains necessary
to identify and prevent potential artifacts in order to exploit their
full potential. We show here that artifacts arising from slow donor
mCerulean3 maturation can be substantially diminished by constitutive
expression in both prokaryotic and eukaryotic cells, which can also
be achieved by incorporation of faster-maturing FRET donors. We developed
an improved version of the donor mTurquoise2 that matures faster than
the parent protein. Our analysis shows that using equal maturing fluorophores
in FRET-based sensors or using constitutive low expression conditions
helps to reduce maturation-induced artifacts, without the need of
additional noise-inducing spectral corrections. In general, we show
that monitoring and controlling the maturation of fluorescent proteins
in living cells is important and should be addressed in in
vivo applications of genetically encoded FRET sensors.
Collapse
Affiliation(s)
- Boqun Liu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sara N. Mavrova
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jonas van den Berg
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian K. Kristensen
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Luca Mantovanelli
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University
Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
44
|
Höfig H, Otten J, Steffen V, Pohl M, Boersma AJ, Fitter J. Genetically Encoded Förster Resonance Energy Transfer-Based Biosensors Studied on the Single-Molecule Level. ACS Sens 2018; 3:1462-1470. [PMID: 29979038 DOI: 10.1021/acssensors.8b00143] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Genetically encoded Förster resonance energy transfer (FRET)-based biosensors for the quantification of ligand molecules change the magnitude of FRET between two fluorescent proteins upon binding a target metabolite. When highly sensitive sensors are being designed, extensive sensor optimization is essential. However, it is often difficult to verify the ideas of modifications made to a sensor during the sensor optimization process because of the limited information content of ensemble FRET measurements. In contrast, single-molecule detection provides detailed information and higher accuracy. Here, we investigated a set of glucose and crowding sensors on the single-molecule level. We report the first comprehensive single-molecule study of FRET-based biosensors with reasonable counting statistics and identify characteristics in the single-molecule FRET histograms that constitute fingerprints of sensor performance. Hence, our single-molecule approach extends the toolbox of methods aiming to understand and optimize the design of FRET-based biosensors.
Collapse
Affiliation(s)
- Henning Höfig
- I. Physikalisches Institut (IA), RWTH Aachen, 52074 Aachen, Germany
- ICS-5: Molecular Biophysics, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Otten
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Victoria Steffen
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Martina Pohl
- IBG-1: Biotechnology, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Arnold J. Boersma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, Netherlands
| | - Jörg Fitter
- I. Physikalisches Institut (IA), RWTH Aachen, 52074 Aachen, Germany
- ICS-5: Molecular Biophysics, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
45
|
Lee HB, Cong A, Leopold H, Currie M, Boersma AJ, Sheets ED, Heikal AA. Rotational and translational diffusion of size-dependent fluorescent probes in homogeneous and heterogeneous environments. Phys Chem Chem Phys 2018; 20:24045-24057. [DOI: 10.1039/c8cp03873b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Macromolecular crowding effects on diffusion depend on the fluorophore structure, the concentration of crowding agents, and the technique employed.
Collapse
Affiliation(s)
- Hong Bok Lee
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Anh Cong
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Hannah Leopold
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Megan Currie
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | | | - Erin D. Sheets
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| | - Ahmed A. Heikal
- Department of Chemistry and Biochemistry
- Swenson College of Science and Engineering
- University of Minnesota Duluth
- Duluth
- USA
| |
Collapse
|
46
|
Trovato F, Fumagalli G. Molecular simulations of cellular processes. Biophys Rev 2017; 9:941-958. [PMID: 29185136 DOI: 10.1007/s12551-017-0363-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022] Open
Abstract
It is, nowadays, possible to simulate biological processes in conditions that mimic the different cellular compartments. Several groups have performed these calculations using molecular models that vary in performance and accuracy. In many cases, the atomistic degrees of freedom have been eliminated, sacrificing both structural complexity and chemical specificity to be able to explore slow processes. In this review, we will discuss the insights gained from computer simulations on macromolecule diffusion, nuclear body formation, and processes involving the genetic material inside cell-mimicking spaces. We will also discuss the challenges to generate new models suitable for the simulations of biological processes on a cell scale and for cell-cycle-long times, including non-equilibrium events such as the co-translational folding, misfolding, and aggregation of proteins. A prominent role will be played by the wise choice of the structural simplifications and, simultaneously, of a relatively complex energetic description. These challenging tasks will rely on the integration of experimental and computational methods, achieved through the application of efficient algorithms. Graphical abstract.
Collapse
Affiliation(s)
- Fabio Trovato
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 6, 14195, Berlin, Germany.
| | - Giordano Fumagalli
- Nephrology and Dialysis Unit, USL Toscana Nord Ovest, 55041, Lido di Camaiore, Lucca, Italy
| |
Collapse
|
47
|
Abstract
![]()
Knowledge of the
ionic strength in cells is required to understand
the in vivo biochemistry of the charged biomacromolecules.
Here, we present the first sensors to determine the ionic strength
in living cells, by designing protein probes based on Förster
resonance energy transfer (FRET). These probes allow observation of
spatiotemporal changes in the ionic strength on the single-cell level.
Collapse
Affiliation(s)
- Boqun Liu
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Bert Poolman
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
48
|
Currie M, Leopold H, Schwarz J, Boersma AJ, Sheets ED, Heikal AA. Fluorescence Dynamics of a FRET Probe Designed for Crowding Studies. J Phys Chem B 2017; 121:5688-5698. [DOI: 10.1021/acs.jpcb.7b01306] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Megan Currie
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Hannah Leopold
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Jacob Schwarz
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Arnold J. Boersma
- Department of Biochemistry, Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Erin D. Sheets
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| | - Ahmed A. Heikal
- Department
of Chemistry and Biochemistry, Swenson College of Science and Engineering, University of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|