1
|
V Yannas I. Unusual cell-cell cooperative mechanical activity elucidates the process of tissue regeneration. J Biomech 2024; 171:112174. [PMID: 38852483 DOI: 10.1016/j.jbiomech.2024.112174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/23/2024] [Indexed: 06/11/2024]
Abstract
We have studied wound contraction in three model wounds in animals: excised skin (guinea pig), transected peripheral nerve (rat) and the excised conjunctiva (rabbit). Wound contraction is driven by myofibroblasts bound together by adherens junctions (AJ) that confer cooperative activity to myofibroblasts during wound contraction and synthesis of scar. Grafting with the dermis regeneration template (DRT) cancels cell cooperativity by abolishing AJ connections in myofibroblasts, while also cancelling wound contraction, preventing synthesis of scar and inducing regeneration of excised tissues. The observed definitive prevention of scar synthesis suggests the exploration of DRT scaffolds to regenerate tissues in several other organs and to prevent fibrosis in humans.
Collapse
|
2
|
Li S, Wang S, Liu W, Zhang C, Song J. Current strategies for enhancement of the bioactivity of artificial ligaments: A mini-review. J Orthop Translat 2022; 36:205-215. [PMID: 36263385 PMCID: PMC9576487 DOI: 10.1016/j.jot.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/14/2022] [Accepted: 07/26/2022] [Indexed: 11/08/2022] Open
Abstract
Background and objective Anterior cruciate ligament (ACL) reconstruction calls for artificial ligaments with better bioactivity, however systematic reviews regarding bioactivity enhancement strategies, technologies, and perspectives of artificial ligaments have been rarely found. Methods Research papers, reviews, and clinical reports related to artificial ligaments were searched and summarized the current status and research trends of artificial ligaments through a systematic analysis. Results Having experienced ups and downs since the very first record of clinical application, artificial ligaments differing in material, and fabrication methods have been reported with different clinical performances. Various manufacturing technologies have developed and realized scaffold- and cell-based strategies. Despite encouraging in-vivo and in-vitro test results, the clinical results of such new designs need further clinical examinations. Conclusion As the demand for ACL reconstruction dramatically increases, novel artificial ligaments with better osteoinductivity and mechanical performance are promising. The translational potential of this article To develop novel artificial ligaments simultaneously possessing excellent osteoinductivity and satisfactory mechanical performance, it is important to grab a glance at recent research advances. This systematic analysis provides researchers and clinicians with comprehensive and comparable information on artificial ligaments, thus being of clinical translational significance.
Collapse
Affiliation(s)
- Shenglin Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China,Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Shuhan Wang
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Wenliang Liu
- Shenzhen Institute for Drug Control, Shenzhen Testing Center of Medical Devices, Shenzhen, 518057, China
| | - Chao Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jian Song
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China,Corresponding author.
| |
Collapse
|
3
|
Yang Y, Jiang H. Intercellular water exchanges trigger soliton-like waves in multicellular systems. Biophys J 2022; 121:1610-1618. [PMID: 35395246 PMCID: PMC9117941 DOI: 10.1016/j.bpj.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 11/26/2022] Open
Abstract
Oscillations and waves are ubiquitous in living cellular systems. Generations of these spatiotemporal patterns are generally attributed to some mechanochemical feedbacks. Here, we treat cells as open systems, i.e., water and ions can pass through the cell membrane passively or actively, and reveal a new origin of wave generation. We show that osmotic shocks above a shock threshold will trigger self-sustained cell oscillations and result in long-range waves propagating without decrement, a phenomenon that is analogous to the excitable medium. The traveling wave propagates along the intercellular osmotic pressure gradient, and its wave speed scales with the magnitude of intercellular water flows. Furthermore, we also find that the traveling wave exhibits several hallmarks of solitary waves. Together, our findings predict a new mechanism of wave generation in living multicellular systems. The ubiquity of intercellular water exchanges implies that this mechanism may be relevant to a broad class of systems.
Collapse
Affiliation(s)
- Yuehua Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, CAS Center for Excellence in Complex System Mechanics, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
4
|
Shang L, Ye F, Li M, Zhao Y. Spatial confinement toward creating artificial living systems. Chem Soc Rev 2022; 51:4075-4093. [PMID: 35502858 DOI: 10.1039/d1cs01025e] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Lifeforms are regulated by many physicochemical factors, and these factors could be controlled to play a role in the construction of artificial living systems. Among these factors, spatial confinement is an important one, which mediates biological behaviors at multiscale levels and participates in the biomanufacturing processes accordingly. This review describes how spatial confinement, as a fundamental biological phenomenon, provides cues for the construction of artificial living systems. Current knowledge about the role of spatial confinement in mediating individual cell behavior, collective cellular behavior, and tissue-level behavior are categorized. Endeavors on the synthesis of biomacromolecules, artificial cells, engineered tissues, and organoids in spatially confined bioreactors are then emphasized. After that, we discuss the cutting-edge applications of spatially confined artificial living systems in biomedical fields. Finally, we conclude by assessing the remaining challenges and future trends in the context of fundamental science, technical improvement, and practical applications.
Collapse
Affiliation(s)
- Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Fangfu Ye
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China. .,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health); Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, China.
| |
Collapse
|
5
|
Yu J, Cai P, Zhang X, Zhao T, Liang L, Zhang S, Liu H, Chen X. Spatiotemporal Oscillation in Confined Epithelial Motion upon Fluid-to-Solid Transition. ACS NANO 2021; 15:7618-7627. [PMID: 33844497 DOI: 10.1021/acsnano.1c01165] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluid-to-solid phase transition in multicellular assembly is crucial in many developmental biological processes, such as embryogenesis and morphogenesis. However, biomechanical studies in this area are limited, and little is known about factors governing the transition and how cell behaviors are regulated. Due to different stresses present, cells could behave distinctively depending on the nature of tissue. Here we report a fluid-to-solid transition in geometrically confined multicellular assemblies. Under circular confinement, Madin-Darby canine kidney (MDCK) monolayers undergo spatiotemporally oscillatory motions that are strongly dependent on the confinement size and distance from the periphery of the monolayers. Nanomechanical mapping reveals that epithelial tensional stress and traction forces on the substrate are both dependent on confinement size. The oscillation pattern and cellular nanomechanics profile appear well correlated with stress fiber assembly and cell polarization. These experimental observations imply that the confinement size-dependent surface tension regulates actin fiber assembly, cellular force generation, and cell polarization. Our analyses further suggest a characteristic confinement size (approximates to MDCK's natural correlation length) below which surface tension is sufficiently high and triggers a fluid-to-solid transition of the monolayers. Our findings may shed light on the geometrical and nanomechanical control of tissue morphogenesis and growth.
Collapse
Affiliation(s)
- Jing Yu
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiaoqian Zhang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tiankai Zhao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Linlin Liang
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Sulin Zhang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices (iFLEX), Max Planck-NTU Joint Lab for Artificial Senses, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
6
|
Eom W, Lee E, Lee SH, Sung TH, Clancy AJ, Lee WJ, Han TH. Carbon nanotube-reduced graphene oxide fiber with high torsional strength from rheological hierarchy control. Nat Commun 2021; 12:396. [PMID: 33452251 PMCID: PMC7810860 DOI: 10.1038/s41467-020-20518-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 11/20/2020] [Indexed: 01/30/2023] Open
Abstract
High torsional strength fibers are of practical interest for applications such as artificial muscles, electric generators, and actuators. Herein, we maximize torsional strength by understanding, measuring, and overcoming rheological thresholds of nanocarbon (nanotube/graphene oxide) dopes. The formed fibers show enhanced structure across multiple length scales, modified hierarchy, and improved mechanical properties. In particular, the torsional properties were examined, with high shear strength (914 MPa) attributed to nanotubes but magnified by their structure, intercalating graphene sheets. This design approach has the potential to realize the hierarchical dimensional hybrids, and may also be useful to build the effective network structure of heterogeneous materials.
Collapse
Affiliation(s)
- Wonsik Eom
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Eunsong Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang Hoon Lee
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Tae Hyun Sung
- Department of Electrical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Adam J Clancy
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Won Jun Lee
- Department of Fiber System Engineering, Dankook University, Yongin-si, 16890, Republic of Korea.
| | - Tae Hee Han
- Department of Organic and Nano Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
- Human-Tech Convergence Program, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
7
|
Ouyang M, Qian Z, Bu B, Jin Y, Wang J, Zhu Y, Liu L, Pan Y, Deng L. Sensing Traction Force on the Matrix Induces Cell-Cell Distant Mechanical Communications for Self-Assembly. ACS Biomater Sci Eng 2020; 6:5833-5848. [PMID: 33320570 DOI: 10.1021/acsbiomaterials.0c01035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The long-range biomechanical force propagating across a large scale may reserve the capability to trigger coordinative responses within cell population such as during angiogenesis, epithelial tubulogenesis, and cancer metastasis. How cells communicate in a distant manner within the group for self-assembly remains largely unknown. Here, we found that airway smooth muscle cells (ASMCs) rapidly self-assembled into a well-constructed network on 3D Matrigel containing type I collagen (COL), which relied on long-range biomechanical force across the matrix to direct cell-cell distant interactions. Similar results happened by HUVEC cells to mimic angiogenesis. Interestingly, single ASMCs initiated multiple extended protrusions precisely pointing to neighboring cells in distance (100-300 μm away or 5-10 folds of the diameter of a round single cell), depending on traction force sensing. Individual ASMCs mechanosensed each other to move directionally on both nonfibrous Matrigel only and Matrigel containing fibrous COL but lost mutual sensing on the cross-linked gel or coated glass due to no long-range force transmission. The bead tracking assay demonstrated distant transmission of traction force (up to 400 μm) during the matrix deformation, and finite element method modeling confirmed the consistency between maximum strain distribution on the matrix and cell directional movements in experiments. Furthermore, ASMCs recruited COL from the hydrogel to build a fibrous network to mechanically stabilize the cell network. Our results revealed principally that cells can sense traction force transmitted through the matrix to initiate cell-cell distant mechanical communications, resulting in cell directional migration and coordinated cell and COL self-assembly with active matrix remodeling. As an interesting phenomenon, cells seem to be able to "make a phone call" via long-range biomechanics, which implicates physiological importance such as for tissue pattern formation.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Zhili Qian
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yang Jin
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Jiajia Wang
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Lei Liu
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medicine, Changzhou University, 1 Gehu Road, Wujin District, Changzhou City, Jiangsu Province 213164, China
| |
Collapse
|
8
|
Liu S, Wu X, Yu Y, Wen X, Yu Z, Feng XQ, Zhao H. Geometric Confinement Guides the Expression of Cancer Stem Cell Molecular Markers CD44 via Cell Traction Forces. ACS Biomater Sci Eng 2020; 6:4623-4630. [PMID: 33455169 DOI: 10.1021/acsbiomaterials.0c00366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cancer stem cells (CSCs) play a critical role in the cancer metastasis and account for tumor heterogeneity. Growing evidence indicates that the CSC phenotypes are related to the tumor microenvironment. In this study, we report that the gradient of mechanical stresses guides the spatial patterning of the expression of CD44 and Yes-associated protein (YAP) in the geometrically confined multicellular sheets. Our study shows that the cytoskeletal contraction regulates the expression of CD44 through the translocation of YAP into the nucleus. The results demonstrate that geometric confinement and mechanical stresses are the regulators in the spatial patterning of CSC. It may help to understand the relationship between the tumor microenvironment and oncogenesis.
Collapse
Affiliation(s)
- Sisi Liu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Yang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xiongwei Wen
- National Engineering Laboratory of Neuromodulation, Tsinghua University, Beijing 100084, P. R. China
| | - Zhang Yu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
9
|
Peyret G, Mueller R, d'Alessandro J, Begnaud S, Marcq P, Mège RM, Yeomans JM, Doostmohammadi A, Ladoux B. Sustained Oscillations of Epithelial Cell Sheets. Biophys J 2019; 117:464-478. [PMID: 31307676 DOI: 10.1016/j.bpj.2019.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 12/22/2022] Open
Abstract
Morphological changes during development, tissue repair, and disease largely rely on coordinated cell movements and are controlled by the tissue environment. Epithelial cell sheets are often subjected to large-scale deformation during tissue formation. The active mechanical environment in which epithelial cells operate have the ability to promote collective oscillations, but how these cellular movements are generated and relate to collective migration remains unclear. Here, combining in vitro experiments and computational modeling, we describe a form of collective oscillations in confined epithelial tissues in which the oscillatory motion is the dominant contribution to the cellular movements. We show that epithelial cells exhibit large-scale coherent oscillations when constrained within micropatterns of varying shapes and sizes and that their period and amplitude are set by the smallest confinement dimension. Using molecular perturbations, we then demonstrate that force transmission at cell-cell junctions and its coupling to cell polarity are pivotal for the generation of these collective movements. We find that the resulting tissue deformations are sufficient to trigger osillatory mechanotransduction of YAP within cells, potentially affecting a wide range of cellular processes.
Collapse
Affiliation(s)
- Grégoire Peyret
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Romain Mueller
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Joseph d'Alessandro
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Simon Begnaud
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Philippe Marcq
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, CNRS UMR 7636, Sorbonne Université, ESPCI, Paris, France
| | - René-Marc Mège
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford, United Kingdom.
| | - Benoît Ladoux
- Institut Jacques Monod, CNRS UMR 7592 et Université Paris Diderot, Paris, France.
| |
Collapse
|
10
|
Shao X, You R, Hui TH, Fang C, Gong Z, Yan Z, Chang RCC, Shenoy VB, Lin Y. Tension- and Adhesion-Regulated Retraction of Injured Axons. Biophys J 2019; 117:193-202. [PMID: 31278003 DOI: 10.1016/j.bpj.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Damage-induced retraction of axons during traumatic brain injury is believed to play a key role in the disintegration of the neural network and to eventually lead to severe symptoms such as permanent memory loss and emotional disturbances. However, fundamental questions such as how axon retraction progresses and what physical factors govern this process still remain unclear. Here, we report a combined experimental and modeling study to address these questions. Specifically, a sharp atomic force microscope probe was used to transect axons and trigger their retraction in a precisely controlled manner. Interestingly, we showed that the retracting motion of a well-developed axon can be arrested by strong cell-substrate attachment. However, axon retraction was found to be retriggered if a second transection was conducted, albeit with a lower shrinking amplitude. Furthermore, disruption of the actin cytoskeleton or cell-substrate adhesion significantly altered the retracting dynamics of injured axons. Finally, a mathematical model was developed to explain the observed injury response of neural cells in which the retracting motion was assumed to be driven by the pre-tension in the axon and progress against neuron-substrate adhesion as well as the viscous resistance of the cell. Using realistic parameters, model predictions were found to be in good agreement with our observations under a variety of experimental conditions. By revealing the essential physics behind traumatic axon retraction, findings here could provide insights on the development of treatment strategies for axonal injury as well as its possible interplay with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Hin Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ze Gong
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zishen Yan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China.
| |
Collapse
|