1
|
Lv Y, Wu J, He Y, Liu J, Zhang W, Yan Z. Diseased Erythrocyte Enrichment Based on I-Shaped Pillar DLD Arrays. MICROMACHINES 2024; 15:214. [PMID: 38398943 PMCID: PMC10892238 DOI: 10.3390/mi15020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Enrichment of erythrocytes is a necessary step in the diagnosis of blood diseases. Due to the high deformability and viscosity of erythrocytes, they cannot be regarded as stable point-like solids, so the influence of their deformability on fluid dynamics must be considered. Therefore, by using the special effect of an I-shaped pillar (I-pillar) on erythrocytes, erythrocytes with different deformability can be made to produce different provisional distances in the chip, so as to achieve the separation of the two kinds of erythrocytes. In this study, a microfluidic chip was designed to conduct a control test between erythrocytes stored for a long time and fresh erythrocytes. At a specific flow rate, the different deformable erythrocytes in the chip move in different paths. Then, the influence of erythrocyte deformability on its movement trajectory was analyzed by two-dimensional finite element flow simulation. DLD sorting technology provides a new method for the sorting and enrichment of diseased erythrocytes.
Collapse
Affiliation(s)
- Yao Lv
- School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.L.); (J.L.); (W.Z.); (Z.Y.)
| | - Jiangbo Wu
- School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.L.); (J.L.); (W.Z.); (Z.Y.)
| | - Yongqing He
- Chongqing Key Laboratory of Micro-Nano System and Intelligent Sensing, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jie Liu
- School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.L.); (J.L.); (W.Z.); (Z.Y.)
| | - Wenyu Zhang
- School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.L.); (J.L.); (W.Z.); (Z.Y.)
| | - Zihan Yan
- School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China; (Y.L.); (J.L.); (W.Z.); (Z.Y.)
| |
Collapse
|
2
|
Wei Q, Wang X, Zhang C, Dao M, Gong X. Evolution of surface area and membrane shear modulus of matured human red blood cells during mechanical fatigue. Sci Rep 2023; 13:8563. [PMID: 37237001 DOI: 10.1038/s41598-023-34605-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Mechanical properties of red blood cells (RBCs) change during their senescence which supports numerous physiological or pathological processes in circulatory systems by providing crucial cellular mechanical environments of hemodynamics. However, quantitative studies on the aging and variations of RBC properties are largely lacking. Herein, we investigate morphological changes, softening or stiffening of single RBCs during aging using an in vitro mechanical fatigue model. Using a microfluidic system with microtubes, RBCs are repeatedly subjected to stretch and relaxation as they squeeze into and out of a sudden contraction region. Geometric parameters and mechanical properties of healthy human RBCs are characterized systematically upon each mechanical loading cycle. Our experimental results identify three typical shape transformations of RBCs during mechanical fatigue, which are all strongly associated with the loss of surface area. We constructed mathematical models for the evolution of surface area and membrane shear modulus of single RBCs during mechanical fatigue, and quantitatively developed an ensemble parameter to evaluate the aging status of RBCs. This study provides not only a novel in vitro fatigue model for investigating the mechanical behavior of RBCs, but also an index closely related to the age and inherent physical properties for a quantitative differentiation of individual RBCs.
Collapse
Affiliation(s)
- Qiaodong Wei
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolong Wang
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ce Zhang
- Institute of Photonics and Photon Technology, State Key Laboratory of Photon-Technology in Western China Energy, Northwest University, Xi'an, 710100, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Xiaobo Gong
- Key Laboratory of Hydrodynamics (Ministry of Education), Department of Engineering Mechanics, School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
- State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
3
|
Zhu Q, Bi X. Dynamics of erythrocytes in oscillatory shear flows: effects of S/V ratio. SOFT MATTER 2022; 18:964-974. [PMID: 35029271 DOI: 10.1039/d1sm01430g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
By combining a multiscale structural model of erythrocyte with a fluid-cell interaction model based on the boundary-integral method, we numerically investigate the dynamic response of erythrocytes in oscillatory shear flows (OSFs). The goal is to develop a novel experimental method to test the structural robustness of erythrocytes in transient mechanical loads with small time scales, conditions closely imitating the mechanical environment in vivo. Following the discovery of multiple response modes (wheeling, mode 1 tank treading, and mode 2 tank treading) under these conditions (Zhu & Asaro, 2019), we concentrate on deformation and stress inside RBCs driven by OSF, especially shear deformation of the membrane and the skeleton-bilayer dissociation stress, parameters that are related to mechanically induced structural remodeling such as vesiculation. Effects related to changes in surface area-to-volume (S/V) ratio are considered. Our results show that with the variation of the S/V ratio there could be significant change in terms of the occurrence of response modes even if other parameters are kept unchanged. For example, by reducing the S/V ratio of the cell, an asymmetric mode featuring a mixture of the wheeling and mode 2 tank treading responses is discovered. This mode is found to be associated with large skeleton-bilayer dissociation stress so that its potential impact on OSF-driven vesiculation should not be overlooked. By systematically examining the dependencies of skeleton deformation and skeleton-bilayer dissociation stress upon S/V, this study is critical for the development of the OSF technique in applications such as diagnosis since cell conditions are often reflected in its geometric properties.
Collapse
Affiliation(s)
- Qiang Zhu
- Dept. Struc. Engr., UC San Diego, La Jolla, USA.
| | - Xiaobo Bi
- Dept. Struc. Engr., UC San Diego, La Jolla, USA.
| |
Collapse
|
4
|
Liu ZL, Li H, Qiang Y, Buffet P, Dao M, Karniadakis GE. Computational modeling of biomechanics and biorheology of heated red blood cells. Biophys J 2021; 120:4663-4671. [PMID: 34619119 DOI: 10.1016/j.bpj.2021.09.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/20/2023] Open
Abstract
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1-1000 s-1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100-1000 s-1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s-1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.
Collapse
Affiliation(s)
| | - He Li
- School of Engineering, Brown University, Providence, Rhode Island.
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Pierre Buffet
- Université Paris Descartes, Institut National de la Transfusion Sanguine, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island.
| |
Collapse
|
5
|
Dao M, MacDonald I, Asaro RJ. Erythrocyte flow through the interendothelial slits of the splenic venous sinus. Biomech Model Mechanobiol 2021; 20:2227-2245. [PMID: 34535857 DOI: 10.1007/s10237-021-01503-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
The flow patterns of red blood cells through the spleen are intimately linked to clearance of senescent RBCs, with clearance principally occurring within the open flow through the red pulp and slits of the venous sinus system that exists in humans, rats, and dogs. Passage through interendothelial slits (IESs) of the sinus has been shown by MacDonald et al. (Microvasc Res 33:118-134, 1987) to be mediated by the caliber, i.e., slit opening width, of these slits. IES caliber within a given slit of a given sinus section has been shown to operate in an asynchronous manner. Here, we describe a model and simulation results that demonstrate how the supporting forces exerted on the sinus by the reticular meshwork of the red pulp, combined with asymmetrical contractility of stress fibers within the endothelial cells comprising the sinus, describe this vital and intriguing behavior. These results shed light on the function of the sinus slits in species such as humans, rats, and dogs that possess sinusoidal sinuses. Instead of assuming a passive mechanical filtering mechanism of the IESs, our proposed model provides a mechanically consistent explanation for the dynamically modulated IES opening/filtering mechanism observed in vivo. The overall perspective provided is also consistent with the view that IES passage serves as a self-protective mechanism in RBC vesiculation and inclusion removal.
Collapse
Affiliation(s)
- Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry Western University, London, ON, Canada
| | - R J Asaro
- Department of Structural Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Asaro RJ, Cabrales P. Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow. Diagnostics (Basel) 2021; 11:diagnostics11060971. [PMID: 34072241 PMCID: PMC8228733 DOI: 10.3390/diagnostics11060971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
The red blood cell has become implicated in the progression of a range of diseases; mechanisms by which red cells are involved appear to include the transport of inflammatory species via red cell-derived vesicles. We review this role of RBCs in diseases such as diabetes mellitus, sickle cell anemia, polycythemia vera, central retinal vein occlusion, Gaucher disease, atherosclerosis, and myeloproliferative neoplasms. We propose a possibly unifying, and novel, paradigm for the inducement of RBC vesiculation during vascular flow of red cells adhered to the vascular endothelium as well as to the red pulp of the spleen. Indeed, we review the evidence for this hypothesis that links physiological conditions favoring both vesiculation and enhanced RBC adhesion and demonstrate the veracity of this hypothesis by way of a specific example occurring in splenic flow which we argue has various renderings in a wide range of vascular flows, in particular microvascular flows. We provide a mechanistic basis for membrane loss and the formation of lysed red blood cells in the spleen that may mediate their turnover. Our detailed explanation for this example also makes clear what features of red cell deformability are involved in the vesiculation process and hence require quantification and a new form of quantitative indexing.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, CA 92093, USA
- Correspondence: ; Tel.: +1-619-890-6888; Fax: +1-858-534-6373
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
7
|
Asaro RJ, Zhu Q, MacDonald IC. Tethering, evagination, and vesiculation via cell-cell interactions in microvascular flow. Biomech Model Mechanobiol 2020; 20:31-53. [PMID: 32656697 DOI: 10.1007/s10237-020-01366-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
Vesiculation is a ubiquitous process undergone by most cell types and serves a variety of vital cell functions; vesiculation from erythrocytes, in particular, is a well-known example and constitutes a self-protection mechanism against premature clearance, inter alia. Herein, we explore a paradigm that red blood cell derived vesicles may form within the microvascular, in intense shear flow, where cells become adhered to either other cells or the extracellular matrix, by forming tethers or an evagination. Adherence may be enhanced, or caused, by diseased states or chemical anomalies as are discussed herein. The mechanisms for such processes are detailed via numerical simulations that are patterned directly from video-recorded cell microflow within the splenic venous sinus (MacDonald et al. 1987), as included, e.g., as Supplementary Material. The mechanisms uncovered highlight the necessity of accounting for remodeling of the erythrocyte's membrane skeleton and, specifically, for the time scales associated with that process that is an integral part of cell deformation. In this way, the analysis provides pointed, and vital, insights into the notion of what the, often used phrase, cell deformability actually entails in a more holistic manner. The analysis also details what data are required to make further quantitative descriptions possible and suggests experimental pathways for acquiring such.
Collapse
Affiliation(s)
- Robert J Asaro
- Department of Structural Engineering, University of California, San Diego, CA, USA.
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, CA, USA
| | - Ian C MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
8
|
Asaro RJ, Zhu Q. Vital erythrocyte phenomena: what can theory, modeling, and simulation offer? Biomech Model Mechanobiol 2020; 19:1361-1388. [DOI: 10.1007/s10237-020-01302-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
|
9
|
Han YL, Ding MM, Li R, Shi TF. Kinematics of Non-axially Positioned Vesicles through a Pore. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-020-2375-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Asaro RJ, Lin K, Zhu Q. Mechanosensitivity Occurs along the Adhesome's Force Train and Affects Traction Stress. Biophys J 2019; 117:1599-1614. [PMID: 31604520 DOI: 10.1016/j.bpj.2019.08.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Herein, we consider the process of force development along the adhesome within cell focal adhesions. Our model adhesome consists of the actin cytoskeleton-vinculin-talin-integrin-ligand-extracellular matrix-substrate force train. We specifically consider the effects of substrate stiffness on the force levels expected along the train and on the traction stresses they create at the substrate. We find that significant effects of substrate stiffness are manifest within each constitutive component of the force train and on the density and distribution of integrin/ligand anchorage points with the substrate. By following each component of the force train, we are able to delineate specific gaps in the quantitative descriptions of bond survival that must be addressed so that improved quantitative forecasts become possible. Our analysis provides, however, a rational description for the various levels of traction stresses that have been reported and of the effect of substrate stiffness. Our approach has the advantage of being quite clear as to how each constituent contributes to the net development of force and traction stress. We demonstrate that to provide truly quantitative forecasts for traction stress, a far more detailed description of integrin/ligand density and distribution is required. Although integrin density is already a well-recognized important feature of adhesion, our analysis places a finer point on it in the manner of how we evaluate the magnitude of traction stress. We provide mechanistic insight into how understanding of this vital element of the adhesion process may proceed by addressing mechanistic causes of integrin clustering that may lead to patterning.
Collapse
Affiliation(s)
- Robert J Asaro
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California.
| | - Kuanpo Lin
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| | - Qiang Zhu
- Structural Engineering, Department of Structural Engineering, University of California San Diego, San Diego, California
| |
Collapse
|
11
|
Han Y, Lin H, Ding M, Li R, Shi T. Flow-induced translocation of vesicles through a narrow pore. SOFT MATTER 2019; 15:3307-3314. [PMID: 30892355 DOI: 10.1039/c9sm00116f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We use finite element method to investigate the flow-induced translocation of vesicles through a narrow pore from a dynamic point of view. In order to complete the coupling between fluid flow and the vesicle membranes, we employ the fluid-structure interactions with the arbitrary Lagrangian-Eulerian method. Our results demonstrate that the vesicle shows similar shape change from bullet-like to dumbbell-like, dumbbell-like to bulb-like, and bulb-like to parachute-like if it is pushed by flow field to pass through a narrow pore smaller than its size. We further find that the strain energy exhibits a higher peak and a lower peak in the whole translocation process, where the higher peak corresponds to the dumbbell-like shape and the lower peak corresponds to the parachute-like shape due to more stretching of the membrane for the dumbbell-like shape than that of the parachute-like shape. The translocation time of the vesicle from one side to the other side of the narrow pore decreases with the increase of inlet velocity, but the strain energy exhibits an increase, which implies that the vesicle needs more time to complete the translocation with the lower inlet velocity, but the requirement for the mechanical properties of the membrane is lower. Our work answers the mapping between the positions of the vesicles and deformed states with the stress distribution and change of strain energy, which can provide helpful information on the utilization of vesicles in pharmaceutical, chemical, and physiological processes.
Collapse
Affiliation(s)
- Yunlong Han
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | | | | | | | | |
Collapse
|
12
|
Asaro RJ, Zhu Q, Cabrales P. Erythrocyte Aging, Protection via Vesiculation: An Analysis Methodology via Oscillatory Flow. Front Physiol 2018; 9:1607. [PMID: 30505281 PMCID: PMC6250888 DOI: 10.3389/fphys.2018.01607] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023] Open
Abstract
We demonstrate that erythrocyte deformations, specifically of a type as occur in splenic flow (Zhu et al., 2017), and of the type that promote vesiculation can be caused by simple, yet tailored, oscillatory shear flow. We show that such oscillatory shear flow provides an ideal environment to explore a wide variety of metabolic and biochemical effects that promote erythrocyte vesiculation. Deformation details, typical of splenic flow, such as in-folding and implications for membrane/skeleton interaction are demonstrated and quantitatively analyzed. We introduce a theoretical, essentially analytical, vesiculation model that directly couples to our more complex numerical, multilevel, model that clearly delineates various fundamental elements, i.e., sub-processes, that are involved and mediate the vesiculation process. This analytical model highlights particulary important vesiculation precursors such as areas of membrane/skeleton disruptions that trigger the vesiculation process. We demonstrate, using flow cytometry, that the deformations we experimentally induce on cells, and numerically simulate, do not induce lethal forms of cell damage but do induce vesiculation as theoretically forecasted. This, we demonstrate, provides a direct link to cell membrane/skeletal damage such as is associated with metabolic and aging damage. An additional noteworthy feature of this approach is the avoidance of artificial devices, e.g., micro-fluidic chambers, in which deformations and their time scales are often unrepresentative of physiological processes such as splenic flow.
Collapse
Affiliation(s)
- Robert J. Asaro
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Qiang Zhu
- Department of Structural Engineering, University of California, San Diego, San Diego, CA, United States
| | - Pedro Cabrales
- Biological Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Li H, Lu L, Li X, Buffet PA, Dao M, Karniadakis GE, Suresh S. Mechanics of diseased red blood cells in human spleen and consequences for hereditary blood disorders. Proc Natl Acad Sci U S A 2018; 115:9574-9579. [PMID: 30190436 PMCID: PMC6156670 DOI: 10.1073/pnas.1806501115] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In red blood cell (RBC) diseases, the spleen contributes to anemia by clearing the damaged RBCs, but its unique ability to mechanically challenge RBCs also poses the risk of inducing other pathogenic effects. We have analyzed RBCs in hereditary spherocytosis (HS) and hereditary elliptocytosis (HE), two typical examples of blood disorders that result in membrane protein defects in RBCs. We use a two-component protein-scale RBC model to simulate the traversal of the interendothelial slit (IES) in the human spleen, a stringent biomechanical challenge on healthy and diseased RBCs that cannot be directly observed in vivo. In HS, our results confirm that the RBC loses surface due to weakened cohesion between the lipid bilayer and the cytoskeleton and reveal that surface loss may result from vesiculation of the RBC as it crosses IES. In HE, traversing IES induces sustained elongation of the RBC with impaired elasticity and fragmentation in severe disease. Our simulations thus suggest that in inherited RBC disorders, the spleen not only filters out pathological RBCs but also directly contributes to RBC alterations. These results provide a mechanistic rationale for different clinical outcomes documented following splenectomy in HS patients with spectrin-deficient and ankyrin-deficient RBCs and offer insights into the pathogenic role of human spleen in RBC diseases.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Pierre A Buffet
- Faculté de Médecine Université Paris Descartes, Institut National de la Transfusion Sanguine, Paris 75015, France
- Laboratory of Excellence GR-Ex "The Red Blood Cell: From Genesis to Death," Sorbonne Paris Cité, 75015 Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | | | - Subra Suresh
- Nanyang Technological University, 639798, Singapore
| |
Collapse
|
14
|
Pollet H, Conrard L, Cloos AS, Tyteca D. Plasma Membrane Lipid Domains as Platforms for Vesicle Biogenesis and Shedding? Biomolecules 2018; 8:E94. [PMID: 30223513 PMCID: PMC6164003 DOI: 10.3390/biom8030094] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) contribute to several pathophysiological processes and appear as emerging targets for disease diagnosis and therapy. However, successful translation from bench to bedside requires deeper understanding of EVs, in particular their diversity, composition, biogenesis and shedding mechanisms. In this review, we focus on plasma membrane-derived microvesicles (MVs), far less appreciated than exosomes. We integrate documented mechanisms involved in MV biogenesis and shedding, focusing on the red blood cell as a model. We then provide a perspective for the relevance of plasma membrane lipid composition and biophysical properties in microvesiculation on red blood cells but also platelets, immune and nervous cells as well as tumor cells. Although only a few data are available in this respect, most of them appear to converge to the idea that modulation of plasma membrane lipid content, transversal asymmetry and lateral heterogeneity in lipid domains may play a significant role in the vesiculation process. We suggest that lipid domains may represent platforms for inclusion/exclusion of membrane lipids and proteins into MVs and that MVs could originate from distinct domains during physiological processes and disease evolution.
Collapse
Affiliation(s)
- Hélène Pollet
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Louise Conrard
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Anne-Sophie Cloos
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| | - Donatienne Tyteca
- CELL Unit, de Duve Institute & Université Catholique de Louvain, UCL B1.75.05, Avenue Hippocrate, 75, B-1200 Brussels, Belgium.
| |
Collapse
|
15
|
Li H, Papageorgiou DP, Chang HY, Lu L, Yang J, Deng Y. Synergistic Integration of Laboratory and Numerical Approaches in Studies of the Biomechanics of Diseased Red Blood Cells. BIOSENSORS 2018; 8:E76. [PMID: 30103419 PMCID: PMC6164935 DOI: 10.3390/bios8030076] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/31/2018] [Accepted: 08/06/2018] [Indexed: 12/25/2022]
Abstract
In red blood cell (RBC) disorders, such as sickle cell disease, hereditary spherocytosis, and diabetes, alterations to the size and shape of RBCs due to either mutations of RBC proteins or changes to the extracellular environment, lead to compromised cell deformability, impaired cell stability, and increased propensity to aggregate. Numerous laboratory approaches have been implemented to elucidate the pathogenesis of RBC disorders. Concurrently, computational RBC models have been developed to simulate the dynamics of RBCs under physiological and pathological conditions. In this work, we review recent laboratory and computational studies of disordered RBCs. Distinguished from previous reviews, we emphasize how experimental techniques and computational modeling can be synergically integrated to improve the understanding of the pathophysiology of hematological disorders.
Collapse
Affiliation(s)
- He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Lu Lu
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
| | - Jun Yang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA.
- School of Engineering, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
16
|
Leal JKF, Adjobo-Hermans MJW, Bosman GJCGM. Red Blood Cell Homeostasis: Mechanisms and Effects of Microvesicle Generation in Health and Disease. Front Physiol 2018; 9:703. [PMID: 29937736 PMCID: PMC6002509 DOI: 10.3389/fphys.2018.00703] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Red blood cells (RBCs) generate microvesicles to remove damaged cell constituents such as oxidized hemoglobin and damaged membrane constituents, and thereby prolong their lifespan. Damage to hemoglobin, in combination with altered phosphorylation of membrane proteins such as band 3, lead to a weakening of the binding between the lipid bilayer and the cytoskeleton, and thereby to membrane budding and microparticle shedding. Microvesicle generation is disturbed in patients with RBC-centered diseases, such as sickle cell disease, glucose 6-phosphate dehydrogenase deficiency, spherocytosis or malaria. A disturbance of the membrane-cytoskeleton interaction is likely to be the main underlying mechanism, as is supported by data obtained from RBCs stored in blood bank conditions. A detailed proteomic, lipidomic and immunogenic comparison of microvesicles derived from different sources is essential in the identification of the processes that trigger vesicle generation. The contribution of RBC-derived microvesicles to inflammation, thrombosis and autoimmune reactions emphasizes the need for a better understanding of the mechanisms and consequences of microvesicle generation.
Collapse
Affiliation(s)
- Joames K F Leal
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Giel J C G M Bosman
- Department of Biochemistry, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|