1
|
Královič-Kanjaková N, Asi Shirazi A, Hubčík L, Klacsová M, Keshavarzi A, Martínez JC, Combet S, Teixeira J, Uhríková D. Polymyxin B-Enriched Exogenous Lung Surfactant: Thermodynamics and Structure. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6847-6861. [PMID: 38501650 DOI: 10.1021/acs.langmuir.3c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The use of an exogenous pulmonary surfactant (EPS) to deliver other relevant drugs to the lungs is a promising strategy for combined therapy. We evaluated the interaction of polymyxin B (PxB) with a clinically used EPS, the poractant alfa Curosurf (PSUR). The effect of PxB on the protein-free model system (MS) composed of four phospholipids (diC16:0PC/16:0-18:1PC/16:0-18:2PC/16:0-18:1PG) was examined in parallel to distinguish the specificity of the composition of PSUR. We used several experimental techniques (differential scanning calorimetry, small- and wide-angle X-ray scattering, small-angle neutron scattering, fluorescence spectroscopy, and electrophoretic light scattering) to characterize the binding of PxB to both EPS. Electrostatic interactions PxB-EPS are dominant. The results obtained support the concept of cationic PxB molecules lying on the surface of the PSUR bilayer, strengthening the multilamellar structure of PSUR as derived from SAXS and SANS. A protein-free MS mimics a natural EPS well but was found to be less resistant to penetration of PxB into the lipid bilayer. PxB does not affect the gel-to-fluid phase transition temperature, Tm, of PSUR, while Tm increased by ∼+ 2 °C in MS. The decrease of the thickness of the lipid bilayer (dL) of PSUR upon PxB binding is negligible. The hydrophobic tail of the PxB molecule does not penetrate the bilayer as derived from SANS data analysis and changes in lateral pressure monitored by excimer fluorescence at two depths of the hydrophobic region of the bilayer. Changes in dL of protein-free MS show a biphasic dependence on the adsorbed amount of PxB with a minimum close to the point of electroneutrality of the mixture. Our results do not discourage the concept of a combined treatment with PxB-enriched Curosurf. However, the amount of PxB must be carefully assessed (less than 5 wt % relative to the mass of the surfactant) to avoid inversion of the surface charge of the membrane.
Collapse
Affiliation(s)
- Nina Královič-Kanjaková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Ali Asi Shirazi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Lukáš Hubčík
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Mária Klacsová
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | - Atoosa Keshavarzi
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| | | | - Sophie Combet
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - José Teixeira
- Laboratoire Léon-Brillouin (LLB), UMR12 CEA, CNRS, Université Paris-Saclay, F-91191 Gif-sur-Yvette CEDEX, France
| | - Daniela Uhríková
- Department of Physical Chemistry of Drugs, Faculty of Pharmacy, Comenius University Bratislava, 832 32 Bratislava, Slovakia
| |
Collapse
|
2
|
Krivić H, Himbert S, Rheinstädter MC. Perspective on the Application of Erythrocyte Liposome-Based Drug Delivery for Infectious Diseases. MEMBRANES 2022; 12:1226. [PMID: 36557133 PMCID: PMC9785899 DOI: 10.3390/membranes12121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Nanoparticles are explored as drug carriers with the promise for the treatment of diseases to increase the efficacy and also reduce side effects sometimes seen with conventional drugs. To accomplish this goal, drugs are encapsulated in or conjugated to the nanocarriers and selectively delivered to their targets. Potential applications include immunization, the delivery of anti-cancer drugs to tumours, antibiotics to infections, targeting resistant bacteria, and delivery of therapeutic agents to the brain. Despite this great promise and potential, drug delivery systems have yet to be established, mainly due to their limitations in physical instability and rapid clearance by the host's immune response. Recent interest has been taken in using red blood cells (RBC) as drug carriers due to their naturally long circulation time, flexible structure, and direct access to many target sites. This includes coating of nanoparticles with the membrane of red blood cells, and the fabrication and manipulation of liposomes made of the red blood cells' cytoplasmic membrane. The properties of these erythrocyte liposomes, such as charge and elastic properties, can be tuned through the incorporation of synthetic lipids to optimize physical properties and the loading efficiency and retention of different drugs. Specificity can be established through the anchorage of antigens and antibodies in the liposomal membrane to achieve targeted delivery. Although still at an early stage, this erythrocyte-based platform shows first promising results in vitro and in animal studies. However, their full potential in terms of increased efficacy and side effect minimization still needs to be explored in vivo.
Collapse
Affiliation(s)
- Hannah Krivić
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| | - Maikel C. Rheinstädter
- Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada
- Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
3
|
Krivić H, Himbert S, Sun R, Feigis M, Rheinstädter MC. Erythro-PmBs: A Selective Polymyxin B Delivery System Using Antibody-Conjugated Hybrid Erythrocyte Liposomes. ACS Infect Dis 2022; 8:2059-2072. [PMID: 36173819 DOI: 10.1021/acsinfecdis.2c00017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
As a result of the growing worldwide antibiotic resistance crisis, many currently existing antibiotics have become ineffective due to bacteria developing resistive mechanisms. There are a limited number of potent antibiotics that are successful at suppressing microbial growth, such as polymyxin B (PmB); however, these are often deemed as a last resort due to their toxicity. We present a novel PmB delivery system constructed by conjugating hybrid erythrocyte liposomes with antibacterial antibodies to combine a high loading efficiency with guided delivery. The retention of PmB is enhanced by incorporating negatively charged lipids into the red blood cells' cytoplasmic membrane (RBCcm). Anti-Escherichia coli antibodies are attached to these hybrid erythrocyte liposomes by the inclusion of DSPE-PEG maleimide linkers. We show that these erythro-PmBs have a loading efficiency of ∼90% and are effective in delivering PmB to E. coli, with values for the minimum inhibitory concentration (MIC) being comparable to those of free PmB. The MIC values for Klebsiella aerogenes, however, significantly increased well beyond the resistant breakpoint, indicating that the inclusion of the anti-E. coli antibodies enables the erythro-PmBs to selectively deliver antibiotics to specific targets.
Collapse
Affiliation(s)
- Hannah Krivić
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Sebastian Himbert
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Ruthie Sun
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Michal Feigis
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, HamiltonL8S 4M1, Ontario, Canada.,Origins Institute, McMaster University, HamiltonL8S 4M1, Ontario, Canada
| |
Collapse
|
4
|
Synergistic Membrane Disturbance Improves the Antibacterial Performance of Polymyxin B. Polymers (Basel) 2022; 14:polym14204316. [PMID: 36297894 PMCID: PMC9611124 DOI: 10.3390/polym14204316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 01/24/2023] Open
Abstract
Drug-resistant Gram-negative bacteria pose a serious threat to public health, and polymyxin B (PMB) is clinically used as a last-line therapy for the treatment of infections caused by these pathogens. However, the appearance of PMB resistance calls for an effort to develop new approaches to improve its antibacterial performance. In this work, a new type of nanocomposite, composed of PMB molecules being chemically decorated on the surface of graphene oxide (GO) nanosheets, was designed, which showed potent antibacterial ability through synergistically and physically disturbing the bacterial membrane. The as-fabricated PMB@GO nanocomposites demonstrated an enhanced bacterial-killing efficiency, with a minimum inhibitory concentration (MIC) value half of that of free PMB (with an MIC value as low as 0.5 μg mL-1 over Escherichia coli), and a bacterial viability less than one fourth of that of PMB (with a bacterial reduction of 60% after 3 h treatment, and 90% after 6 h incubation). Furthermore, the nanocomposite displayed moderate cytotoxicity or hemolysis effect, with cellular viabilities over 85% at concentrations up to 16 times the MIC value. Studies on antibacterial mechanism revealed that the synergy between PMB molecules and GO nanosheets greatly facilitated the vertical insertion of the nanocomposite into the lipid membrane, leading to membrane disturbance and permeabilization. Our results demonstrate a physical mechanism for improving the antibacterial performance of PMB and developing advanced antibacterial agents for better clinic uses.
Collapse
|
5
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
6
|
Zhang N, Zhu L, Ouyang Q, Yue S, Huang Y, Qu S, Li R, Qiao Y, Xu M, He F, Zhao B, Wei L, Wu X, Zhang P. Visualizing the Potential Impairment of Polymyxin B to Central Nervous System Through MR Susceptibility-Weighted Imaging. Front Pharmacol 2021; 12:784864. [PMID: 34925041 PMCID: PMC8675099 DOI: 10.3389/fphar.2021.784864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/24/2023] Open
Abstract
Polymyxin B (PMB) exert bactericidal effects on the cell wall of Gram-negative bacteria, leading to changes in the permeability of the cytoplasmic membrane and resulting in cell death, which is sensitive to the multi-resistant Gram-negative bacteria. However, the severe toxicity and adverse side effects largely hamper the clinical application of PMB. Although the molecular pathology of PMB neurotoxicity has been adequately studied at the cellular and molecular level. However, the impact of PMB on the physiological states of central nervous system in vivo may be quite different from that in vitro, which need to be further studied. Therefore, in the current study, the biocompatible ultra-uniform Fe3O4 nanoparticles were employed for noninvasively in vivo visualizing the potential impairment of PMB to the central nervous system. Systematic studies clearly reveal that the prepared Fe3O4 nanoparticles can serve as an appropriate magnetic resonance contrast agent with high transverse relaxivity and outstanding biosafety, which thus enables the following in vivo susceptibility-weighted imaging (SWI) studies on the PMB-treated mice models. As a result, it is first found that the blood-brain barrier (BBB) of mice may be impaired by successive PMB administration, displaying by the discrete punctate SWI signals distributed asymmetrically across brain regions in brain parenchyma. This result may pave a noninvasive approach for in-depth studies of PMB medication strategy, monitoring the BBB changes during PMB treatment, and even assessing the risk after PMB successive medication in multidrug-resistant Gram-negative bacterial infected patients from the perspective of medical imaging.
Collapse
Affiliation(s)
- Ni Zhang
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lichong Zhu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Qiuhong Ouyang
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Saisai Yue
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yichun Huang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuang Qu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Runwei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yuanyuan Qiao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Man Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fangfei He
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Bin Zhao
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Lai Wei
- Xinxiang Key Laboratory of Forensic Toxicology, School of Forensic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Xiaoai Wu
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xiaoai Wu, ; Peisen Zhang,
| | - Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Department of Rehabilitation Medicine, School of Medicine, Guangzhou First People’s Hospital, South China University of Technology, Guangzhou, China
- *Correspondence: Xiaoai Wu, ; Peisen Zhang,
| |
Collapse
|
7
|
Gupta M, Weaver DF. Axonal plasma membrane-mediated toxicity of cholesterol in Alzheimer's disease: A microsecond molecular dynamics study. Biophys Chem 2021; 281:106718. [PMID: 34808480 DOI: 10.1016/j.bpc.2021.106718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is increasingly being recognized as an immune-mediated disease of brain. Since physiological brain health and brain immune function is dependent upon homeostatic neuronal membrane structure and function, alterations in membrane lipid biochemistry may predispose to disease. Brain is rich in cholesterol, and cholesterol metabolism dysfunction is a known risk factor for AD. Employing extensive microsecond all-atom molecular dynamics simulations, we investigated the properties of model neuronal membranes as a function of cholesterol concentration; phospholipid and phospholipid/cholesterol bilayers were also simulated to compare against available experimental data. Increased cholesterol concentrations compact and stiffen the lipid membrane, reducing permeability while modulating local water densities in the peri-membranous environment. Conversely, lower cholesterol mole fraction yields membranes with increased molecular disorder, enhanced fluidity, higher molecular tilting, and augmented interdigitation between bilayer leaflet lipids. Our findings provide a molecular insight on effect of cholesterol composition on various biochemical processes occurring at neuronal axon plasma membrane. These calculations also endeavor to establish a membrane-based link between cholesterol as an AD risk factor and possible AD pathology.
Collapse
Affiliation(s)
- Mayuri Gupta
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, 60 Leonard Avenue, Toronto M5T 0S8, Canada; Department of Chemistry, University of Toronto, Toronto M55 3H6, Canada; Department of Medicine, University of Toronto, Toronto M5G 2C4, Canada; Department of Pharmaceutical Sciences, University of Toronto, Toronto M5S 3M2, Canada.
| |
Collapse
|
8
|
Richter R, Lehr CM. Extracellular vesicles as novel assay tools to study cellular interactions of anti-infective compounds - A perspective. Adv Drug Deliv Rev 2021; 173:492-503. [PMID: 33857554 DOI: 10.1016/j.addr.2021.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/08/2021] [Indexed: 12/13/2022]
Abstract
Sudden outbreaks of novel infectious diseases and the persistent evolution of antimicrobial resistant pathogens make it necessary to develop specific tools to quickly understand pathogen-cell interactions and to study appropriate drug delivery strategies. Extracellular vesicles (EVs) are cell-specific biogenic transport systems, which are gaining more and more popularity as either diagnostic markers or drug delivery systems. Apart from that, there are emerging possibilities for EVs as tools to study drug penetration, drug-membrane interactions as well as pathogen-membrane interactions. However, it appears that the potential of EVs for such applications has not been fully exploited yet. Considering the vast variety of cells that can be involved in an infection, vesicle-based analytical methods are just emerging and the number of reported applications is still relatively small. Aim of this review is to discuss the current state of the art of EV-based assays, especially in the context of antimicrobial research and therapy, and to present some new perspectives for a more exhaustive and creative exploration in the future.
Collapse
Affiliation(s)
- Robert Richter
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany
| | - Claus-Michael Lehr
- Department of Drug Delivery Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz-Centre for Infection Research (HZI), Campus E8.1, 66123 Saarbrücken, Germany; Department of Pharmacy, Saarland University, Campus E8.1, 66123 Saarbrücken, Germany.
| |
Collapse
|
9
|
Abstract
Although antimicrobial resistance is an increasingly significant public health concern, there have only been two new classes of antibiotics approved for human use since the 1960s. Understanding the mechanisms of action of antibiotics is critical for novel antibiotic discovery, but novel approaches are needed that do not exclusively rely on experiments. Molecular dynamics simulation is a computational tool that uses simple models of the atoms in a system to discover nanoscale insights into the dynamic relationship between mechanism and biological function. Such insights can lay the framework for elucidating the mechanism of action and optimizing antibiotic templates. Antimicrobial peptides represent a promising solution to escalating antimicrobial resistance, given their lesser tendency to induce resistance than that of small-molecule antibiotics. Simulations of these agents have already revealed how they interact with bacterial membranes and the underlying physiochemical features directing their structure and function. In this minireview, we discuss how traditional molecular dynamics simulation works and its role and potential for the development of new antibiotic candidates with an emphasis on antimicrobial peptides.
Collapse
|
10
|
Abstract
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
Collapse
|
11
|
Khondker A, Bider RC, Passos-Gastaldo I, Wright GD, Rheinstädter MC. Membrane interactions of non-membrane targeting antibiotics: The case of aminoglycosides, macrolides, and fluoroquinolones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183448. [PMID: 32828850 DOI: 10.1016/j.bbamem.2020.183448] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 11/25/2022]
Abstract
Numerous antibiotics are known to target intracellular pathways, such as protein translation or DNA replication. Membrane transporters typically regulate drug uptake; however, little is known about direct interactions between these antibiotics and the cell membranes. Here, we studied the interactions between different aminoglycosides (kanamycin, gentamicin, streptomycin, neomycin), macrolides (azithromycin, clarithromycin, erythromycin), and fluoroquinolones (ciprofloxacin, levofloxacin) with bacterial membrane mimics to determine drug partitioning and potential drug-induced membrane disruption. The antibiotics' exact location in the bilayers and their effect on membrane thickness and fluidity were determined from high-resolution X-ray diffraction. While the antibiotics did not change membrane thickness at low (1:100 drug/lipid) or high (1:10 drug/lipid) concentrations, they were found to increase membrane disorder in a dose-dependent manner. However, no membrane damage, such as membrane disruption or pore formation, was observed for any of the antibiotics. To note, all antibiotics partitioned into the lipid head groups, while macrolides and fluoroquinolones also partitioned into the bilayer core. The results suggest that the bacterial membrane is relatively inert in the direct mechanisms of actions of these antibiotics.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada; Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Renée-Claude Bider
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Isabella Passos-Gastaldo
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D Wright
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
12
|
Jiang X, Zhang S, Azad MAK, Roberts KD, Wan L, Gong B, Yang K, Yuan B, Uddin H, Li J, Thompson PE, Velkov T, Fu J, Wang L, Li J. Structure-Interaction Relationship of Polymyxins with the Membrane of Human Kidney Proximal Tubular Cells. ACS Infect Dis 2020; 6:2110-2119. [PMID: 32619094 PMCID: PMC7485602 DOI: 10.1021/acsinfecdis.0c00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Multidrug-resistant Gram-negative bacteria are a serious global threat to human health. Polymyxins are increasingly used in patients as a last-line therapy to treat infections caused by these life-threatening 'superbugs'. Unfortunately, polymyxin-induced nephrotoxicity is the major dose-limiting factor and understanding its mechanism is crucial for the development of novel, safer polymyxins. Here, we undertook the first all-atom molecular dynamics simulations of the interaction between four naturally occurring polymyxins A1, B1, M1 and colistin A (representative structural variations of the polymyxin core structure) and the membrane of human kidney proximal tubular cells. All polymyxins inserted spontaneously into the hydrophobic region of the membrane where they were retained, although their insertion abilities varied. Polymyxin A1 completely penetrated into the hydrophobic region of the membrane with a unique folded conformation, whereas the other three polymyxins only inserted their fatty acyl tails into this region. Furthermore, local membrane defects and increased water penetration were induced by each polymyxin, which may represent the initial stage of cellular membrane damage. Finally, the structure-interaction relationship of polymyxins was investigated based on atomic interactions at the cell membrane level. The hydrophobicity at positions 6/7 and stereochemistry at position 3 regulated the interactions of polymyxins with the cell membrane. Collectively, our results provide new mechanistic insights into polymyxin-induced nephrotoxicity at the atomic level and will facilitate the development of new-generation polymyxins.
Collapse
Affiliation(s)
- Xukai Jiang
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Shuo Zhang
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Mohammad A. K. Azad
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Kade D. Roberts
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Lin Wan
- School of Software, Shandong University, Jinan 250101, China
| | - Bin Gong
- School of Software, Shandong University, Jinan 250101, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Bing Yuan
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, China
| | - Hemayet Uddin
- Melbourne Centre for Nanofabrication, Clayton, Melbourne, Victoria 3168, Australia
| | - Jingliang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3216, Australia
| | - Philip E. Thompson
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Jing Fu
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Victoria 3800, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jian Li
- Biomedicine Discovery Institute, Infection & Immunity Program and Department of Microbiology, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| |
Collapse
|
13
|
Dubashynskaya NV, Skorik YA. Polymyxin Delivery Systems: Recent Advances and Challenges. Pharmaceuticals (Basel) 2020; 13:E83. [PMID: 32365637 PMCID: PMC7281078 DOI: 10.3390/ph13050083] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Polymyxins are vital antibiotics for the treatment of multiresistant Gram-negative ESKAPE pathogen infections. However, their clinical value is limited by their high nephrotoxicity and neurotoxicity, as well as their poor permeability and absorption in the gastrointestinal tract. This review focuses on various polymyxin delivery systems that improve polymyxin bioavailability and reduce drug toxicity through targeted and controlled release. Currently, the most suitable systems for improving oral, inhalation, and parenteral polymyxin delivery are polymer particles, liposomes, and conjugates, while gels, polymer fibers, and membranes are attractive materials for topical administration of polymyxin for the treatment of infected wounds and burns. In general, the application of these systems protects polymyxin molecules from the negative effects of both physiological and pathological factors while achieving higher concentrations at the target site and reducing dosage and toxicity. Improving the properties of polymyxin will be of great interest to researchers who are focused on developing antimicrobial drugs that show increased efficacy and safety.
Collapse
Affiliation(s)
| | - Yury A. Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoy pr. V.O. 31, St. Petersburg 199004, Russia;
| |
Collapse
|
14
|
Cholak E, Bugge K, Khondker A, Gauger K, Pedraz-Cuesta E, Pedersen ME, Bucciarelli S, Vestergaard B, Pedersen SF, Rheinstädter MC, Langkilde AE, Kragelund BB. Avidity within the N-terminal anchor drives α-synuclein membrane interaction and insertion. FASEB J 2020; 34:7462-7482. [PMID: 32277854 DOI: 10.1096/fj.202000107r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/02/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022]
Abstract
In the brain, α-synuclein (aSN) partitions between free unbound cytosolic and membrane bound forms modulating both its physiological and pathological role and complicating its study due to structural heterogeneity. Here, we use an interdisciplinary, synergistic approach to characterize the properties of aSN:lipid mixtures, isolated aSN:lipid co-structures, and aSN in mammalian cells. Enabled by the isolation of the membrane-bound state, we show that within the previously described N-terminal membrane anchor, membrane interaction relies both on an N-terminal tail (NTT) head group layer insertion of 14 residues and a folded-upon-binding helix at the membrane surface. Both binding events must be present; if, for example, the NTT insertion is lost, the membrane affinity of aSN is severely compromised and formation of aSN:lipid co-structures hampered. In mammalian cells, compromised cooperativity results in lowered membrane association. Thus, avidity within the N-terminal anchor couples N-terminal insertion and helical surface binding, which is crucial for aSN membrane interaction and cellular localization, and may affect membrane fusion.
Collapse
Affiliation(s)
- Ersoy Cholak
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Katrine Bugge
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Kimmie Gauger
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elena Pedraz-Cuesta
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Saskia Bucciarelli
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Vestergaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Annette Eva Langkilde
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, The Linderstrøm-Lang Centre for Protein Science and Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Saem S, Shahid O, Khondker A, Moran-Hidalgo C, Rheinstädter MC, Moran-Mirabal J. Benchtop-fabricated lipid-based electrochemical sensing platform for the detection of membrane disrupting agents. Sci Rep 2020; 10:4595. [PMID: 32165701 PMCID: PMC7067837 DOI: 10.1038/s41598-020-61561-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/28/2020] [Indexed: 11/22/2022] Open
Abstract
There are increasing concerns about the danger that water-borne pathogens and pollutants pose to the public. Of particular importance are those that disrupt the plasma membrane, since loss of membrane integrity can lead to cell death. Currently, quantitative assays to detect membrane-disrupting (lytic) agents are done offsite, leading to long turnaround times and high costs, while existing colorimetric point-of-need solutions often sacrifice sensitivity. Thus, portable and highly sensitive solutions are needed to detect lytic agents for health and environmental monitoring. Here, a lipid-based electrochemical sensing platform is introduced to rapidly detect membrane-disrupting agents. The platform combines benchtop fabricated microstructured electrodes (MSEs) with lipid membranes. The sensing mechanism of the lipid-based platform relies on stacked lipid membranes serving as passivating layers that when disrupted generate electrochemical signals proportional to the membrane damage. The MSE topography, membrane casting and annealing conditions were optimized to yield the most reproducible and sensitive devices. We used the sensors to detect membrane-disrupting agents sodium dodecyl sulfate and Polymyxin-B within minutes and with limits of detection in the ppm regime. This study introduces a platform with potential for the integration of complex membranes on MSEs towards the goal of developing Membrane-on-Chip sensing devices.
Collapse
Affiliation(s)
- Sokunthearath Saem
- McMaster University, Department of Chemistry and Chemical Biology, Hamilton, L8S 4L8, Canada
| | - Osama Shahid
- McMaster University, Department of Chemistry and Chemical Biology, Hamilton, L8S 4L8, Canada
| | - Adree Khondker
- McMaster University, Department of Physics and Astronomy, Hamilton, L8S 4L8, Canada
| | - Camila Moran-Hidalgo
- McMaster University, Department of Chemistry and Chemical Biology, Hamilton, L8S 4L8, Canada
| | | | - Jose Moran-Mirabal
- McMaster University, Department of Chemistry and Chemical Biology, Hamilton, L8S 4L8, Canada.
| |
Collapse
|
16
|
Khondker A, Rheinstädter MC. How do bacterial membranes resist polymyxin antibiotics? Commun Biol 2020; 3:77. [PMID: 32066819 PMCID: PMC7026071 DOI: 10.1038/s42003-020-0803-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/17/2023] Open
Abstract
In our recent Communications Biology article, we reported on the biophysical mechanism of resistance for polymyxin antibiotics in bacterial membranes. The emergence of plasmid-borne colistin resistance poses a threat to our last line of defense against many pathogens. Here, we outline the current understanding of mcr-1 -mediated polymyxin resistance, and propose future directions for membrane-targeting antibiotic research. Adree Khondker and Maikel Rheinstadter discuss how bacteria escape being killed by polymyxin antibiotics. Touching on their recent Communications Biology paper, they elaborate on the mechanism by which the bacterial membrane becomes resistant and on future directions to take in order to understand this phenomenon.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada.
- Origins Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Pachler M, Kabelka I, Appavou MS, Lohner K, Vácha R, Pabst G. Magainin 2 and PGLa in Bacterial Membrane Mimics I: Peptide-Peptide and Lipid-Peptide Interactions. Biophys J 2019; 117:1858-1869. [PMID: 31703802 PMCID: PMC7031808 DOI: 10.1016/j.bpj.2019.10.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/30/2022] Open
Abstract
We addressed the onset of synergistic activity of the two well-studied antimicrobial peptides magainin 2 (MG2a) and PGLa using lipid-only mimics of Gram-negative cytoplasmic membranes. Specifically, we coupled a joint analysis of small-angle x-ray and neutron scattering experiments on fully hydrated lipid vesicles in the presence of MG2a and L18W-PGLa to all-atom and coarse-grained molecular dynamics simulations. In agreement with previous studies, both peptides, as well as their equimolar mixture, were found to remain upon adsorption in a surface-aligned topology and to induce significant membrane perturbation, as evidenced by membrane thinning and hydrocarbon order parameter changes in the vicinity of the inserted peptide. These effects were particularly pronounced for the so-called synergistic mixture of 1:1 (mol/mol) L18W-PGLa/MG2a and cannot be accounted for by a linear combination of the membrane perturbations of two peptides individually. Our data are consistent with the formation of parallel heterodimers at concentrations below a synergistic increase of dye leakage from vesicles. Our simulations further show that the heterodimers interact via salt bridges and hydrophobic forces, which apparently makes them more stable than putatively formed antiparallel L18W-PGLa and MG2a homodimers. Moreover, dimerization of L18W-PGLa and MG2a leads to a relocation of the peptides within the lipid headgroup region as compared to the individual peptides. The early onset of dimerization of L18W-PGLa and MG2a at low peptide concentrations consequently appears to be key to their synergistic dye-releasing activity from lipid vesicles at high concentrations.
Collapse
Affiliation(s)
- Michael Pachler
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Ivo Kabelka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Marie-Sousai Appavou
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum, Forschungszentrum Jülich GmbH, Germany
| | - Karl Lohner
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria
| | - Robert Vácha
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic; National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Georg Pabst
- Biophysics Division, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria.
| |
Collapse
|
18
|
Khondker A, Hub JS, Rheinstädter MC. Steroid-steroid interactions in biological membranes: Cholesterol and cortisone. Chem Phys Lipids 2019; 221:193-197. [PMID: 30951711 DOI: 10.1016/j.chemphyslip.2019.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/27/2019] [Accepted: 04/01/2019] [Indexed: 11/17/2022]
Abstract
Steroid flares are common side effects associated with corticosteroid treatment, and have been recently theorized to be a consequence of drug crystallization. It was previously reported that the lipid bilayer can promote crystallization of cortisone at high local concentrations. Here, we studied the effect of cholesterol on this membrane induced cortisone crystallization. By combining x-ray diffraction and Molecular Dynamics simulations we observe that that the presence of cholesterol suppresses cortisone-induced membrane thinning and cortisone transnucleation. Cortisone located in the head-tail interface of the membranes also in the presence of cholesterol. The cholesterol molecules were found to be tilted and displaced towards the bilayer center as function of cortisone concentration, away from their canonical position. Our results show that membrane cholesterol may play an important role in the ability of lipid bilayers to catalyze the formation of corticosteroid crystallites.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario, Canada; Origins Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
19
|
Khondker A, Dhaliwal AK, Saem S, Mahmood A, Fradin C, Moran-Mirabal J, Rheinstädter MC. Membrane charge and lipid packing determine polymyxin-induced membrane damage. Commun Biol 2019; 2:67. [PMID: 30793045 PMCID: PMC6379423 DOI: 10.1038/s42003-019-0297-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 01/11/2019] [Indexed: 01/14/2023] Open
Abstract
With the advent of polymyxin B (PmB) resistance in bacteria, the mechanisms for mcr-1 resistance are of crucial importance in the design of novel therapeutics. The mcr-1 phenotype is known to decrease membrane charge and increase membrane packing by modification of the bacterial outer membrane. We used X-ray diffraction, Molecular Dynamics simulations, electrochemistry, and leakage assays to determine the location of PmB in different membranes and assess membrane damage. By varying membrane charge and lipid tail packing independently, we show that increasing membrane surface charge promotes penetration of PmB and membrane damage, whereas increasing lipid packing decreases penetration and damage. The penetration of the PmB molecules is well described by a phenomenological model that relates an attractive electrostatic and a repulsive force opposing insertion due to increased membrane packing. The model applies well to several gram-negative bacterial strains and may be used to predict resistance strength.
Collapse
Affiliation(s)
- Adree Khondker
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Alexander K Dhaliwal
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Origins Institute, McMaster University, Hamilton, ON, Canada
| | - Sokunthearath Saem
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Ahmad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jose Moran-Mirabal
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, Canada
| | - Maikel C Rheinstädter
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada.
- Origins Institute, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
20
|
Weber EJ, Lidberg KA, Wang L, Bammler TK, MacDonald JW, Li MJ, Redhair M, Atkins WM, Tran C, Hines KM, Herron J, Xu L, Monteiro MB, Ramm S, Vaidya V, Vaara M, Vaara T, Himmelfarb J, Kelly EJ. Human kidney on a chip assessment of polymyxin antibiotic nephrotoxicity. JCI Insight 2018; 3:123673. [PMID: 30568031 DOI: 10.1172/jci.insight.123673] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Drug-induced kidney injury, largely caused by proximal tubular intoxicants, limits development and clinical use of new and approved drugs. Assessing preclinical nephrotoxicity relies on animal models that are frequently insensitive; thus, potentially novel techniques - including human microphysiological systems, or "organs on chips" - are proposed to accelerate drug development and predict safety. Polymyxins are potent antibiotics against multidrug-resistant microorganisms; however, clinical use remains restricted because of high risk of nephrotoxicity and limited understanding of toxicological mechanisms. To mitigate risks, structural analogs of polymyxins (NAB739 and NAB741) are currently in clinical development. Using a microphysiological system to model human kidney proximal tubule, we exposed cells to polymyxin B (PMB) and observed significant increases of injury signals, including kidney injury molecule-1 KIM-1and a panel of injury-associated miRNAs (each P < 0.001). Surprisingly, transcriptional profiling identified cholesterol biosynthesis as the primary cellular pathway induced by PMB (P = 1.22 ×10-16), and effluent cholesterol concentrations were significantly increased after exposure (P < 0.01). Additionally, we observed no upregulation of the nuclear factor (erythroid derived-2)-like 2 pathway, despite this being a common pathway upregulated in response to proximal tubule toxicants. In contrast with PMB exposure, minimal changes in gene expression, injury biomarkers, and cholesterol concentrations were observed in response to NAB739 and NAB741. Our findings demonstrate the preclinical safety of NAB739 and NAB741 and reveal cholesterol biosynthesis as a potentially novel pathway for PMB-induced injury. To our knowledge, this is the first demonstration of a human-on-chip platform used for simultaneous safety testing of new chemical entities and defining unique toxicological pathway responses of an FDA-approved molecule.
Collapse
Affiliation(s)
| | | | - Lu Wang
- Department of Environmental and Occupational Health Sciences, and
| | - Theo K Bammler
- Department of Environmental and Occupational Health Sciences, and
| | | | - Mavis J Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Michelle Redhair
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Cecilia Tran
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Josi Herron
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Maria Beatriz Monteiro
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Susanne Ramm
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Vishal Vaidya
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, Massachusetts, USA
| | - Martti Vaara
- Northern Antibiotics Ltd., Espoo, Finland.,Division of Clinical Microbiology, Helsinki University Hospital, Helsinki, Finland.,Department of Bacteriology and Immunology, Helsinki University Medical School, Helsinki, Finland
| | - Timo Vaara
- Northern Antibiotics Ltd., Espoo, Finland
| | - Jonathan Himmelfarb
- Department of Medicine, Division of Nephrology, Kidney Research Institute, Seattle, Washington, USA
| | | |
Collapse
|