1
|
Marques S, Kouba P, Legrand A, Sedlar J, Disson L, Planas-Iglesias J, Sanusi Z, Kunka A, Damborsky J, Pajdla T, Prokop Z, Mazurenko S, Sivic J, Bednar D. CoVAMPnet: Comparative Markov State Analysis for Studying Effects of Drug Candidates on Disordered Biomolecules. JACS AU 2024; 4:2228-2245. [PMID: 38938816 PMCID: PMC11200249 DOI: 10.1021/jacsau.4c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Computational study of the effect of drug candidates on intrinsically disordered biomolecules is challenging due to their vast and complex conformational space. Here, we developed a comparative Markov state analysis (CoVAMPnet) framework to quantify changes in the conformational distribution and dynamics of a disordered biomolecule in the presence and absence of small organic drug candidate molecules. First, molecular dynamics trajectories are generated using enhanced sampling, in the presence and absence of small molecule drug candidates, and ensembles of soft Markov state models (MSMs) are learned for each system using unsupervised machine learning. Second, these ensembles of learned MSMs are aligned across different systems based on a solution to an optimal transport problem. Third, the directional importance of inter-residue distances for the assignment to different conformational states is assessed by a discriminative analysis of aggregated neural network gradients. This final step provides interpretability and biophysical context to the learned MSMs. We applied this novel computational framework to assess the effects of ongoing phase 3 therapeutics tramiprosate (TMP) and its metabolite 3-sulfopropanoic acid (SPA) on the disordered Aβ42 peptide involved in Alzheimer's disease. Based on adaptive sampling molecular dynamics and CoVAMPnet analysis, we observed that both TMP and SPA preserved more structured conformations of Aβ42 by interacting nonspecifically with charged residues. SPA impacted Aβ42 more than TMP, protecting α-helices and suppressing the formation of aggregation-prone β-strands. Experimental biophysical analyses showed only mild effects of TMP/SPA on Aβ42 and activity enhancement by the endogenous metabolization of TMP into SPA. Our data suggest that TMP/SPA may also target biomolecules other than Aβ peptides. The CoVAMPnet method is broadly applicable to study the effects of drug candidates on the conformational behavior of intrinsically disordered biomolecules.
Collapse
Affiliation(s)
- Sérgio
M. Marques
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Petr Kouba
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
- Faculty
of Electrical Engineering, Czech Technical
University in Prague, Technicka 2, Dejvice, Praha 6 166 27, Czech Republic
| | - Anthony Legrand
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Sedlar
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Lucas Disson
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Joan Planas-Iglesias
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Zainab Sanusi
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Antonin Kunka
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Jiri Damborsky
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Tomas Pajdla
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - Zbynek Prokop
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Stanislav Mazurenko
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| | - Josef Sivic
- Czech
Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslavskych partyzanu 1580/3, Dejvice, Praha 6 160 00, Czech Republic
| | - David Bednar
- Loschmidt
Laboratories, Department of Experimental Biology and RECETOX, Faculty
of Science, Masaryk University, Kamenice 5, Brno 625 00, Czech Republic
- International
Clinical Research Center, St. Anne’s
University Hospital Brno, Pekarska 53, Brno 656
91, Czech Republic
| |
Collapse
|
2
|
Dey A, Patil A, Arumugam S, Maiti S. Single-Molecule Maps of Membrane Insertion by Amyloid-β Oligomers Predict Their Toxicity. J Phys Chem Lett 2024; 15:6292-6298. [PMID: 38855822 DOI: 10.1021/acs.jpclett.4c01048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The interaction of small Amyloid-β (Aβ) oligomers with the lipid membrane is an important component of the pathomechanism of Alzheimer's disease (AD). However, oligomers are heterogeneous in size. How each type of oligomer incorporates into the membrane, and how that relates to their toxicity, is unknown. Here, we employ a single molecule technique called Q-SLIP (Quencher-induced Step Length Increase in Photobleaching) to measure the membrane insertion of each monomeric unit of individual oligomers of Aβ42, Aβ40, and Aβ40-F19-Cyclohexyl alanine (Aβ40-F19Cha), and correlate it with their toxicity. We observe that the N-terminus of Aβ42 inserts close to the center of the bilayer, the less toxic Aβ40 inserts to a shallower depth, and the least toxic Aβ40-F19Cha has no specific distribution. This oligomer-specific map provides a mechanistic representation of membrane-mediated Aβ toxicity and should be a valuable tool for AD research.
Collapse
Affiliation(s)
- Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| | - Abhishek Patil
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Senthil Arumugam
- Monash Biomedicine Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton/Melbourne, VIC 3800, Australia
- European Molecular Biological Laboratory Australia (EMBL Australia), Monash University, Clayton/Melbourne, VIC 3800, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai 400005, India
| |
Collapse
|
3
|
Taware PP, Jain MG, Raran-Kurussi S, Agarwal V, Madhu PK, Mote KR. Measuring Dipolar Order Parameters in Nondeuterated Proteins Using Solid-State NMR at the Magic-Angle-Spinning Frequency of 100 kHz. J Phys Chem Lett 2023; 14:3627-3635. [PMID: 37026698 DOI: 10.1021/acs.jpclett.3c00492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proteins are dynamic molecules, relying on conformational changes to carry out function. Measurement of these conformational changes can provide insight into how function is achieved. For proteins in the solid state, this can be done by measuring the decrease in the strength of anisotropic interactions due to motion-induced fluctuations. The measurement of one-bond heteronuclear dipole-dipole coupling at magic-angle-spinning (MAS) frequencies >60 kHz is ideal for this purpose. However, rotational-echo double resonance (REDOR), an otherwise gold-standard technique for the quantitative measurement of these couplings, is difficult to implement under these conditions, especially in nondeuterated samples. We present here a combination of strategies based on REDOR variants ϵ-REDOR and DEDOR (deferred REDOR) and simultaneously measure residue-specific 15N-1H and 13Cα-1Hα dipole-dipole couplings in nondeuterated systems at the MAS frequency of 100 kHz. These strategies open up avenues to access dipolar order parameters in a variety of systems at the increasingly fast MAS frequencies that are now available.
Collapse
Affiliation(s)
- Pravin P Taware
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Mukul G Jain
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Sreejith Raran-Kurussi
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - P K Madhu
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500 046, Telangana, India
| |
Collapse
|
4
|
Chakraborty D, Straub JE, Thirumalai D. Energy landscapes of Aβ monomers are sculpted in accordance with Ostwald's rule of stages. SCIENCE ADVANCES 2023; 9:eadd6921. [PMID: 36947617 PMCID: PMC10032606 DOI: 10.1126/sciadv.add6921] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
The transition from a disordered to an assembly-competent monomeric state (N*) in amyloidogenic sequences is a crucial event in the aggregation cascade. Using a well-calibrated model for intrinsically disordered proteins (IDPs), we show that the N* states, which bear considerable resemblance to the polymorphic fibril structures found in experiments, not only appear as excitations in the free energy landscapes of Aβ40 and Aβ42, but also initiate the aggregation cascade. For Aβ42, the transitions to the different N* states are in accord with Ostwald's rule of stages, with the least stable structures forming ahead of thermodynamically favored ones. The Aβ40 and Aβ42 monomer landscapes exhibit different extents of local frustration, which we show have profound implications in dictating subsequent self-assembly. Using kinetic transition networks, we illustrate that the most favored dimerization routes proceed via N* states. We argue that Ostwald's rule also holds for the aggregation of fused in sarcoma and polyglutamine proteins.
Collapse
Affiliation(s)
- Debayan Chakraborty
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin TX 78712, USA
| | - John E. Straub
- Department of Chemistry, Boston University, MA 022155, USA
| | - D. Thirumalai
- Department of Chemistry, The University of Texas at Austin, 105 E 24th Street, Stop A5300, Austin TX 78712, USA
| |
Collapse
|
5
|
Muschol M, Hoyer W. Amyloid oligomers as on-pathway precursors or off-pathway competitors of fibrils. Front Mol Biosci 2023; 10:1120416. [PMID: 36845541 PMCID: PMC9947291 DOI: 10.3389/fmolb.2023.1120416] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/27/2023] [Indexed: 02/11/2023] Open
Abstract
Amyloid Diseases involve the growth of disease specific proteins into amyloid fibrils and their deposition in protein plaques. Amyloid fibril formation is typically preceded by oligomeric intermediates. Despite significant efforts, the specific role fibrils or oligomers play in the etiology of any given amyloid disease remains controversial. In neurodegenerative disease, though, amyloid oligomers are widely considered critical contributors to disease symptoms. Aside from oligomers as inevitable on-pathway precursors of fibril formation, there is significant evidence for off-pathway oligomer formation competing with fibril growth. The distinct mechanisms and pathways of oligomer formation directly affect our understanding under which conditions oligomers emerge in vivo, and whether their formation is directly coupled to, or distinct from, amyloid fibril formation. In this review, we will discuss the basic energy landscapes underlying the formation of on-pathway vs. off-pathway oligomers, their relation to the related amyloid aggregation kinetics, and their resulting implications for disease etiology. We will review evidence on how differences in the local environment of amyloid assembly can dramatically shift the relative preponderance of oligomers vs. fibrils. Finally, we will comment on gaps in our knowledge of oligomer assembly, of their structure, and on how to assess their relevance to disease etiology.
Collapse
Affiliation(s)
- Martin Muschol
- Department of Physics, University of South Florida, Tampa, FL, United States,*Correspondence: Martin Muschol, ; Wolfgang Hoyer,
| | - Wolfgang Hoyer
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, Düsseldorf, Germany,Institute of Biological Information Processing (IBI-7) and JuStruct, Jülich Center for Structural Biology, Forschungszentrum Jülich, Jülich, Germany,*Correspondence: Martin Muschol, ; Wolfgang Hoyer,
| |
Collapse
|
6
|
Sampaio I, Quatroni FD, Pincela Lins PM, Nascimento AS, Zucolotto V. Modulation of beta-amyloid aggregation using ascorbic acid. Biochimie 2022; 200:36-43. [PMID: 35588896 DOI: 10.1016/j.biochi.2022.05.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 12/11/2022]
Abstract
Studies have shown that the level of ascorbic acid (AA) is reduced in the brain of Alzheimer's disease (AD) patients. However, its effect on amyloid-β 1-42 (Aβ42) aggregation has not yet been elucidated. Here we investigated for the first time the effect of AA on Aβ42 aggregation using fluorescence assay, circular dichroism, atomic force microscopy, isothermal titration calorimetry, ligand docking, and molecular dynamics. Our results showed that the fibril content decreases in the growth phase when the peptides are co-incubated with AA. AA molecules bind to Aβ42 peptides with high binding affinity and a binding site for AA between the β-strands of Aβ42 oligomers prevents the stack of adjacent strands. We demonstrate the inhibitory effect of AA on the aggregation of Aβ42 and its molecular interactions, which can contribute to the development of an accessible therapy for AD and also to the design of novel drugs for other amyloidogenic diseases.
Collapse
Affiliation(s)
- Isabella Sampaio
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Felipe Domingues Quatroni
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Paula Maria Pincela Lins
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Alessandro S Nascimento
- Molecular Biotechnology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil
| | - Valtencir Zucolotto
- GNano - Nanomedicine and Nanotoxicology Group, Physics Institute of São Carlos, University of São Paulo, CP 369, 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Klose D, Vemulapalli SPB, Richman M, Rudnick S, Aisha V, Abayev M, Chemerovski M, Shviro M, Zitoun D, Majer K, Wili N, Goobes G, Griesinger C, Jeschke G, Rahimipour S. Cu 2+-Induced self-assembly and amyloid formation of a cyclic D,L-α-peptide: structure and function. Phys Chem Chem Phys 2022; 24:6699-6715. [PMID: 35234757 DOI: 10.1039/d1cp05415e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In a wide spectrum of neurodegenerative diseases, self-assembly of pathogenic proteins to cytotoxic intermediates is accelerated by the presence of metal ions such as Cu2+. Only low concentrations of these early transient oligomeric intermediates are present in a mixture of species during fibril formation, and hence information on the extent of structuring of these oligomers is still largely unknown. Here, we investigate dimers as the first intermediates in the Cu2+-driven aggregation of a cyclic D,L-α-peptide architecture. The unique structural and functional properties of this model system recapitulate the self-assembling properties of amyloidogenic proteins including β-sheet conformation and cross-interaction with pathogenic amyloids. We show that a histidine-rich cyclic D,L-α-octapeptide binds Cu2+ with high affinity and selectivity to generate amyloid-like cross-β-sheet structures. By taking advantage of backbone amide methylation to arrest the self-assembly at the dimeric stage, we obtain structural information and characterize the degree of local order for the dimer. We found that, while catalytic amounts of Cu2+ promote aggregation of the peptide to fibrillar structures, higher concentrations dose-dependently reduce fibrillization and lead to formation of spherical particles, showing self-assembly to different polymorphs. For the initial self-assembly step to the dimers, we found that Cu2+ is coordinated on average by two histidines, similar to self-assembled peptides, indicating that a similar binding interface is perpetuated during Cu2+-driven oligomerization. The dimer itself is found in heterogeneous conformations that undergo dynamic exchange, leading to the formation of different polymorphs at the initial stage of the aggregation process.
Collapse
Affiliation(s)
- Daniel Klose
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Sahithya Phani Babu Vemulapalli
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Michal Richman
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Safra Rudnick
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Vered Aisha
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Abayev
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Marina Chemerovski
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Meital Shviro
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Zitoun
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel. .,Bar-Ilan Institute for Technology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Katharina Majer
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Nino Wili
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Gil Goobes
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Christian Griesinger
- NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland.
| | - Shai Rahimipour
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
8
|
Mrdenovic D, Pieta IS, Nowakowski R, Kutner W, Lipkowski J, Pieta P. Amyloid β interaction with model cell membranes - What are the toxicity-defining properties of amyloid β? Int J Biol Macromol 2022; 200:520-531. [PMID: 35074328 DOI: 10.1016/j.ijbiomac.2022.01.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 01/26/2023]
Abstract
Disruption of the neuronal membrane by toxic amyloid β oligomers is hypothesized to be the major event associated with Alzheimer's disease's neurotoxicity. Misfolding of amyloid β is followed by aggregation via different pathways in which structurally different amyloid β oligomers can be formed. The respective toxic actions of these structurally diverse oligomers can vary significantly. Linking a particular toxic action to a structurally unique kind of amyloid β oligomers and resolving their toxicity-determining feature remains challenging because of their transient stability and heterogeneity. Moreover, the lipids that make up the membrane affect amyloid β oligomers' behavior, thus adding to the problem's complexity. The present review compares and analyzes the latest results to improve understanding of amyloid β oligomers' interaction with lipid bilayers.
Collapse
Affiliation(s)
- Dusan Mrdenovic
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Izabela S Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Robert Nowakowski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; Faculty of Mathematics and Natural Sciences, School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-815 Warsaw, Poland
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario N1G 2W1, Canada
| | - Piotr Pieta
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
| |
Collapse
|
9
|
Probing the Influence of Single-Site Mutations in the Central Cross-β Region of Amyloid β (1-40) Peptides. Biomolecules 2021; 11:biom11121848. [PMID: 34944492 PMCID: PMC8699037 DOI: 10.3390/biom11121848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/16/2022] Open
Abstract
Amyloid β (Aβ) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer’s disease. A complete mechanistic understanding how Aβ peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aβ40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aβ assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aβ40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aβ fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aβ fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aβ40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aβ40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aβ fibrillation pathway.
Collapse
|
10
|
Das A, Korn A, Carroll A, Carver JA, Maiti S. Application of the Double-Mutant Cycle Strategy to Protein Aggregation Reveals Transient Interactions in Amyloid-β Oligomers. J Phys Chem B 2021; 125:12426-12435. [PMID: 34748334 DOI: 10.1021/acs.jpcb.1c05829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Transient oligomeric intermediates in the peptide or protein aggregation pathway are suspected to be the key toxic species in many amyloid diseases, but deciphering their molecular nature has remained a challenge. Here we show that the strategy of "double-mutant cycles", used effectively in probing protein-folding intermediates, can reveal transient interactions during protein aggregation. It does so by comparing the changes in thermodynamic parameters between the wild type, and single and double mutants. We demonstrate the strategy by probing the possible transient salt bridge partner of lysine 28 (K28) in the oligomeric states of amyloid β-40 (Aβ40), the putative toxic species in Alzheimer's disease. In mature fibrils, the binding partner is aspartate 23. This interaction differentiates Aβ40 from the more toxic Aβ42, where K28's binding partner is the C-terminal carboxylate. We selectively acetylated K28 and amidated the C-terminus of Aβ40, creating four distinct variants. Spectroscopic measurements of the kinetics and thermodynamics of aggregation show that K28 and the C-terminus interact transiently in the early phases of the Aβ40 aggregation pathway. Hydrogen-deuterium exchange mass spectrometry (using a simple analysis method that we introduce here that takes into account the isotopic mass distribution) supports this interpretation. It is also supported by cellular toxicity measurements, suggesting possible similarities in the mechanisms of toxicity of Aβ40 oligomers (which are more toxic than Aβ40 fibrils) and Aβ42. Our results show that double-mutant cycles can be a powerful tool for probing transient interactions during protein aggregation.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Adam Carroll
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
11
|
Tang Y, Zhang D, Zhang Y, Liu Y, Cai L, Plaster E, Zheng J. Fundamentals and exploration of aggregation-induced emission molecules for amyloid protein aggregation. J Mater Chem B 2021; 10:2280-2295. [PMID: 34724699 DOI: 10.1039/d1tb01942b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The past decade has witnessed the growing interest and advances in aggregation-induced emission (AIE) molecules as driven by their unique fluorescence/optical properties in particular sensing applications including biomolecule sensing/detection, environmental/health monitoring, cell imaging/tracking, and disease analysis/diagnosis. In sharp contrast to conventional aggregation-caused quenching (ACQ) fluorophores, AIE molecules possess intrinsic advantages for the study of disease-related protein aggregates, but such studies are still at an infant stage with much less scientific exploration. This outlook mainly aims to provide the first systematic summary of AIE-based molecules for amyloid protein aggregates associated with neurodegenerative diseases. Despite a limited number of studies on AIE-amyloid systems, we will survey recent and important developments of AIE molecules for different amyloid protein aggregates of Aβ (associated with Alzheimer's disease), insulin (associated with type 2 diabetes), (α-syn, associated with Parkinson's disease), and HEWL (associated with familial lysozyme systemic amyloidosis) with a particular focus on the working principle and structural design of four types of AIE-based molecules. Finally, we will provide our views on current challenges and future directions in this emerging area. Our goal is to inspire more researchers and investment in this emerging but less explored subject, so as to advance our fundamental understanding and practical design/usages of AIE molecules for disease-related protein aggregates.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Lirong Cai
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Eleanor Plaster
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio, USA.
| |
Collapse
|
12
|
Smeralda W, Since M, Cardin J, Corvaisier S, Lecomte S, Cullin C, Malzert-Fréon A. β-Amyloid peptide interactions with biomimetic membranes: A multiparametric characterization. Int J Biol Macromol 2021; 181:769-777. [PMID: 33811932 DOI: 10.1016/j.ijbiomac.2021.03.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/14/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
Alzheimer's disease is the most common form of senile dementia in the world, and amyloid β peptide1-42 (Aβ1-42) is one of its two principal biological hallmarks. While interactome concept was getting forward the scientific community, we proposed that the study of the molecular interactions of amyloid β peptide with the biological membranes will allow to highlight underlying mechanisms responsive of AD. We have developed two simple liposomal formulations (phosphatidylcholine, cholesterol, phosphatidylglycerol) mimicking neuronal cell membrane (composition, charge, curvature radius). Interactions with Aβ1-42 and mutant oG37C, a stable oligomeric form of the peptide, were characterized according to a simple multiparametric procedure based on ThT fluorescence, liposome leakage assay, ATR-FTIR spectroscopy. Kinetic aggregation, membrane damage and peptide conformation provided our first methodologic bases to develop an original model to describe interactions of Aβ peptide and lipids.
Collapse
Affiliation(s)
| | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000 Caen, France.
| | - Julien Cardin
- NIMPH Team, CIMAP CNRS UMR 6252, EnsiCaen-UNICAEN-CEA, 14050 Caen, France.
| | | | - Sophie Lecomte
- CBMN, CNRS UMR 5248, Univ. Bordeaux, 33600 Pessac, France.
| | | | | |
Collapse
|
13
|
Scheidt HA, Das A, Korn A, Krueger M, Maiti S, Huster D. Structural characteristics of oligomers formed by pyroglutamate-modified amyloid β peptides studied by solid-state NMR. Phys Chem Chem Phys 2020; 22:16887-16895. [PMID: 32666970 DOI: 10.1039/d0cp02307h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neuronal plaques of amyloid β (Aβ) peptides of varying length carrying different posttranslational modifications represent a molecular hallmark of Alzheimer's disease. It is believed that transient oligomeric Aβ assemblies associating in early fibrillation events represent particularly cytotoxic peptide aggregates. Also, N-terminally truncated (in position 3 or 11) and pyroglutamate modified peptides exhibited an increased toxicity compared to the wildtype. In the current study, the molecular structure of oligomeric species of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40) was investigated using solid-state NMR spectroscopy. On the secondary structure level, for both modified peptides a large similarity between oligomers and mature fibrils of the modified peptides was found mainly based on 13C NMR chemical shift data. Some smaller structural differences were detected in the vicinity of the respective modification site. Also, the crucial early folding molecular contact between residues Phe19 and Leu34 could be observed for the oligomers of both modified peptide species. Therefore, it has to be concluded that the major secondary structure elements of Aβ are already present in oligomers of pGlu3-Aβ(3-40) and pGlu11-Aβ(11-40). These posttranslationally modified peptides arrange in a similar fashion as observed for wild type Aβ(1-40).
Collapse
Affiliation(s)
- Holger A Scheidt
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstraße 13, 04103 Leipzig, Germany
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University Härtelstr. 16-18, D-04107 Leipzig, Germany. and Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| |
Collapse
|
14
|
Das A, Gupta A, Hong Y, Carver JA, Maiti S. A Spectroscopic Marker for Structural Transitions Associated with Amyloid-β Aggregation. Biochemistry 2020; 59:1813-1822. [PMID: 32329604 DOI: 10.1021/acs.biochem.0c00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An amyloid aggregate evolves through a series of intermediates that have different secondary structures and intra- and intermolecular contacts. The structural parameters of these intermediates are important determinants of their toxicity. For example, the early oligomeric species of the amyloid-β (Aβ) peptide have been implicated as the most cytotoxic species in Alzheimer's disease but are difficult to identify because of their dynamic and transitory nature. Conventional aggregation monitors such as the fluorescent dye thioflavin T report on only the overall transition of the soluble species to the final amyloid fibrillar aggregated state. Here, we show that the fluorescent dye bis(triphenylphosphonium) tetraphenylethene (TPE-TPP) identifies at least three distinct aggregation intermediates of Aβ. Some atomic-level features of these intermediates are known from solid state nuclear magnetic resonance spectroscopy. Hence, the TPE-TPP fluorescence data may be interpreted in terms of these Aβ structural transitions. Steady state fluorescence and lifetime characteristics of TPE-TPP distinguish between the small oligomeric species (emission wavelength maximum, λmax = 465 nm; average fluorescence lifetime, τFl measured at 420 nm = 3.58 ± 0.04 ns), the intermediate species (λmax = 452 nm; τFl = 3.00 ± 0.03 ns), and the fibrils (λmax = 406 nm; τFl = 5.19 ± 0.08 ns). Thus, TPE-TPP provides a ready diagnostic for differentiating between the various, including the toxic, Aβ aggregates and potentially can be utilized to screen for amyloid aggregation inhibitors.
Collapse
Affiliation(s)
- Anirban Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Ankur Gupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
15
|
Korn A, Höfling C, Zeitschel U, Krueger M, Roßner S, Huster D. Incorporation of the Nonproteinogenic Amino Acid β-Methylamino-alanine Affects Amyloid β Fibril Properties and Toxicity. ACS Chem Neurosci 2020; 11:1038-1047. [PMID: 32141731 DOI: 10.1021/acschemneuro.9b00660] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonproteinogenic amino acid β-methylamino alarelevant example for environmental hazards are nonnine (BMAA) is a neurotoxin and represents a potential risk factor for neurodegenerative diseases. Despite intense research over the last years, the pathological mechanism of BMAA is still unclear. One of the main open questions is whether BMAA can be misincorporated into proteins, especially as a substitute for serine, and whether this has structural and functional consequences for the afflicted proteins leading to early onset neurodegeneration. In this study, we hypothesize that BMAA was indeed incorporated into Aβ40 molecules and study the structural and dynamical consequences of such misincorporation along with the effect such mutated Aβ40 peptides have on neuronal cells. We used the synthetic β-amyloid peptide (Aβ40), a known key player in the development of Alzheimer's disease, to incorporate BMAA substitutions at three different positions in the peptide sequence: Ser8BMAA at the peptide's N-terminus, Phe19BMAA in the hydrophobic core region, and S26BMAA in the flexible turn region of Aβ40 fibrils. We performed a set of biophysical experiments including fluorescence, circular dichroism, solid-state NMR spectroscopy, transmission electron microscopy, and X-ray diffraction to investigate structural and functional aspects of the mutated peptides compared to wildtype Aβ40. All variants showed high structural tolerance to BMAA misincorporation. In contrast, the cellular response and neuronal survival were affected in a mutation site-specific manner. As a consequence, we can state from the physicochemical point of view that, if BMAA was misincorporated into proteins, it could indeed represent a risk factor that could potentially play a role in neurodegeneration. Further research addressing the role of BMAA, especially its protein-associated form, should be performed to obtain a better understanding of neurodegenerative diseases and to develop new therapeutic strategies.
Collapse
Affiliation(s)
- Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Corinna Höfling
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, D-04103 Leipzig, Germany
| | - Ulrike Zeitschel
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, D-04103 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstr 13, D-04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstr. 19, D-04103 Leipzig, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
16
|
Jain MG, Rajalakshmi G, Madhu PK, Agarwal V, Mote KR. Overcoming Prohibitively Large Radiofrequency Demands for the Measurement of Internuclear Distances with Solid-State NMR under Fast Magic-Angle Spinning. J Phys Chem B 2020; 124:1444-1451. [DOI: 10.1021/acs.jpcb.9b11849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mukul G. Jain
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - G. Rajalakshmi
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - P. K. Madhu
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - Vipin Agarwal
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| | - Kaustubh R. Mote
- Tata Institute of Fundamental Research Hyderabad, Survey No. 36/P Gopanpally, Serilingampally, Ranga Reddy District, Hyderabad, Telangana 500107, India
| |
Collapse
|
17
|
Wille H, Dorosh L, Amidian S, Schmitt-Ulms G, Stepanova M. Combining molecular dynamics simulations and experimental analyses in protein misfolding. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 118:33-110. [PMID: 31928730 DOI: 10.1016/bs.apcsb.2019.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The fold of a protein determines its function and its misfolding can result in loss-of-function defects. In addition, for certain proteins their misfolding can lead to gain-of-function toxicities resulting in protein misfolding diseases such as Alzheimer's, Parkinson's, or the prion diseases. In all of these diseases one or more proteins misfold and aggregate into disease-specific assemblies, often in the form of fibrillar amyloid deposits. Most, if not all, protein misfolding diseases share a fundamental molecular mechanism that governs the misfolding and subsequent aggregation. A wide variety of experimental methods have contributed to our knowledge about misfolded protein aggregates, some of which are briefly described in this review. The misfolding mechanism itself is difficult to investigate, as the necessary timescale and resolution of the misfolding events often lie outside of the observable parameter space. Molecular dynamics simulations fill this gap by virtue of their intrinsic, molecular perspective and the step-by-step iterative process that forms the basis of the simulations. This review focuses on molecular dynamics simulations and how they combine with experimental analyses to provide detailed insights into protein misfolding and the ensuing diseases.
Collapse
Affiliation(s)
- Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Lyudmyla Dorosh
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Sara Amidian
- Department of Biochemistry, University of Alberta, Edmonton, Canada; Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Gerold Schmitt-Ulms
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Maria Stepanova
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Sarkar D, Chakraborty I, Condorelli M, Ghosh B, Mass T, Weingarth M, Mandal AK, La Rosa C, Subramanian V, Bhunia A. Self‐Assembly and Neurotoxicity of β‐Amyloid (21–40) Peptide Fragment: The Regulatory Role of GxxxG Motifs. ChemMedChem 2019; 15:293-301. [DOI: 10.1002/cmdc.201900620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Dibakar Sarkar
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Ipsita Chakraborty
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | | | - Baijayanti Ghosh
- Division of Molecular Medicine Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Thorben Mass
- Department of Chemistry Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Markus Weingarth
- Department of Chemistry Utrecht University Padualaan 8 3584 Utrecht The Netherlands
| | - Atin K Mandal
- Division of Molecular Medicine Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Carmelo La Rosa
- Department of Chemical Sciences University of Catania 95125 Catania Italy
| | | | - Anirban Bhunia
- Department of Biophysics Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| |
Collapse
|
19
|
Jain MG, Rajalakshmi G, Agarwal V, Madhu PK, Mote KR. On the direct relation between REDOR and DIPSHIFT experiments in solid-state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 308:106563. [PMID: 31353014 DOI: 10.1016/j.jmr.2019.07.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Rotational-echo double resonance (REDOR) and Dipolar-coupling chemical-shift correlation (DIPSHIFT) are commonly used experiments to probe heteronuclear dipole-dipole couplings between isolated pairs of spin-12 nuclei in magic-angle-spinning (MAS) solid-state NMR. Their widespread use is due to their robustness to experimental imperfections and a straightforward interpretation of data. Both of these experiments use rotor-synchronised π pulses to recouple the heteronuclear dipole-dipole couplings, and the observed intensity of resonances is modulated by a recoupled phase factor depending on the position or duration of the recoupling pulses. Several modifications to both of these experiments have been proposed, for example, the development of DIPSHIFT which employs strategies that mimic the multi-rotor-period nature of REDOR. We show here that REDOR and DIPSHIFT are in fact alternate implementations of the same experiment. The overt similarity in the design of REDOR and DIPSHIFT is also reflected in their theoretical description. Dipolar dephasing curves in REDOR are obtained by increasing the recoupling duration whilst keeping the position of the pulses constant, which results in a dephasing factor that is a function of only the dephasing time. DIPSHIFT, on the other hand, is a constant-time version of REDOR; the dipolar dephasing is a function of the position of the pulses with respect to the rotor period. We discuss the advantages and disadvantages of each implementation and suggest domains of applicability for these sequences.
Collapse
Affiliation(s)
- Mukul G Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Serilingampally, Hyderabad 500107, Telangana, India
| | - G Rajalakshmi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Serilingampally, Hyderabad 500107, Telangana, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Serilingampally, Hyderabad 500107, Telangana, India.
| | - P K Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Serilingampally, Hyderabad 500107, Telangana, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research Hyderabad, 36/P Gopanpally Village, Ranga Reddy District, Serilingampally, Hyderabad 500107, Telangana, India.
| |
Collapse
|
20
|
Nguyen HL, Krupa P, Hai NM, Linh HQ, Li MS. Structure and Physicochemical Properties of the Aβ42 Tetramer: Multiscale Molecular Dynamics Simulations. J Phys Chem B 2019; 123:7253-7269. [DOI: 10.1021/acs.jpcb.9b04208] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hoang Linh Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software
City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Nguyen Minh Hai
- Faculty of Physics and Engineering Physics, University of Science-VNU HCM, Ho Chi Minh City 700000, Vietnam
| | - Huynh Quang Linh
- Biomedical Engineering Department, Ho Chi Minh City University of Technology-VNU HCM, 268 Ly Thuong Kiet Street, Distr. 10, Ho Chi Minh City 700000, Vietnam
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| |
Collapse
|
21
|
Maity BK, Das AK, Dey S, Moorthi UK, Kaur A, Dey A, Surendran D, Pandit R, Kallianpur M, Chandra B, Chandrakesan M, Arumugam S, Maiti S. Ordered and Disordered Segments of Amyloid-β Drive Sequential Steps of the Toxic Pathway. ACS Chem Neurosci 2019; 10:2498-2509. [PMID: 30763064 DOI: 10.1021/acschemneuro.9b00015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
While the roles of intrinsically disordered protein domains in driving interprotein interactions are increasingly well-appreciated, the mechanism of toxicity of disease-causing disordered proteins remains poorly understood. A prime example is Alzheimer's disease (AD) associated amyloid beta (Aβ). Aβ oligomers are highly toxic partially structured peptide assemblies with a distinct ordered region (residues ∼10-40) and a shorter disordered region (residues ∼1-9). Here, we investigate the role of this disordered domain and its relation to the ordered domain in the manifestation of toxicity through a set of Aβ fragments and stereoisomers designed for this purpose. We measure their effects on lipid membranes and cultured neurons, probing their toxicity, intracellular distributions, and specific molecular interactions using the techniques of confocal imaging, lattice light sheet imaging, fluorescence lifetime imaging, and fluorescence correlation spectroscopy. Remarkably, we find that neither part-Aβ10-40 or Aβ1-9, is toxic by itself. The ordered part (Aβ10-40) is the major determinant of how Aβ attaches to lipid bilayers, enters neuronal cells, and localizes primarily in the late endosomal compartments. However, once Aβ enters the cell, it is the disordered part (only when it is connected to the rest of the peptide) that has a strong and stereospecific interaction with an unknown cellular component, as demonstrated by distinct changes in the fluorescence lifetime of a fluorophore attached to the N-terminal. This interaction appears to commit Aβ to the toxic pathway. Our findings correlate well with Aβ sites of familial AD mutations, a significant fraction of which cluster in the disordered region. We conclude that, while the ordered region dictates attachment and cellular entry, the key to toxicity lies in the ordered part presenting the disordered part for a specific cellular interaction.
Collapse
Affiliation(s)
- Barun Kumar Maity
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Anand Kant Das
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Simli Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | | | - Arpan Dey
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Dayana Surendran
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Rucha Pandit
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Mamata Kallianpur
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Bappaditya Chandra
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Muralidharan Chandrakesan
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| | | | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005, India
| |
Collapse
|
22
|
Jain MG, Mote KR, Hellwagner J, Rajalakshmi G, Ernst M, Madhu PK, Agarwal V. Measuring strong one-bond dipolar couplings using REDOR in magic-angle spinning solid-state NMR. J Chem Phys 2019; 150:134201. [DOI: 10.1063/1.5088100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Mukul G. Jain
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad 500 107, India
| | - Kaustubh R. Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad 500 107, India
| | - Johannes Hellwagner
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - G. Rajalakshmi
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad 500 107, India
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - P. K. Madhu
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad 500 107, India
| | - Vipin Agarwal
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Sy. No. 36/P, Gopanpally, Hyderabad 500 107, India
| |
Collapse
|
23
|
Korn A, Surendran D, Krueger M, Maiti S, Huster D. Ring structure modifications of phenylalanine 19 increase fibrillation kinetics and reduce toxicity of amyloid β (1-40). Chem Commun (Camb) 2018; 54:5430-5433. [PMID: 29745414 DOI: 10.1039/c8cc01733f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We investigated the influence of the chemical structure of the phenylalanine side chain in position 19 of the 40 residue amyloid β peptide. Side chain modifications in this position yielded fibrils of essentially unaltered morphology, structure, and dynamics, but significantly increased fibrillation kinetics and diminished the toxicity of the peptides.
Collapse
Affiliation(s)
- Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, Leipzig D-04107, Germany.
| | | | | | | | | |
Collapse
|
24
|
Korn A, McLennan S, Adler J, Krueger M, Surendran D, Maiti S, Huster D. Amyloid β (1-40) Toxicity Depends on the Molecular Contact between Phenylalanine 19 and Leucine 34. ACS Chem Neurosci 2018; 9:790-799. [PMID: 29232098 DOI: 10.1021/acschemneuro.7b00360] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The formation of the hydrophobic contact between phenylalanine 19 (F19) and leucine 34 (L34) of amyloid β (1-40) (Aβ(1-40)) is known to be an important step in the fibrillation of Aβ(1-40) peptides. Mutations of this putatively early molecular contact were shown to strongly influence the toxicity of Aβ(1-40) ( Das et al. ( 2015 ) ACS Chem. Neurosci. 6 , 1290 - 1295 ). Any mutation of residue F19 completely abolished the toxicity of Aβ(1-40), suggesting that a proper F19-L34 contact is crucial also for the formation of transient oligomers. In this work, we investigate a series of isomeric substitutions of L34, namely, d-leucine, isoleucine, and valine, to study further details of this molecular contact. These replacements represent very minor alterations in the Aβ(1-40) structure posing the question how these alterations challenge the fibrillation kinetics, structure, dynamics, and toxicity of the Aβ(1-40) aggregates. Our work involves kinetic studies using thioflavin T, transmission electron microscopy, X-ray diffraction for the analysis of the fibril morphology, and nuclear magnetic resonance experiments for local structure and molecular dynamics investigations. Combined with cell toxicity assays of the mutated Aβ(1-40) peptides, the physicochemical and biological importance of the early folding contact between F19 and L34 in Aβ(1-40) is underlined. This implies that the F19-L34 contact influences a broad range of different processes including the initiation of fibrillation, oligomer stability, fibril elongation, local fibril structure, and dynamics and cellular toxicity. These processes do not only cover a broad range of diverse mechanisms, but also proved to be highly sensitive to minor modulations of this crucial contact. Furthermore, our work shows that the contact is not simply mediated by general hydrophobic interactions, but also depends on stereospecific mechanisms.
Collapse
Affiliation(s)
- Alexander Korn
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Steffane McLennan
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Liebigstr. 13, D-04103 Leipzig, Germany
| | - Dayana Surendran
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Sudipta Maiti
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, D-04107 Leipzig, Germany
| |
Collapse
|
25
|
Chandra B, Maity BK, Das A, Maiti S. Fluorescence quenching by lipid encased nanoparticles shows that amyloid-β has a preferred orientation in the membrane. Chem Commun (Camb) 2018; 54:7750-7753. [DOI: 10.1039/c8cc02108b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Short range plasmonic fields around a nanoparticle can modulate fluorescence or Raman processes.
Collapse
Affiliation(s)
| | | | - Anirban Das
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| | - Sudipta Maiti
- Tata Institute of Fundamental Research
- Homi Bhabha Road
- Mumbai
- India
| |
Collapse
|
26
|
Barz B, Liao Q, Strodel B. Pathways of Amyloid-β Aggregation Depend on Oligomer Shape. J Am Chem Soc 2017; 140:319-327. [PMID: 29235346 DOI: 10.1021/jacs.7b10343] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
One of the main research topics related to Alzheimer's disease is the aggregation of the amyloid-β peptide, which was shown to follow different pathways for the two major alloforms of the peptide, Aβ40 and the more toxic Aβ42. Experimental studies emphasized that oligomers of specific sizes appear in the early aggregation process in different quantities and might be the key toxic agents for each of the two alloforms. We use transition networks derived from all-atom molecular dynamics simulations to show that the oligomers leading to the type of oligomer distributions observed in experiments originate from compact conformations. Extended oligomers, on the other hand, contribute more to the production of larger aggregates thus driving the aggregation process. We further demonstrate that differences in the aggregation pathways of the two Aβ alloforms occur as early as during the dimer stage. The higher solvent-exposure of hydrophobic residues in Aβ42 oligomers contributes to the different aggregation pathways of both alloforms and also to the increased cytotoxicity of Aβ42.
Collapse
Affiliation(s)
- Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , 40225 Düsseldorf, Germany
| | - Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Department of Cell and Molecular Biology, Uppsala University , S-75124 Uppsala, Sweden
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich GmbH , 52425 Jülich, Germany.,Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf , 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
van der Wel PCA. Insights into protein misfolding and aggregation enabled by solid-state NMR spectroscopy. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2017; 88:1-14. [PMID: 29035839 PMCID: PMC5705391 DOI: 10.1016/j.ssnmr.2017.10.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/03/2017] [Accepted: 10/03/2017] [Indexed: 05/17/2023]
Abstract
The aggregation of proteins and peptides into a variety of insoluble, and often non-native, aggregated states plays a central role in many devastating diseases. Analogous processes undermine the efficacy of polypeptide-based biological pharmaceuticals, but are also being leveraged in the design of biologically inspired self-assembling materials. This Trends article surveys the essential contributions made by recent solid-state NMR (ssNMR) studies to our understanding of the structural features of polypeptide aggregates, and how such findings are informing our thinking about the molecular mechanisms of misfolding and aggregation. A central focus is on disease-related amyloid fibrils and oligomers involved in neurodegenerative diseases such as Alzheimer's, Parkinson's and Huntington's disease. SSNMR-enabled structural and dynamics-based findings are surveyed, along with a number of resulting emerging themes that appear common to different amyloidogenic proteins, such as their compact alternating short-β-strand/β-arc amyloid core architecture. Concepts, methods, future prospects and challenges are discussed.
Collapse
Affiliation(s)
- Patrick C A van der Wel
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA.
| |
Collapse
|
28
|
Hoffmann F, Adler J, Chandra B, Mote KR, Bekçioğlu-Neff G, Sebastiani D, Huster D. Perturbation of the F19-L34 Contact in Amyloid β (1-40) Fibrils Induces Only Local Structural Changes but Abolishes Cytotoxicity. J Phys Chem Lett 2017; 8:4740-4745. [PMID: 28910107 DOI: 10.1021/acs.jpclett.7b02317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We explored structural details of fibrils formed by a mutated amyloid β (Aβ(1-40)) peptide carrying a Phe19 to Lys19 mutation, which was shown to completely abolish the toxicity of the molecule. Computer models suggest that the positively charged Lys19 side chain is expelled from the hydrophobic fibril interior upon fibrillation. This can be accommodated by either a 180° flip of the entire lower β-strand (model M1) or local perturbations of the secondary structure in the direct vicinity of the mutated site (model M2). This is accompanied by the formation of a new salt bridge between Glu22 and Lys28 in model M1. Experimentally, a novel contact between Phe20 and Leu34 as well as the significant structural perturbation of residues 20-23 could be confirmed. However, the mutated fibrils do not show the formation of any salt bridges. This demonstrates that although morphologically very robust, local perturbations of the Aβ(1-40) sequence lead to moderate structural alterations with tremendous impact on the physiological importance of these aggregates, which may suggest alternative strategies for the development of a remedy against Alzheimer's disease.
Collapse
Affiliation(s)
- Felix Hoffmann
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Juliane Adler
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstr. 16-18, 04107 Leipzig, Germany
| | - Bappaditya Chandra
- Tata Institute of Fundamental Research , Homi Bhabha Road, Colaba, Mumbai 400 005, India
| | - Kaustubh R Mote
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research , 21 Brundavan Colony, Narsingi, Hyderabad 500 075, India
| | - Gül Bekçioğlu-Neff
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Daniel Sebastiani
- Department of Chemistry, Martin-Luther Universität Halle-Wittenberg , von-Danckelmann-Platz 4, 06120 Halle/Saale, Germany
| | - Daniel Huster
- Institute for Medical Physics and Biophysics, Leipzig University , Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|