1
|
Ullah G, Nosyreva ED, Thompson D, Cuello VA, Cuello LG, Syeda R. Analysis of pressure-activated Piezo1 open and subconductance states at a single channel level. J Biol Chem 2024; 300:107156. [PMID: 38479601 PMCID: PMC11007442 DOI: 10.1016/j.jbc.2024.107156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/24/2024] [Accepted: 03/06/2024] [Indexed: 04/12/2024] Open
Abstract
Mechanically activated Piezo1 channels undergo transitions from closed to open-state in response to pressure and other mechanical stimuli. However, the molecular details of these mechanosensitive gating transitions are unknown. Here, we used cell-attached pressure-clamp recordings to acquire single channel data at steady-state conditions (where inactivation has settled down), at various pressures and voltages. Importantly, we identify and analyze subconductance states of the channel which were not reported before. Pressure-dependent activation of Piezo1 increases the occupancy of open and subconductance state at the expense of decreased occupancy of shut-states. No significant change in the mean open time of subconductance states was observed with increasing negative pipette pressure or with varying voltages (ranging from -40 to -100 mV). Using Markov-chain modeling, we identified a minimal four-states kinetic scheme, which recapitulates essential characteristics of the single channel data, including that of the subconductance level. This study advances our understanding of Piezo1-gating mechanism in response to discrete stimuli (such as pressure and voltage) and paves the path to develop cellular and tissue level models to predict Piezo1 function in various cell types.
Collapse
Affiliation(s)
- Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida, USA
| | - Elena D Nosyreva
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - David Thompson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victoria A Cuello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luis G Cuello
- Department of Cell Physiology and Molecular Biophysics, TTUHSC, Lubbock, Texas, USA
| | - Ruhma Syeda
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Moffett AS, Cui G, Thomas PJ, Hunt WD, McCarty NA, Westafer RS, Eckford AW. Permissive and nonpermissive channel closings in CFTR revealed by a factor graph inference algorithm. BIOPHYSICAL REPORTS 2022; 2:100083. [PMID: 36425670 PMCID: PMC9680790 DOI: 10.1016/j.bpr.2022.100083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The closing of the gated ion channel in the cystic fibrosis transmembrane conductance regulator can be categorized as nonpermissive to reopening, which involves the unbinding of ADP or ATP, or permissive, which does not. Identifying the type of closing is of interest as interactions with nucleotides can be affected in mutants or by introducing agonists. However, all closings are electrically silent and difficult to differentiate. For single-channel patch-clamp traces, we show that the type of the closing can be accurately determined by an inference algorithm implemented on a factor graph, which we demonstrate using both simulated and lab-obtained patch-clamp traces.
Collapse
Affiliation(s)
- Alexander S. Moffett
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| | - Guiying Cui
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | - Peter J. Thomas
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, Cleveland, Ohio
| | - William D. Hunt
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Nael A. McCarty
- Emory + Children’s Center for Cystic Fibrosis and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, Georgia
| | | | - Andrew W. Eckford
- Department of Electrical Engineering and Computer Science, York University, Toronto, ON, Canada
| |
Collapse
|
3
|
Verma A, Manchel A, Melunis J, Hengstler JG, Vadigepalli R. From Seeing to Simulating: A Survey of Imaging Techniques and Spatially-Resolved Data for Developing Multiscale Computational Models of Liver Regeneration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:917191. [PMID: 37575468 PMCID: PMC10421626 DOI: 10.3389/fsysb.2022.917191] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Liver regeneration, which leads to the re-establishment of organ mass, follows a specifically organized set of biological processes acting on various time and length scales. Computational models of liver regeneration largely focused on incorporating molecular and signaling detail have been developed by multiple research groups in the recent years. These modeling efforts have supported a synthesis of disparate experimental results at the molecular scale. Incorporation of tissue and organ scale data using noninvasive imaging methods can extend these computational models towards a comprehensive accounting of multiscale dynamics of liver regeneration. For instance, microscopy-based imaging methods provide detailed histological information at the tissue and cellular scales. Noninvasive imaging methods such as ultrasound, computed tomography and magnetic resonance imaging provide morphological and physiological features including volumetric measures over time. In this review, we discuss multiple imaging modalities capable of informing computational models of liver regeneration at the organ-, tissue- and cellular level. Additionally, we discuss available software and algorithms, which aid in the analysis and integration of imaging data into computational models. Such models can be generated or tuned for an individual patient with liver disease. Progress towards integrated multiscale models of liver regeneration can aid in prognostic tool development for treating liver disease.
Collapse
Affiliation(s)
- Aalap Verma
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Alexandra Manchel
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Justin Melunis
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jan G. Hengstler
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Technical University Dortmund, Dortmund, Germany
| | - Rajanikanth Vadigepalli
- Daniel Baugh Institute for Functional Genomics and Computational Biology, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
4
|
Brauchi SE, Steinberg XP. Studying ion channel conformation dynamics by encoding coumarin as unnatural amino acid. Methods Enzymol 2021; 653:239-266. [PMID: 34099174 DOI: 10.1016/bs.mie.2021.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Monitoring the conformational changes of proteins is critical to understand their function. Ion channels are membrane-bound minute machines controlling the passage of ions across biological membranes. The precise labeling of ion channels with fluorescent probes allows studying their dynamics and facilitates their characterization by high-resolution optical techniques. Here we describe a protocol for the use of a small fluorescent reporter, incorporated by expansion of the genetic code in the host cell. An important advantage of using small probes is that they are less likely to perturb protein structure, function, and trafficking. In our hands, Tyr-coumarin proved to be useful to measure the conformational changes occurring in the narrow space of the permeation pathway in single capsaicin receptors. The method described here could be directly translated to the study of membrane receptors, non-electrogenic transporters, or membrane-bound enzymes.
Collapse
Affiliation(s)
- Sebastian E Brauchi
- Physiology Institute, Universidad Austral de Chile, Valdivia, Chile; Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Valdivia, Chile.
| | | |
Collapse
|
5
|
Shah SI, Ong HL, Demuro A, Ullah G. PunctaSpecks: A tool for automated detection, tracking, and analysis of multiple types of fluorescently labeled biomolecules. Cell Calcium 2020; 89:102224. [PMID: 32502904 PMCID: PMC7343294 DOI: 10.1016/j.ceca.2020.102224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 05/21/2020] [Indexed: 01/21/2023]
Abstract
Recent advances in imaging technology and fluorescent probes have made it possible to gain information about the dynamics of subcellular processes at unprecedented spatiotemporal scales. Unfortunately, a lack of automated tools to efficiently process the resulting imaging data encoding fine details of the biological processes remains a major bottleneck in utilizing the full potential of these powerful experimental techniques. Here we present a computational tool, called PunctaSpecks, that can characterize fluorescence signals arising from a wide range of biological molecules under normal and pathological conditions. Among other things, the program can calculate the number, areas, life-times, and amplitudes of fluorescence signals arising from multiple sources, track diffusing fluorescence sources like moving mitochondria, and determine the overlap probability of two processes or organelles imaged using indicator dyes of different colors. We have tested PunctaSpecks on synthetic time-lapse movies containing mobile fluorescence objects of various sizes, mimicking the activity of biomolecules. The robustness of the software is tested by varying the level of noise along with random but known pattern of appearing, disappearing, and movement of these objects. Next, we use PunctaSpecks to characterize protein-protein interaction involved in store-operated Ca2+ entry through the formation and activation of plasma membrane-bound ORAI1 channel and endoplasmic reticulum membrane-bound stromal interaction molecule (STIM), the evolution of inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ signals from sub-micrometer size local events into global waves in human cortical neurons, and the activity of Alzheimer's disease-associated β amyloid pores in the plasma membrane. The tool can also be used to study other dynamical processes imaged through fluorescence molecules. The open source algorithm allows for extending the program to analyze more than two types of biomolecules visualized using markers of different colors.
Collapse
Affiliation(s)
| | - Hwei Ling Ong
- Secretory Physiology Section, NIDCR, NIH, Bethesda, MD, 20892,USA
| | - Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33647, USA.
| |
Collapse
|
6
|
Swaminathan D, Dickinson GD, Demuro A, Parker I. Noise analysis of cytosolic calcium image data. Cell Calcium 2019; 86:102152. [PMID: 31918030 DOI: 10.1016/j.ceca.2019.102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Cellular Ca2+ signals are often constrained to cytosolic micro- or nano-domains where stochastic openings of Ca2+ channels cause large fluctuations in local Ca2+ concentration (Ca2+ 'noise'). With the advent of TIRF microscopy to image the fluorescence of Ca2+-sensitive probes from attoliter volumes it has become possible to directly monitor these signals, which closely track the gating of plasmalemmal and ER Ca2+-permeable channels. Nevertheless, it is likely that many physiologically important Ca2+ signals are too small to resolve as discrete events in fluorescence recordings. By analogy with noise analysis of electrophysiological data, we explore here the use of statistical approaches to detect and analyze such Ca2+ noise in images obtained using Ca2+-sensitive indicator dyes. We describe two techniques - power spectrum analysis and spatio-temporal correlation - and demonstrate that both effectively identify discrete, spatially localized calcium release events (Ca2+ puffs). Moreover, we show they are able to detect localized noise fluctuations in a case where discrete events cannot directly be resolved.
Collapse
Affiliation(s)
- Divya Swaminathan
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA.
| | - George D Dickinson
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Angelo Demuro
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA92697, USA
| |
Collapse
|
7
|
Shlyonsky V, Gall D. The OpenPicoAmp-100k: an open-source high-performance amplifier for single channel recording in planar lipid bilayers. Pflugers Arch 2019; 471:1467-1480. [DOI: 10.1007/s00424-019-02319-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 02/04/2023]
|
8
|
Shah SI, Smith M, Swaminathan D, Parker I, Ullah G, Demuro A. CellSpecks: A Software for Automated Detection and Analysis of Calcium Channels in Live Cells. Biophys J 2018; 115:2141-2151. [PMID: 30447989 DOI: 10.1016/j.bpj.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 02/01/2023] Open
Abstract
To couple the fidelity of patch-clamp recording with a more high-throughput screening capability, we pioneered a, to our knowledge, novel approach to single-channel recording that we named "optical patch clamp." By using highly sensitive fluorescent Ca2+ indicator dyes in conjunction with total internal fluorescence microscopy techniques, we monitor Ca2+ flux through individual Ca2+-permeable channels. This approach provides information about channel gating analogous to patch-clamp recording at a time resolution of ∼2 ms with the additional advantage of being massively parallel, providing simultaneous and independent recording from thousands of channels in the native environment. However, manual analysis of the data generated by this technique presents severe challenges because a video recording can include many thousands of frames. To overcome this bottleneck, we developed an image processing and analysis framework called CellSpecks capable of detecting and fully analyzing the kinetics of ion channels within a video sequence. By using randomly generated synthetic data, we tested the ability of CellSpecks to rapidly and efficiently detect and analyze the activity of thousands of ion channels, including openings for a few milliseconds. Here, we report the use of CellSpecks for the analysis of experimental data acquired by imaging muscle nicotinic acetylcholine receptors and the Alzheimer's disease-associated amyloid β pores with multiconductance levels in the plasma membrane of Xenopus laevis oocytes. We show that CellSpecks can accurately and efficiently generate location maps and create raw and processed fluorescence time traces; histograms of mean open times, mean close times, open probabilities, durations, and maximal amplitudes; and a "channel chip" showing the activity of all channels as a function of time. Although we specifically illustrate the application of CellSpecks for analyzing data from Ca2+ channels, it can be easily customized to analyze other spatially and temporally localized signals.
Collapse
Affiliation(s)
| | | | - Divya Swaminathan
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California
| | - Ian Parker
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California; Department of Physiology and Biophysics, University of California Irvine, Irvine, California
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida.
| | - Angelo Demuro
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California.
| |
Collapse
|
9
|
Toglia P, Demuro A, Mak DOD, Ullah G. Data-driven modeling of mitochondrial dysfunction in Alzheimer's disease. Cell Calcium 2018; 76:23-35. [PMID: 30248575 DOI: 10.1016/j.ceca.2018.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/02/2018] [Accepted: 09/03/2018] [Indexed: 02/06/2023]
Abstract
Intracellular accumulation of oligomeric forms of β amyloid (Aβ) are now believed to play a key role in the earliest phase of Alzheimer's disease (AD) as their rise correlates well with the early symptoms of the disease. Extensive evidence points to impaired neuronal Ca2+ homeostasis as a direct consequence of the intracellular Aβ oligomers. However, little is known about the downstream effects of the resulting Ca2+ rise on the many intracellular Ca2+-dependent pathways. Here we use multiscale modeling in conjunction with patch-clamp electrophysiology of single inositol 1,4,5-trisphosphate (IP3) receptor (IP3R) and fluorescence imaging of whole-cell Ca2+ response, induced by exogenously applied intracellular Aβ42 oligomers to show that Aβ42 inflicts cytotoxicity by impairing mitochondrial function. Driven by patch-clamp experiments, we first model the kinetics of IP3R, which is then extended to build a model for the whole-cell Ca2+ signals. The whole-cell model is then fitted to fluorescence signals to quantify the overall Ca2+ release from the endoplasmic reticulum by intracellular Aβ42 oligomers through G-protein-mediated stimulation of IP3 production. The estimated IP3 concentration as a function of intracellular Aβ42 content together with the whole-cell model allows us to show that Aβ42 oligomers impair mitochondrial function through pathological Ca2+ uptake and the resulting reduced mitochondrial inner membrane potential, leading to an overall lower ATP and increased production of reactive oxygen species and H2O2. We further show that mitochondrial function can be restored by the addition of Ca2+ buffer EGTA, in accordance with the observed abrogation of Aβ42 cytotoxicity by EGTA in our live cells experiments.
Collapse
Affiliation(s)
- Patrick Toglia
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Angelo Demuro
- Department of Neurobiology and Behavior and Physiology and Biophysics, University of California, Irvine, CA 92697, USA
| | - Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, FL 33620, USA.
| |
Collapse
|