1
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
2
|
Gogishvili D, Illes-Toth E, Harris MJ, Hopley C, Teunissen CE, Abeln S. Structural flexibility and heterogeneity of recombinant human glial fibrillary acidic protein (GFAP). Proteins 2024; 92:649-664. [PMID: 38149328 DOI: 10.1002/prot.26656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Glial fibrillary acidic protein (GFAP) is a promising biomarker for brain and spinal cord disorders. Recent studies have highlighted the differences in the reliability of GFAP measurements in different biological matrices. The reason for these discrepancies is poorly understood as our knowledge of the protein's 3-dimensional conformation, proteoforms, and aggregation remains limited. Here, we investigate the structural properties of GFAP under different conditions. For this, we characterized recombinant GFAP proteins from various suppliers and applied hydrogen-deuterium exchange mass spectrometry (HDX-MS) to provide a snapshot of the conformational dynamics of GFAP in artificial cerebrospinal fluid (aCSF) compared to the phosphate buffer. Our findings indicate that recombinant GFAP exists in various conformational species. Furthermore, we show that GFAP dimers remained intact under denaturing conditions. HDX-MS experiments show an overall decrease in H-bonding and an increase in solvent accessibility of GFAP in aCSF compared to the phosphate buffer, with clear indications of mixed EX2 and EX1 kinetics. To understand possible structural interface regions and the evolutionary conservation profiles, we combined HDX-MS results with the predicted GFAP-dimer structure by AlphaFold-Multimer. We found that deprotected regions with high structural flexibility in aCSF overlap with predicted conserved dimeric 1B and 2B domain interfaces. Structural property predictions combined with the HDX data show an overall deprotection and signatures of aggregation in aCSF. We anticipate that the outcomes of this research will contribute to a deeper understanding of the structural flexibility of GFAP and ultimately shed light on its behavior in different biological matrices.
Collapse
Affiliation(s)
- Dea Gogishvili
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Eva Illes-Toth
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Matthew J Harris
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Christopher Hopley
- National Measurement Laboratory at Laboratory of the Government Chemist (LGC), Teddington, UK
| | - Charlotte E Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Sanne Abeln
- Bioinformatics, Computer Science Department, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- AI Technology for Life, Department of Computing and Information Sciences, Department of Biology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
3
|
Mukherjee S, Roy S, Mukherjee S, Harikishore A, Bhunia A, Mandal AK. 14-3-3 interaction with phosphodiesterase 8A sustains PKA signaling and downregulates the MAPK pathway. J Biol Chem 2024; 300:105725. [PMID: 38325743 PMCID: PMC10926215 DOI: 10.1016/j.jbc.2024.105725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024] Open
Abstract
The cAMP/PKA and mitogen-activated protein kinase (MAPK) signaling cascade control many cellular processes and are highly regulated for optimal cellular responses upon external stimuli. Phosphodiesterase 8A (PDE8A) is an important regulator that inhibits signaling via cAMP-dependent PKA by hydrolyzing intracellular cAMP pool. Conversely, PDE8A activates the MAPK pathway by protecting CRAF/Raf1 kinase from PKA-mediated inhibitory phosphorylation at Ser259 residue, a binding site of scaffold protein 14-3-3. It still remains enigmatic as to how the cross-talk involving PDE8A regulation influences cAMP/PKA and MAPK signaling pathways. Here, we report that PDE8A interacts with 14-3-3ζ in both yeast and mammalian system, and this interaction is enhanced upon the activation of PKA, which phosphorylates PDE8A's Ser359 residue. Biophysical characterization of phospho-Ser359 peptide with 14-3-3ζ protein further supports their interaction. Strikingly, 14-3-3ζ reduces the catalytic activity of PDE8A, which upregulates the cAMP/PKA pathway while the MAPK pathway is downregulated. Moreover, 14-3-3ζ in complex with PDE8A and cAMP-bound regulatory subunit of PKA, RIα, delays the deactivation of PKA signaling. Our results define 14-3-3ζ as a molecular switch that operates signaling between cAMP/PKA and MAPK by associating with PDE8A.
Collapse
Affiliation(s)
| | - Somesh Roy
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | | | | | - Anirban Bhunia
- Department of Chemical Sciences, Bose Institute, Kolkata, India
| | - Atin K Mandal
- Department of Biological Sciences, Bose Institute, Kolkata, India.
| |
Collapse
|
4
|
Huang Q, Gavor E, Tulsian NK, Fan J, Lin Q, Mok YK, Kini RM, Sivaraman J. Structural and functional characterization of Aedes aegypti pupal cuticle protein that controls dengue virus infection. Protein Sci 2023; 32:e4761. [PMID: 37593853 PMCID: PMC10510476 DOI: 10.1002/pro.4761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
The pupal cuticle protein from Aedes aegypti (AaPC) inhibits dengue virus (DENV) infection; however, the underlying mechanism of this inhibition remains unknown. Here, we report that AaPC is an intrinsically disordered protein and interacts with domain I/II of the DENV envelope protein via residues Asp59, Asp61, Glu71, Asp73, Ser75, and Asp80. AaPC can directly bind to and cause the aggregation of DENV, which in turn blocks virus infection during the virus-cell fusion stage. AaPC may also influence viral recognition and attachment by interacting with human immune receptors DC-SIGN and CD4. These findings enhance our understanding of the role of AaPC in mitigating viral infection and suggest that AaPC is a potential target for developing inhibitors or antibodies to control dengue virus infection.
Collapse
Affiliation(s)
- Qingqing Huang
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Edem Gavor
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Nikhil Kumar Tulsian
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of BiochemistryNational University of SingaporeSingaporeSingapore
| | - Jingsong Fan
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Qingsong Lin
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - Yu Keung Mok
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| | - R. Manjunatha Kini
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
- Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - J. Sivaraman
- Department of Biological SciencesNational University of SingaporeSingaporeSingapore
| |
Collapse
|
5
|
Venkatakrishnan V, Ghode A, Tulsian NK, Anand GS. Impaired cAMP processivity by phosphodiesterase-protein kinase A complexes in acrodysostosis. Front Mol Biosci 2023; 10:1202268. [PMID: 37808519 PMCID: PMC10552185 DOI: 10.3389/fmolb.2023.1202268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Acrodysostosis represents a group of rare genetic disorders characterized by defective skeletal development and is often accompanied by intellectual disabilities. Mutations in the 3'5'cyclic AMP (cAMP)-dependent protein kinase (PKA) type I regulatory subunit isoform α (RIα) and phosphodiesterase (PDE) PDE4D have both been implicated in impaired PKA regulation in acrodysostosis. How mutations on PDEs and RIα interfere with the regulation of cAMP-PKA signaling is not understood. cAMP-PKA signaling can be described in two phases. In the activation phase, cAMP binding to RIα dissociates the free C-subunit (Catalytic subunit). PDEs hydrolyze cAMP bound to RIα, priming the cAMP-free RIα for reassociation with the C-subunit, thereby completing one PKA activation cycle. Signal termination is thus critical for resetting PKA to its basal state and promoting adaptation to hormonal hyperstimulation. This proceeds through formation of a transient signal termination RIα: PDE complex that facilitates cAMP channeling from the cAMP-binding domain of RIα to the catalytic site of PDE. Signal termination of cAMP-PKA proceeds in three steps: Step 1) Channeling: translocation of cAMP from the CNB of RIα to the PDE catalytic site for hydrolysis. Step 2) Processivity: binding of free cAMP from the cytosol at both CNBs of RIα. Step 3) Product (5'AMP) release from the PDE hydrolysis site through competitive displacement by a new molecule of cAMP that triggers subsequent activation cycles of PKA. We have identified the molecular basis for two acrodysostosis mutants, PDE (PDE8 T690P) and RIα (T207A), that both allosterically impair cAMP-PKA signal termination. A combination of amide hydrogen/deuterium exchange mass spectrometry (HDXMS) and fluorescence polarization (FP) reveals that PDE8 T690P and RIα T207A both blocked processive hydrolysis of cAMP by interfering with competitive displacement of product 5'AMP release from the nucleotide channel at the end of each round of cAMP hydrolysis. While T690P blocked product 5'AMP release from the PDE, T207A greatly slowed the release of the substrate from RIα. These results highlight the role of processivity in cAMP hydrolysis by RIα: PDE termination complexes for adaptation to cAMP from GPCR hyperstimulation. Impairment of the signal termination process provides an alternate molecular basis for acrodysostosis.
Collapse
Affiliation(s)
- Varun Venkatakrishnan
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
| | - Abhijeet Ghode
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Nikhil K. Tulsian
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ganesh S. Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, United States
- The Huck Institutes of the life sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Pizzoni A, Zhang X, Naim N, Altschuler DL. Soluble cyclase-mediated nuclear cAMP synthesis is sufficient for cell proliferation. Proc Natl Acad Sci U S A 2023; 120:e2208749120. [PMID: 36656863 PMCID: PMC9942871 DOI: 10.1073/pnas.2208749120] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
cAMP, a key player in many physiological processes, was classically considered to originate solely from the plasma membrane (PM). This view was recently challenged by observations showing that upon internalization GsPCRs can sustain signaling from endosomes and/or the trans-Golgi network (TGN). In this new view, after the first PM-generated cAMP wave, the internalization of GsPCRs and ACs generates a second wave that was strictly associated with nuclear transcriptional events responsible for triggering specific biological responses. Here, we report that the endogenously expressed TSHR, a canonical GsPCR, triggers an internalization-dependent, calcium-mediated nuclear sAC activation that drives PKA activation and CREB phosphorylation. Both pharmacological and genetic sAC inhibition, which did not affect the cytosolic cAMP levels, blunted nuclear cAMP accumulation, PKA activation, and cell proliferation, while an increase in nuclear sAC expression significantly enhanced cell proliferation. Furthermore, using novel nuclear-targeted optogenetic actuators, we show that light-stimulated nuclear cAMP synthesis can mimic the proliferative action of TSH by activating PKA and CREB. Therefore, based on our results, we propose a novel three-wave model in which the "third" wave of cAMP is generated by nuclear sAC. Despite being downstream of events occurring at the PM (first wave) and endosomes/TGN (second wave), the nuclear sAC-generated cAMP (third wave) is sufficient and rate-limiting for thyroid cell proliferation.
Collapse
Affiliation(s)
- Alejandro Pizzoni
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Xuefeng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Nyla Naim
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Daniel L. Altschuler
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| |
Collapse
|
7
|
Neuronal lack of PDE7a disrupted working memory, spatial learning, and memory but facilitated cued fear memory in mice. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110655. [PMID: 36220621 DOI: 10.1016/j.pnpbp.2022.110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND PDEs regulate cAMP levels which is critical for PKA activity-dependent activation of CREB-mediated transcription in learning and memory. Inhibitors of PDEs like PDE4 and Pde7 improve learning and memory in rodents. However, the role of PDE7 in cognition or learning and memory has not been reported yet. METHODS Therefore, we aimed to explore the cognitive effects of a PDE7 subtype, PDE7a, using combined pharmacological and genetic approaches. RESULTS PDE7a-nko mice showed deficient working memory, impaired novel object recognition, deficient spatial learning & memory, and contextual fear memory, contrary to enhanced cued fear memory, highlighting the potential opposite role of PDE7a in the hippocampal neurons. Further, pharmacological inhibition of PDE7 by AGF2.20 selectively strengthens cued fear memory in C57BL/6 J mice, decreasing its extinction but did not affect cognitive processes assessed in other behavioral tests. The further biochemical analysis detected deficient cAMP in neural cell culture with genetic excision of the PDE7a gene, as well as in the hippocampus of PDE7a-nko mice in vivo. Importantly, we found overexpression of PKA-R and the reduced level of pPKA-C in the hippocampus of PDE7a-nko mice, suggesting a novel mechanism of the cAMP regulation by PDE7a. Consequently, the decreased phosphorylation of CREB, CAMKII, eif2a, ERK, and AMPK, and reduced total level of NR2A have been found in the brain of PDE7a-nko animals. Notably, genetic excision of PDE7a in neurons was not able to change the expression of NR2B, BDNF, synapsin1, synaptophysin, or snap25. CONCLUSION Altogether, our current findings demonstrated, for the first time, the role of PDE7a in cognitive processes. Future studies will untangle PDE7a-dependent neurobiological and molecular-cellular mechanisms related to cAMP-associated disorders.
Collapse
|
8
|
Surma S, Romańczyk M, Filipiak KJ, Lip GYH. Coffee and cardiac arrhythmias: Up-date review of the literature and clinical studies. Cardiol J 2022; 30:654-667. [PMID: 35912715 PMCID: PMC10508080 DOI: 10.5603/cj.a2022.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/20/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Coffee, next to water, is the most consumed drink in the world. Coffee contains over 1000 chemical compounds, the most popular of which are caffeine, chlorogenic acid, kahweol, cafestol and trigonelline. Numerous studies have shown the beneficial effects of coffee on the cardiovascular system, nervous system, digestive system and kidneys. Due to the high incidence of cardiac arrhythmias, especially atrial fibrillation, the influence of coffee consumption on arrhythmogenesis remains a controversial and clinically important issue. Many mechanisms by which coffee can increase and decrease the risk of arrhythmias have been described. Habitual consumption of moderate amounts of coffee seems to lead to less arrhythmias, which is reflected in the results of many clinical trials and meta-analyzes. This review summarizes the mechanisms of coffee action on the heart muscle and the results of the most recent important clinical trials assessing the impact of coffee consumption on the risk of various cardiac arrhythmias.
Collapse
Affiliation(s)
- Stanisław Surma
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
- Club of Young Hypertensiologists, Polish Society of Hypertension, Gdansk, Poland
| | - Monika Romańczyk
- Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Poland
| | - Krzysztof J Filipiak
- Institute of Clinical Sciences, Maria Sklodowska-Curie Medical Academy in Warsaw, Poland.
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Wang W, Zhou H, Sun L, Li M, Gao F, Sun A, Zou X. Osthole-Mediated Inhibition of Neurotoxicity Induced by Ropivacaine via Amplification of the Cyclic Adenosine Monophosphate Signaling Pathway. Dose Response 2022; 20:15593258221088092. [PMID: 35392264 PMCID: PMC8980408 DOI: 10.1177/15593258221088092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022]
Abstract
Background Ropivacaine is widely used for clinical anesthesia and postoperative analgesia. However, the neurotoxicity induced by ropivacaine in a concentration- and duration-dependent manner, and it is difficult to prevent neurotoxicity. Osthole inhibits phosphodiesterase-4 activity by binding to its catalytic site to prevent cAMP hydrolysis. The aim of this present study is to explore the precise molecular mechanism of osthole-mediated inhibition of neurotoxicity induced by ropivacaine. Methods: SH-SY5Y cell viability and apoptosis were measured in different concentration and duration. Protein concentration was determined in each signaling pathway. The molecular mechanism of osthole-mediated inhibition of ropivacaine-caused neurotoxicity was evaluated. Results The study demonstrated that osthole inhibits SH-SY5Y cells neurotoxicity in a duration- and concentration-dependent manner. Moreover, ropivacaine significantly increased the expression of caspase-3 by promoting the phosphorylation of p38. Osthole-induced upregulation of cAMP activated cAMP-dependent signaling pathway, sequentially leading to elevated cyclic nucleotide response element-binding protein levels, which inhibits P38-dependent signaling and decreases apoptosis of SH-SY5Y. Conclusions This study display the evidence confirmed the molecular mechanism by which osthole amplification of cAMP-dependent signaling pathway, and overexpression of cyclic nucleotide response element-binding protein inhibits P38-dependent signaling and decreases ropivacaine-induced SH-SY5Y apoptosis.
Collapse
Affiliation(s)
- WeiBing Wang
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - Hui Zhou
- Department of Anesthesiology, The Affiliated AnQing Municipal Hospitals of Anhui Medical University, AnQing, China
| | - LaiBao Sun
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - MeiNa Li
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - FengJiao Gao
- Department of Anesthesiology, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| | - AiJiao Sun
- Department of Cardiovascularology, The Affiliated AnQing Municipal Hospital of Anhui Medical University, AnQing, China
| | - XueNong Zou
- Department of Orthopedics, The First Affiliated Hospitals of Sun Yat-Sen University, GuangZhou, China
| |
Collapse
|
10
|
Limoncella S, Lazzaretti C, Paradiso E, D'Alessandro S, Barbagallo F, Pacifico S, Guerrini R, Tagliavini S, Trenti T, Santi D, Simoni M, Sola M, Di Rocco G, Casarini L. Phosphodiesterase (PDE) 5 inhibitors sildenafil, tadalafil and vardenafil impact cAMP-specific PDE8 isoforms-linked second messengers and steroid production in a mouse Leydig tumor cell line. Mol Cell Endocrinol 2022; 542:111527. [PMID: 34875337 DOI: 10.1016/j.mce.2021.111527] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/26/2021] [Accepted: 12/01/2021] [Indexed: 11/20/2022]
Abstract
Type 5 phosphodiesterase (PDE5) blockade by inhibitors (PDE5i) results in intracellular cyclic guanosine monophosphate (cGMP) increase and smooth muscle relaxation and are used for the treatment of men erectile dysfunction. Although they have high specificity for PDE5, these inhibitors are suspected to cross-interact also with cyclic adenosine monophosphate (cAMP)-specific PDEs, inducing the intracellular accumulation of this cyclic nucleotide and related testosterone increase, positively impacting male reproductive parameters. However, the link between the use of PDE5i and the activation of cAMP-mediated steroidogenesis is still unclear. We have investigated whether three PDE5i, sildenafil, tadalafil and vardenafil, cross-interacts with the high affinity cAMP-specific enzymes type 8A and 8B PDEs (PDE8A and PDE8B), in live, transfected mouse Leydig tumor (mLTC1) and human embryonic kidney (HEK293) cell lines in vitro. The PDE5i-induced production of cAMP-dependent testosterone and its precursor progesterone was evaluated as well. We have developed PDE8A/B biosensors and modified cyclic nucleotides confirming enzyme binding to cAMP, but not to cGMP, in our cell models. cAMP binding to PDE8A/B was displaced upon cell treatment with PDE5i, revealing that sildenafil, tadalafil and vardenafil have similar effectiveness in live cells, in vitro. The cross-interaction between PDE5i and PDE8A/B supports the gonadotropin-enhanced intracellular cAMP increase, occurring together with cGMP increase, as well as steroid synthesis. Indeed, we found that Leydig cell treatment by PDE5i increases progesterone and testosterone production triggered by gonadotropins. We demonstrated that PDE5i may interact with the cAMP-specific PDE8A and PDE8B, possibly inducing intracellular cAMP and sex steroid hormone increase. These findings support clinical data suggesting that PDE5i might increase testosterone levels in men.
Collapse
Affiliation(s)
- Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | | | - Salvatore Pacifico
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL of Modena, Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Sola
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Di Rocco
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy; Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
11
|
Eron SJ, Huang H, Agafonov RV, Fitzgerald ME, Patel J, Michael RE, Lee TD, Hart AA, Shaulsky J, Nasveschuk CG, Phillips AJ, Fisher SL, Good A. Structural Characterization of Degrader-Induced Ternary Complexes Using Hydrogen-Deuterium Exchange Mass Spectrometry and Computational Modeling: Implications for Structure-Based Design. ACS Chem Biol 2021; 16:2228-2243. [PMID: 34582690 DOI: 10.1021/acschembio.1c00376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of targeted protein degradation (TPD) has grown exponentially over the past decade with the goal of developing therapies that mark proteins for destruction leveraging the ubiquitin-proteasome system. One common approach to achieve TPD is to employ a heterobifunctional molecule, termed as a degrader, to recruit the protein target of interest to the E3 ligase machinery. The resultant generation of an intermediary ternary complex (target-degrader-ligase) is pivotal in the degradation process. Understanding the ternary complex geometry offers valuable insight into selectivity, catalytic efficiency, linker chemistry, and rational degrader design. In this study, we utilize hydrogen-deuterium exchange mass spectrometry (HDX-MS) to identify degrader-induced protein-protein interfaces. We then use these data in conjunction with constrained protein docking to build three-dimensional models of the ternary complex. The approach was used to characterize complex formation between the E3 ligase CRBN and the first bromodomain of BRD4, a prominent oncology target. We show marked differences in the ternary complexes formed in solution based on distinct patterns of deuterium uptake for two degraders, CFT-1297 and dBET6. CFT-1297, which exhibited positive cooperativity, altered the deuterium uptake profile revealing the degrader-induced protein-protein interface of the ternary complex. For CFT-1297, the ternary complexes generated by the highest scoring HDX-constrained docking models differ markedly from those observed in the published crystal structures. These results highlight the potential utility of HDX-MS to provide rapidly accessible structural insights into degrader-induced protein-protein interfaces in solution. They further suggest that degrader ternary complexes exhibit significant conformation flexibility and that biologically relevant complexes may well not exhibit the largest interaction surfaces between proteins. Taken together, the results indicate that methods capable of incorporating linker conformation uncertainty may prove an important component in degrader design moving forward. In addition, the development of scoring functions modified to handle interfaces with no evolved complementarity, for example, through consideration of high levels of water infiltration, may prove valuable. Furthermore, the use of crystal structures as validation tools for novel degrader methods needs to be considered with caution.
Collapse
Affiliation(s)
- Scott J. Eron
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Hongwei Huang
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Roman V. Agafonov
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Mark E. Fitzgerald
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Joe Patel
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ryan E. Michael
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Tobie D. Lee
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Ashley A. Hart
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Jodi Shaulsky
- Dassault Systèmes BIOVIA, 5005 Wateridge Vista Dr, San Diego, California 92121, United States
| | | | - Andrew J. Phillips
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Stewart L. Fisher
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| | - Andrew Good
- C4 Therapeutics, Inc., 490 Arsenal Way Suite 200, Watertown, Massachusetts 02472, United States
| |
Collapse
|
12
|
Church TW, Tewatia P, Hannan S, Antunes J, Eriksson O, Smart TG, Hellgren Kotaleski J, Gold MG. AKAP79 enables calcineurin to directly suppress protein kinase A activity. eLife 2021; 10:e68164. [PMID: 34612814 PMCID: PMC8560092 DOI: 10.7554/elife.68164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/04/2021] [Indexed: 12/28/2022] Open
Abstract
Interplay between the second messengers cAMP and Ca2+ is a hallmark of dynamic cellular processes. A common motif is the opposition of the Ca2+-sensitive phosphatase calcineurin and the major cAMP receptor, protein kinase A (PKA). Calcineurin dephosphorylates sites primed by PKA to bring about changes including synaptic long-term depression (LTD). AKAP79 supports signaling of this type by anchoring PKA and calcineurin in tandem. In this study, we discovered that AKAP79 increases the rate of calcineurin dephosphorylation of type II PKA regulatory subunits by an order of magnitude. Fluorescent PKA activity reporter assays, supported by kinetic modeling, show how AKAP79-enhanced calcineurin activity enables suppression of PKA without altering cAMP levels by increasing PKA catalytic subunit capture rate. Experiments with hippocampal neurons indicate that this mechanism contributes toward LTD. This non-canonical mode of PKA regulation may underlie many other cellular processes.
Collapse
Affiliation(s)
- Timothy W Church
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Parul Tewatia
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Saad Hannan
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - João Antunes
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Trevor G Smart
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Matthew G Gold
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| |
Collapse
|
13
|
Özgür-Günes Y, Le Stunff C, Chedik M, Belot MP, Becker PH, Blouin V, Bougnères P. Correction of a knock-in mouse model of acrodysostosis with gene therapy using a rAAV9-CAG-human PRKAR1A vector. Gene Ther 2021; 29:441-448. [PMID: 34599290 DOI: 10.1038/s41434-021-00286-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 11/09/2022]
Abstract
Acrodysostosis is a rare skeletal dysplasia caused by loss-of-function mutations in the regulatory subunit of protein kinase A (PRKAR1A). In a knock-in mouse model (PRKAR1Awt/mut) expressing one copy of the recurrent R368X mutation, we tested the effects of a rAAV9-CAG-human PRKR1A (hPRKAR1A) vector intravenously administered at 4 weeks of age. Caudal vertebrae and tibial diaphyses contained 0.52 ± 0.7 and 0.13 ± 0.3 vector genome per cell (VGC), respectively, at 10 weeks of age and 0.22 ± 0.04 and 0.020 ± 0.04 at 16 weeks while renal cortex contained 0.57 ± 0.14 and 0.26 ± 0.05 VGC. Vector-mediated hPRKAR1A expression was found in growth plate chondrocytes, osteoclasts, osteoblasts, and kidney tubular cells. Chondrocyte architecture was restored in the growth plates. Body length, tail length, and body weight were improved in vector treated PRKAR1Awt/mut mice, not the bone length of their limbs. These results provide one of the few proofs for gene therapy efficacy in a mouse model of chondrodysplasia. In addition, the increased urinary cAMP of PRKAR1Awt/mut mice was corrected almost to normal. In conclusion, gene therapy with hPRKAR1A improved skeletal growth and kidney dysfunction, the hallmarks of acrodysostosis in R368X mutated mice and humans.
Collapse
Affiliation(s)
- Yasemin Özgür-Günes
- UMR1195 Inserm and Université Paris Saclay, Le Kremlin-Bicêtre, France.,MIRCen Institute, CEA, Fontenay-aux-Roses, France
| | - Catherine Le Stunff
- UMR1195 Inserm and Université Paris Saclay, Le Kremlin-Bicêtre, France.,MIRCen Institute, CEA, Fontenay-aux-Roses, France
| | - Malha Chedik
- UMR1195 Inserm and Université Paris Saclay, Le Kremlin-Bicêtre, France
| | | | - Pierre-Hadrien Becker
- Biochemistry Laboratory, Hôpital Bicêtre, Assistance Publique-Hôpitaux de Paris, Le Kremlin-Bicêtre, France
| | | | - Pierre Bougnères
- UMR1195 Inserm and Université Paris Saclay, Le Kremlin-Bicêtre, France. .,MIRCen Institute, CEA, Fontenay-aux-Roses, France. .,Therapy Design Consulting, Vincennes, France.
| |
Collapse
|
14
|
Development of Phosphodiesterase-Protein-Kinase Complexes as Novel Targets for Discovery of Inhibitors with Enhanced Specificity. Int J Mol Sci 2021; 22:ijms22105242. [PMID: 34063491 PMCID: PMC8156604 DOI: 10.3390/ijms22105242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 05/13/2021] [Indexed: 11/29/2022] Open
Abstract
Phosphodiesterases (PDEs) hydrolyze cyclic nucleotides to modulate multiple signaling events in cells. PDEs are recognized to actively associate with cyclic nucleotide receptors (protein kinases, PKs) in larger macromolecular assemblies referred to as signalosomes. Complexation of PDEs with PKs generates an expanded active site that enhances PDE activity. This facilitates signalosome-associated PDEs to preferentially catalyze active hydrolysis of cyclic nucleotides bound to PKs and aid in signal termination. PDEs are important drug targets, and current strategies for inhibitor discovery are based entirely on targeting conserved PDE catalytic domains. This often results in inhibitors with cross-reactivity amongst closely related PDEs and attendant unwanted side effects. Here, our approach targeted PDE–PK complexes as they would occur in signalosomes, thereby offering greater specificity. Our developed fluorescence polarization assay was adapted to identify inhibitors that block cyclic nucleotide pockets in PDE–PK complexes in one mode and disrupt protein-protein interactions between PDEs and PKs in a second mode. We tested this approach with three different systems—cAMP-specific PDE8–PKAR, cGMP-specific PDE5–PKG, and dual-specificity RegA–RD complexes—and ranked inhibitors according to their inhibition potency. Targeting PDE–PK complexes offers biochemical tools for describing the exquisite specificity of cyclic nucleotide signaling networks in cells.
Collapse
|
15
|
Adenylate control in cAMP signaling: implications for adaptation in signalosomes. Biochem J 2021; 477:2981-2998. [PMID: 32722762 DOI: 10.1042/bcj20200435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
In cAMP-Protein Kinase A (PKA) signaling, A-kinase anchoring protein scaffolds assemble PKA in close proximity to phosphodiesterases (PDE), kinase-substrates to form signaling islands or 'signalosomes'. In its basal state, inactive PKA holoenzyme (R2:C2) is activated by binding of cAMP to regulatory (R)-subunits leading to dissociation of active catalytic (C)-subunits. PDEs hydrolyze cAMP-bound to the R-subunits to generate 5'-AMP for termination and resetting the cAMP signaling. Mechanistic basis for cAMP signaling has been derived primarily by focusing on the proteins in isolation. Here, we set out to simulate cAMP signaling activation-termination cycles in a signalosome-like environment with PDEs and PKA subunits in close proximity to each other. Using a combination of fluorescence polarization and amide hydrogen exchange mass spectrometry with regulatory (RIα), C-subunit (Cα) and PDE8 catalytic domain, we have tracked movement of cAMP through activation-termination cycles. cAMP signaling operates as a continuum of four phases: (1) Activation and dissociation of PKA into R- and C-subunits by cAMP and facilitated by substrate (2) PDE recruitment to R-subunits (3) Hydrolysis of cAMP to 5'-AMP (4) Reassociation of C-subunit to 5'-AMP-bound-RIα in the presence of excess ATP to reset cAMP signaling to form the inactive PKA holoenzyme. Our results demonstrate that 5'-AMP is not merely a passive hydrolysis end-product of PDE action. A 'ligand-free' state R subunit does not exist in signalosomes as previously assumed. Instead the R-subunit toggles between cAMP- or 5'-AMP bound forms. This highlights, for the first time, the importance of 5'-AMP in promoting adaptation and uncovers adenylate control in cAMP signaling.
Collapse
|
16
|
Chu Z, Xu Q, Zhu Q, Ma X, Mo J, Lin G, Zhao Y, Gu Y, Bian L, Shao L, Guo J, Ye W, Li J, He G, Xu Y. Design, synthesis and biological evaluation of novel benzoxaborole derivatives as potent PDE4 inhibitors for topical treatment of atopic dermatitis. Eur J Med Chem 2021; 213:113171. [PMID: 33482600 DOI: 10.1016/j.ejmech.2021.113171] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/07/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In this work, a series of structurally novel benzoxaborole derivatives were designed, synthesized and biologically evaluated as PDE4 inhibitors for battling atopic dermatitis (AD). Among them, the majority exhibited superior PDE4B inhibitory activities to that of the lead compound Crisaborole, an approved PDE4 inhibitor. In particular, 72, the most potent PDE4B inhibitor throughout this series, displayed 136-fold improved enzymatic activity (IC50 = 0.42 nM) as compared to Crisaborole (IC50 = 57.20 nM), along with favorable isoform specificity. In the phorbol ester (PMA)-induced mouse ear oedema model, 72 exerted remarkably greater efficacy than Crisaborole at the same dosage (P < 0.05). Moreover, the ointment of 72 exerted dramatically enhanced therapeutic potency than the ointment of Crisaborole (P < 0.05) in the calcipotriol-induced mouse AD model. In addition to the potent in vitro and in vivo activity, 72 displayed favorable safety in the repeated oral dose toxicity study and did not exhibit phototoxicity. With the above attractive biological performance, 72 is worthy of further functional investigation as a novel anti-AD therapeutic agent.
Collapse
Affiliation(s)
- Zhaoxing Chu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China; Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Qinlong Xu
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China; Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Qihua Zhu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China
| | - Xiaodong Ma
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Jiajia Mo
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Gaofeng Lin
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Yan Zhao
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Yuanfeng Gu
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Lincui Bian
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Li Shao
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Jing Guo
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Wenfeng Ye
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China
| | - Jiaming Li
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei, 230031, China
| | - Guangwei He
- Hefei Institute of Pharmaceutical Industry Co., Ltd., Hefei, 230088, China.
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, China.
| |
Collapse
|
17
|
Ghode A, Gross LZF, Tee WV, Guarnera E, Berezovsky IN, Biondi RM, Anand GS. Synergistic Allostery in Multiligand-Protein Interactions. Biophys J 2020; 119:1833-1848. [PMID: 33086047 PMCID: PMC7677135 DOI: 10.1016/j.bpj.2020.09.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/31/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Amide hydrogen-deuterium exchange mass spectrometry is powerful for describing combinatorial coupling effects of a cooperative ligand pair binding at noncontiguous sites: adenosine at the ATP-pocket and a docking peptide (PIFtide) at the PIF-pocket, on a model protein kinase PDK1. Binding of two ligands to PDK1 reveal multiple hotspots of synergistic allostery with cumulative effects greater than the sum of individual effects mediated by each ligand. We quantified this synergism and ranked these hotspots using a difference in deuteration-based approach, which showed that the strongest synergistic effects were observed at three of the critical catalytic loci of kinases: the αB-αC helices, and HRD-motif loop, and DFG-motif. Additionally, we observed weaker synergistic effects at a distal GHI-subdomain locus. Synergistic changes in deuterium exchange observed at a distal site but not at the intermediate sites of the large lobe of the kinase reveals allosteric propagation in proteins to operate through two modes. Direct electrostatic interactions between polar and charged amino acids that mediate targeted relay of allosteric signals, and diffused relay of allosteric signals through soft matter-like hydrophobic core amino acids. Furthermore, we provide evidence that the conserved β-3 strand lysine of protein kinases (Lys111 of PDK1) functions as an integrator node to coordinate allosteric coupling of the two ligand-binding sites. It maintains indirect interactions with the ATP-pocket and mediates a critical salt bridge with a glutamate (Glu130) of αC helix, which is conserved across all kinases. In summary, allosteric propagation in cooperative, dual-liganded enzyme targets is bidirectional and synergistic and offers a strategy for combinatorial drug development.
Collapse
Affiliation(s)
- Abhijeet Ghode
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Lissy Z F Gross
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Wei-Ven Tee
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Enrico Guarnera
- Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Igor N Berezovsky
- Department of Biological Sciences, National University of Singapore, Singapore; Bioinformatics Institute, Agency for Science, Technology and Research, Matrix, Singapore
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires - CONICET - Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Ganesh S Anand
- Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Akimoto M, Yu T, Moleschi K, Van K, Anand GS, Melacini G. An NMR based phosphodiesterase assay. Chem Commun (Camb) 2020; 56:8091-8094. [PMID: 32555789 DOI: 10.1039/d0cc01673j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We propose a phosphodiesterase assay based on 1D 1H NMR to monitor the hydrolysis of cyclic nucleotides directly, without requiring tags or the addition of exogenous reagents. The method is suitable to measure phosphodiesterase KM and kcat parameters and to identify phosphodiesterase inhibitors.
Collapse
Affiliation(s)
- Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| | | | | | | | | | | |
Collapse
|
19
|
Hodge EA, Benhaim MA, Lee KK. Bridging protein structure, dynamics, and function using hydrogen/deuterium-exchange mass spectrometry. Protein Sci 2020; 29:843-855. [PMID: 31721348 PMCID: PMC7096709 DOI: 10.1002/pro.3790] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/21/2022]
Abstract
Much of our understanding of protein structure and mechanistic function has been derived from static high-resolution structures. As structural biology has continued to evolve it has become clear that high-resolution structures alone are unable to fully capture the mechanistic basis for protein structure and function in solution. Recently Hydrogen/Deuterium-exchange Mass Spectrometry (HDX-MS) has developed into a powerful and versatile tool for structural biologists that provides novel insights into protein structure and function. HDX-MS enables direct monitoring of a protein's structural fluctuations and conformational changes under native conditions in solution even as it is carrying out its functions. In this review, we focus on the use of HDX-MS to monitor these dynamic changes in proteins. We examine how HDX-MS has been applied to study protein structure and function in systems ranging from large, complex assemblies to intrinsically disordered proteins, and we discuss its use in probing conformational changes during protein folding and catalytic function. STATEMENT FOR A BROAD AUDIENCE: The biophysical and structural characterization of proteins provides novel insight into their functionalities. Protein motions, ranging from small scale local fluctuations to larger concerted structural rearrangements, often determine protein function. Hydrogen/Deuterium-exchange Mass Spectrometry (HDX-MS) has proven a powerful biophysical tool capable of probing changes in protein structure and dynamic protein motions that are often invisible to most other techniques.
Collapse
Affiliation(s)
- Edgar A. Hodge
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| | - Mark A. Benhaim
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| | - Kelly K. Lee
- Department of Medicinal ChemistryUniversity of WashingtonSeattleWashington
| |
Collapse
|
20
|
Swimming regulations for protein kinase A catalytic subunit. Biochem Soc Trans 2020; 47:1355-1366. [PMID: 31671183 DOI: 10.1042/bst20190230] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022]
Abstract
cAMP-dependent protein kinase (PKA) plays a central role in important biological processes including synaptic plasticity and sympathetic stimulation of the heart. Elevations of cAMP trigger release of PKA catalytic (C) subunits from PKA holoenzymes, thereby coupling cAMP to protein phosphorylation. Uncontrolled C subunit activity, such as occurs in genetic disorders in which regulatory subunits are depleted, is pathological. Anchoring proteins that associate with PKA regulatory subunits are important for localising PKA activity in cells. However, anchoring does not directly explain how unrestrained 'free swimming' of C subunits is avoided following C subunit release. In this review, I discuss new mechanisms that have been posited to account for this old problem. One straightforward explanation is that cAMP does not trigger C subunit dissociation but instead activates intact PKA holoenzymes whose activity is restrained through anchoring. A comprehensive comparison of observations for and against cAMP-activation of intact PKA holoenzymes does not lend credence to this mechanism. Recent measurements have revealed that PKA regulatory subunits are expressed at very high concentrations, and in large molar excess relative to C subunits. I discuss the implications of these skewed PKA subunit concentrations, before considering how phosphorylation of type II regulatory subunits and myristylation of C subunits are likely to contribute to controlling C subunit diffusion and recapture in cells. Finally, I speculate on future research directions that may be pursued on the basis of these emerging mechanisms.
Collapse
|
21
|
Trötschel C, Hamzeh H, Alvarez L, Pascal R, Lavryk F, Bönigk W, Körschen HG, Müller A, Poetsch A, Rennhack A, Gui L, Nicastro D, Strünker T, Seifert R, Kaupp UB. Absolute proteomic quantification reveals design principles of sperm flagellar chemosensation. EMBO J 2020; 39:e102723. [PMID: 31880004 PMCID: PMC7024835 DOI: 10.15252/embj.2019102723] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/19/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.
Collapse
Affiliation(s)
- Christian Trötschel
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
| | - Hussein Hamzeh
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - Luis Alvarez
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - René Pascal
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Fedir Lavryk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Wolfgang Bönigk
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Heinz G Körschen
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Astrid Müller
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Ansgar Poetsch
- Fakultät für Biologie und BiotechnologieRuhr‐Universität BochumBochumGermany
- Present address:
Center for Marine and Molecular BiotechnologyQNLMQindaoChina
- Present address:
College of Marine Life SciencesOcean University of ChinaQingdaoChina
| | - Andreas Rennhack
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
| | - Long Gui
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Daniela Nicastro
- Departments of Cell Biology and BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Timo Strünker
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Center of Reproductive Medicine and AndrologyUniversity Hospital MünsterMünsterGermany
| | - Reinhard Seifert
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
| | - U Benjamin Kaupp
- Center of Advanced European Studies and Research (caesar), Molecular Sensory SystemsBonnGermany
- Marine Biological LaboratoryWoods HoleMAUSA
- Life& Medical Sciences Institute (LIMES)University of BonnBonnGermany
| |
Collapse
|
22
|
Ohadi D, Schmitt DL, Calabrese B, Halpain S, Zhang J, Rangamani P. Computational Modeling Reveals Frequency Modulation of Calcium-cAMP/PKA Pathway in Dendritic Spines. Biophys J 2019; 117:1963-1980. [PMID: 31668749 PMCID: PMC7031750 DOI: 10.1016/j.bpj.2019.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/30/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines are the primary excitatory postsynaptic sites that act as subcompartments of signaling. Ca2+ is often the first and most rapid signal in spines. Downstream of calcium, the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway plays a critical role in the regulation of spine formation, morphological modifications, and ultimately, learning and memory. Although the dynamics of calcium are reasonably well-studied, calcium-induced cAMP/PKA dynamics, particularly with respect to frequency modulation, are not fully explored. In this study, we present a well-mixed model for the dynamics of calcium-induced cAMP/PKA dynamics in dendritic spines. The model is constrained using experimental observations in the literature. Further, we measured the calcium oscillation frequency in dendritic spines of cultured hippocampal CA1 neurons and used these dynamics as model inputs. Our model predicts that the various steps in this pathway act as frequency modulators for calcium, and the high frequency of calcium input is filtered by adenylyl cyclase 1 and phosphodiesterases in this pathway such that cAMP/PKA only responds to lower frequencies. This prediction has important implications for noise filtering and long-timescale signal transduction in dendritic spines. A companion manuscript presents a three-dimensional spatial model for the same pathway.
Collapse
Affiliation(s)
- Donya Ohadi
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California
| | - Danielle L Schmitt
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Barbara Calabrese
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Shelley Halpain
- Division of Biological Sciences and Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, California
| | - Jin Zhang
- Department of Pharmacology, University of California San Diego, La Jolla, California
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California.
| |
Collapse
|
23
|
Lounas A, Vernoux N, Germain M, Tremblay ME, Richard FJ. Mitochondrial sub-cellular localization of cAMP-specific phosphodiesterase 8A in ovarian follicular cells. Sci Rep 2019; 9:12493. [PMID: 31462694 PMCID: PMC6713761 DOI: 10.1038/s41598-019-48886-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/08/2019] [Indexed: 01/11/2023] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a ubiquitous secondary messenger that plays a central role in endocrine tissue function, particularly in the synthesis of steroid hormones. The intracellular concentration of cAMP is regulated through its synthesis by cyclases and its degradation by cyclic nucleotide phosphodiesterases (PDEs). Although the expression and activity of PDEs impact the specificity and the amplitude of the cAMP response, it is becoming increasingly clear that the sub-cellular localization of PDE emphasizes the spatial regulation of the cell signalling processes that are essential for normal cellular function. We first examined the expression of PDE8A in porcine ovarian cells. PDE8A is expressed in granulosa cells, cumulus cells and oocytes. Second, we assessed the mitochondrial sub-cellular localization of PDE8A. Using western blotting with isolated mitochondrial fractions from granulosa cells and cumulus-oocyte complexes revealed immuno-reactive bands. PDE assay of isolated mitochondrial fractions from granulosa cells measured specific PDE8 cAMP-PDE activity as PF-04957325-sensitive. The immune-reactive PDE8A signal and MitoTracker labelling co-localized supporting mitochondrial sub-cellular localization of PDE8A, which was confirmed using immuno-electron microscopy. Finally, the effect of PDE8 on progesterone production was assessed during the in-vitro maturation of cumulus-oocyte complexes. Using PF-04957325, we observed a significant increase (P < 0.05) in progesterone secretion with follicle-stimulating hormone (FSH). Active mitochondria stained with MitoTracker orange CMTMRos were also increased by the specific PDE8 inhibitor supporting its functional regulation. In conclusion, we propose the occurrence of mitochondrial sub-cellular localization of PDE8A in porcine granulosa cells and cumulus cells. This suggests that there is potential for new strategies for ovarian stimulation and artificial reproductive technologies, as well as the possibility for using new media to improve the quality of oocytes.
Collapse
Affiliation(s)
- Amel Lounas
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nathalie Vernoux
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - Marc Germain
- Département de biologie médicale, Université du Québec à Trois-Rivières, Québec, G8Z 4M3, Canada
| | - Marie-Eve Tremblay
- Centre de recherche du CHU de Québec-Université Laval, Axe Neurosciences, Département de médecine moléculaire, Université Laval, Québec, Québec, G1V 4G2, Canada
| | - François J Richard
- Centre de recherche en reproduction, développement et santé intergénérationnelle (CRDSI), Département des sciences animales, Faculté des Sciences de l'agriculture et de l'alimentation, Université Laval, Québec, Québec, G1V 0A6, Canada.
| |
Collapse
|
24
|
Al-Nema MY, Gaurav A. Protein-Protein Interactions of Phosphodiesterases. Curr Top Med Chem 2019; 19:555-564. [PMID: 30931862 DOI: 10.2174/1568026619666190401113803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phosphodiesterases (PDEs) are enzymes that play a key role in terminating cyclic nucleotides signalling by catalysing the hydrolysis of 3', 5'- cyclic adenosine monophosphate (cAMP) and/or 3', 5' cyclic guanosine monophosphate (cGMP), the second messengers within the cell that transport the signals produced by extracellular signalling molecules which are unable to get into the cells. However, PDEs are proteins which do not operate alone but in complexes that made up of a many proteins. OBJECTIVE This review highlights some of the general characteristics of PDEs and focuses mainly on the Protein-Protein Interactions (PPIs) of selected PDE enzymes. The objective is to review the role of PPIs in the specific mechanism for activation and thereby regulation of certain biological functions of PDEs. METHODS The article discusses some of the PPIs of selected PDEs as reported in recent scientific literature. These interactions are critical for understanding the biological role of the target PDE. RESULTS The PPIs have shown that each PDE has a specific mechanism for activation and thereby regulation a certain biological function. CONCLUSION Targeting of PDEs to specific regions of the cell is based on the interaction with other proteins where each PDE enzyme binds with specific protein(s) via PPIs.
Collapse
Affiliation(s)
- Mayasah Y Al-Nema
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Anand Gaurav
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
25
|
Ramírez-Sarmiento CA. "Riddle Me This": Substrate Channeling Solves the Paradigms of cAMP-Dependent Activation of PKA. Biophys J 2019. [PMID: 28636902 DOI: 10.1016/j.bpj.2017.05.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine, and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Ramirez-Sarmiento CA, Komives EA. Hydrogen-deuterium exchange mass spectrometry reveals folding and allostery in protein-protein interactions. Methods 2018; 144:43-52. [PMID: 29627358 DOI: 10.1016/j.ymeth.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 11/29/2022] Open
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDXMS) has emerged as a powerful approach for revealing folding and allostery in protein-protein interactions. The advent of higher resolution mass spectrometers combined with ion mobility separation and ultra performance liquid chromatographic separations have allowed the complete coverage of large protein sequences and multi-protein complexes. Liquid-handling robots have improved the reproducibility and accurate temperature control of the sample preparation. Many researchers are also appreciating the power of combining biophysical approaches such as stopped-flow fluorescence, single molecule FRET, and molecular dynamics simulations with HDXMS. In this review, we focus on studies that have used a combination of approaches to reveal (re)folding of proteins as well as on long-distance allosteric changes upon interaction.
Collapse
Affiliation(s)
- Cesar A Ramirez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Catolica de Chile, Av. Vicuña Mackenna 4860, Santiago 7820436, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92092-0378, United States.
| |
Collapse
|
27
|
Wang K, Qi M, Guo C, Yu Y, Wang B, Fang L, Liu M, Wang Z, Fan X, Chen D. Novel Dual Mitochondrial and CD44 Receptor Targeting Nanoparticles for Redox Stimuli-Triggered Release. NANOSCALE RESEARCH LETTERS 2018; 13:32. [PMID: 29396830 PMCID: PMC5796929 DOI: 10.1186/s11671-018-2445-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 01/15/2018] [Indexed: 05/14/2023]
Abstract
In this work, novel mitochondrial and CD44 receptor dual-targeting redox-sensitive multifunctional nanoparticles (micelles) based on oligomeric hyaluronic acid (oHA) were proposed. The amphiphilic nanocarrier was prepared by (5-carboxypentyl)triphenylphosphonium bromide (TPP), oligomeric hyaluronic acid (oHA), disulfide bond, and curcumin (Cur), named as TPP-oHA-S-S-Cur. The TPP targeted the mitochondria, the antitumor drug Cur served as a hydrophobic core, the CD44 receptor targeting oHA worked as a hydrophilic shell, and the disulfide bond acted as a connecting arm. The chemical structure of TPP-oHA-S-S-Cur was characterized by 1HNMR technology. Cur was loaded into the TPP-oHA-S-S-Cur micelles by self-assembly. Some properties, including the preparation of micelles, morphology, redox sensitivity, and mitochondrial targeting, were studied. The results showed that TPP-oHA-S-S-Cur micelles had a mean diameter of 122.4 ± 23.4 nm, zeta potential - 26.55 ± 4.99 mV. In vitro release study and cellular uptake test showed that TPP-oHA-S-S-Cur micelles had redox sensibility, dual targeting to mitochondrial and CD44 receptor. This work provided a promising smart multifunctional nanocarrier platform to enhance the solubility, decrease the side effects, and improve the therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Kaili Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Mengjiao Qi
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Chunjing Guo
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Yueming Yu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Bingjie Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Lei Fang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Mengna Liu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Zhen Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Xinxin Fan
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China
| | - Daquan Chen
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, School of Pharmacy, Yantai University, Yantai, China.
| |
Collapse
|