1
|
Li G, Li H, Ndour PA, Franco M, Li X, MacDonald I, Dao M, Buffet PA, Karniadakis GE. Red blood cell passage through deformable interendothelial slits in the spleen: Insights into splenic filtration and hemodynamics. Comput Biol Med 2024; 182:109198. [PMID: 39341110 PMCID: PMC11560667 DOI: 10.1016/j.compbiomed.2024.109198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/18/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
The spleen constantly clears altered red blood cells (RBCs) from the circulation, tuning the balance between RBC formation (erythropoiesis) and removal. The retention and elimination of RBCs occur predominantly in the open circulation of the spleen, where RBCs must cross submicron-wide inter-endothelial slits (IES). Several experimental and computational studies have illustrated the role of IES in filtrating the biomechanically and morphologically altered RBCs based on a rigid wall assumption. However, these studies also reported that when the size of IES is close to the lower end of clinically observed sizes (less than 0.5 μm), an unphysiologically large pressure difference across the IES is required to drive the passage of normal RBCs, sparking debates on the feasibility of the rigid wall assumption. In this work, We propose two deformable IES models, namely the passive model and the active model, aiming to explore the impact of the deformability of IES on the filtration function of the spleen. In the passive model, we implement the worm-like string model to depict the IES's deformation as it interacts with blood plasma and allows RBC to traverse. In contrast, the active model involved regulating the IES deformation based on the local pressure surrounding the slit. To demonstrate the validity of the deformable model, we simulate the filtration of RBCs with varied size and stiffness by IES under three scenarios: (1) a single RBC traversing a single slit; (2) a suspension of RBCs traversing an array of slits, mimicking in vitro spleen-on-a-chip experiments; (3) RBC suspension passing through the 3D spleen filtration unit known as'the splenon'. Our simulation results of RBC passing through a single slit show that the deformable IES model offers more accurate predictions of the critical cell surface area to volume ratio that dictate the removal of aged RBCs from circulation compared to prior rigid-wall models. Our biophysical models of the spleen-on-a-chip indicate a hierarchy of filtration function stringency: rigid model > passive model > active model, providing a possible explanation of the filtration function of IES. We also illustrate that the biophysical model of 'the splenon' enables us to replicate the ex vivo experiments involving spleen filtration of malaria-infected RBCs. Taken together, our simulation findings indicate that the deformable IES model could serve as a mesoscopic representation of spleen filtration function closer to physiological reality, addressing questions beyond the scope of current experimental and computational models and enhancing our understanding of the fundamental flow dynamics and mechanical clearance processes within in the human spleen.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI, 02906, United States of America.
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, GA, 30602, United States of America
| | - Papa Alioune Ndour
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - Mélanie Franco
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Ian MacDonald
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States of America
| | - Pierre A Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France; Laboratoire d'Excellence du Globule Rouge, 75015, Paris, France
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI, 02906, United States of America.
| |
Collapse
|
2
|
Li G, Qiang Y, Li H, Li X, Buffet PA, Dao M, Karniadakis GE. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. PLoS Comput Biol 2023; 19:e1011223. [PMID: 38091361 PMCID: PMC10752522 DOI: 10.1371/journal.pcbi.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, fewer works investigate how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of key factors expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as four-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, United States of America
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pierre A. Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
3
|
Lovegrove JT, Kent B, Förster S, Garvey CJ, Stenzel MH. The flow of anisotropic nanoparticles in solution and in blood. EXPLORATION (BEIJING, CHINA) 2023; 3:20220075. [PMID: 38264690 PMCID: PMC10742203 DOI: 10.1002/exp.20220075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 01/25/2024]
Abstract
The alignment of anisotropic nanoparticles in flow has been used for a range of applications such as the preparation of strong fibres and the assembly of in-plane aligned 1D-nanoobjects that are used for electronic devices, sensors, energy and biological application. Important is also the flow behaviour of nanoparticles that were designed for nanomedical applications such as drug delivery. It is widely observed that non-spherical nanoparticles have longer circulation times and a more favourable biodistribution. To be able to understand this behaviour, researchers have turned to analyzing the flow of non-spherical nanoparticles in the blood stream. In this review, an overview of microfluidic techniques that are used to monitor the alignment of anisotropic nanoparticles in solution will be provided, which includes analysis by small angle X-ray scattering (SAXS) and polarized light microscopy. The flow of these nanoparticles in blood is then discussed as the presence of red blood cells causes margination of some nanoparticles. Using fluorescence microscopy, the extent of margination can be identified, which coincides with the ability of nanoparticles to adhere to the cells grown along the wall. While these studies are mainly carried out in vitro using blood, initial investigations in vivo were able to confirm the unusual flow of anisotropic nanoparticles.
Collapse
Affiliation(s)
- Jordan Thomas Lovegrove
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | - Ben Kent
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| | | | - Christopher J. Garvey
- Forschungsneutronenquelle Heinz Maier‐Leibnitz FRM II and Physik Department E13Technische Universität MünchenGarchingGermany
| | - Martina H. Stenzel
- Centre for Advanced Macromolecular DesignSchool of ChemistryThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
4
|
Bureau L, Coupier G, Salez T. Lift at low Reynolds number. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:111. [PMID: 37957450 DOI: 10.1140/epje/s10189-023-00369-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023]
Abstract
Lift forces are widespread in hydrodynamics. These are typically observed for big and fast objects and are often associated with a combination of fluid inertia (i.e. large Reynolds numbers) and specific symmetry-breaking mechanisms. In contrast, the properties of viscosity-dominated (i.e. low Reynolds numbers) flows make it more difficult for such lift forces to emerge. However, the inclusion of boundary effects qualitatively changes this picture. Indeed, in the context of soft and biological matter, recent studies have revealed the emergence of novel lift forces generated by boundary softness, flow gradients and/or surface charges. The aim of the present review is to gather and analyse this corpus of literature, in order to identify and unify the questioning within the associated communities, and pave the way towards future research.
Collapse
Affiliation(s)
- Lionel Bureau
- Univ. Grenoble Alpes, CNRS, LIPhy, 38000, Grenoble, France.
| | | | - Thomas Salez
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400, Talence, France.
| |
Collapse
|
5
|
Lee LM, Bhatt KH, Haithcock DW, Prabhakarpandian B. Blood component separation in straight microfluidic channels. BIOMICROFLUIDICS 2023; 17:054106. [PMID: 37854890 PMCID: PMC10581738 DOI: 10.1063/5.0176457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
Separation of blood components is required in many diagnostic applications and blood processes. In laboratories, blood is usually fractionated by manual operation involving a bulk centrifugation equipment, which significantly increases logistic burden. Blood sample processing in the field and resource-limited settings cannot be readily implemented without the use of microfluidic technology. In this study, we developed a small footprint, rapid, and passive microfluidic channel device that relied on margination and inertial focusing effects for blood component separation. No blood dilution, lysis, or labeling step was needed as to preserve sample integrity. One main innovation of this work was the insertion of fluidic restrictors at outlet ports to divert the separation interface into designated outlet channels. Thus, separation efficiency was significantly improved in comparison to previous works. We demonstrated different operation modes ranging from platelet or plasma extraction from human whole blood to platelet concentration from platelet-rich plasma through the manipulation of outlet port fluidic resistance. Using straight microfluidic channels with a high aspect ratio rectangular cross section, we demonstrated 95.4% platelet purity extracted from human whole blood. In plasma extraction, 99.9% RBC removal rate was achieved. We also demonstrated 2.6× concentration of platelet-rich plasma solution to produce platelet concentrate. The extraction efficiency and throughput rate are scalable with continuous and clog-free recirculation operation, in contrast to other blood fractionation approaches using filtration membranes or affinity-based purification methods. Our microfluidic blood separation method is highly tunable and versatile, and easy to be integrated into multi-step blood processing and advanced sample preparation workflows.
Collapse
Affiliation(s)
- Lap Man Lee
- CFD Research Corporation, Huntsville, Alabama 35806, USA
| | - Ketan H. Bhatt
- CFD Research Corporation, Huntsville, Alabama 35806, USA
| | | | | |
Collapse
|
6
|
Gacuta KM, Koper-Lenkiewicz OM, Milewska AJ, Ćwiklińska-Dworakowska M, Matowicka-Karna J, Kamińska J. Associations Between Mean Platelet Volume and Various Factors in Type 2 Diabetes Patients: A Single-Center Study from Poland. Med Sci Monit 2023; 29:e941109. [PMID: 37649249 PMCID: PMC10478580 DOI: 10.12659/msm.941109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/20/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Thromboembolic episodes, which are largely mediated by blood platelets, are prevalent chronic complications of diabetes. The mean platelet volume (MPV) serves as a marker for in vivo platelet activation. This study aimed to assess the factors influencing MPV in 106 patients with type 2 diabetes, compared with 59 non-diabetic individuals at a single center in Poland. MATERIAL AND METHODS We performed linear regression analysis, with MPV as the dependent variable and factors such as age, sex, thrombopoiesis-influencing cytokines, blood pressure, body mass index, glycosylated hemoglobin percentage, platelet count, large platelet count, lipid profile parameters, creatinine concentration, estimated glomerular filtration rate, treatment modalities, and comorbidities as independent variables. MPV was measured using the ADVIA 2120 hematology analyzer, with a reference range of 7-12 fL. RESULTS The analysis revealed that in patients with type 2 diabetes, an increase in platelet count by 10×10³/μL resulted in a decrease in MPV by 0.05 (P<0.001), while an increase in large platelet count by 1×10³/μL led to an increase in MPV by 0.18 (P<0.001). Additionally, patients taking ß-blockers or insulin had lower MPVs by 0.77 (P=0.008) and 5.63 (P<0.001), respectively, compared with those not on these medications. CONCLUSIONS This study delineates the relationship between MPV, platelet parameters, and treatment modalities in type 2 diabetes, paving the way for further research to elucidate underlying mechanisms and potential clinical applications.
Collapse
Affiliation(s)
- Karolina Marta Gacuta
- Department of Clinical Laboratory Diagnostics, Clinical Medical Hospital in Białystok, Białystok, Poland
| | | | - Anna Justyna Milewska
- Department of Statistics and Medical Informatics, Medical University of Białystok, Białystok, Poland
| | | | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| | - Joanna Kamińska
- Department of Clinical Laboratory Diagnostics, Medical University of Białystok, Białystok, Poland
| |
Collapse
|
7
|
Dorken-Gallastegi A, Lee Y, Li G, Li H, Naar L, Li X, Ye T, Van Cott E, Rosovsky R, Gregory D, Tompkins R, Karniadakis G, Kaafarani HMA, Velmahos GC, Lee J, Frydman GH. Circulating cellular clusters are associated with thrombotic complications and clinical outcomes in COVID-19. iScience 2023; 26:107202. [PMID: 37485375 PMCID: PMC10290732 DOI: 10.1016/j.isci.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
We sought to study the role of circulating cellular clusters (CCC) -such as circulating leukocyte clusters (CLCs), platelet-leukocyte aggregates (PLA), and platelet-erythrocyte aggregates (PEA)- in the immunothrombotic state induced by COVID-19. Forty-six blood samples from 37 COVID-19 patients and 12 samples from healthy controls were analyzed with imaging flow cytometry. Patients with COVID-19 had significantly higher levels of PEAs (p value<0.001) and PLAs (p value = 0.015) compared to healthy controls. Among COVID-19 patients, CLCs were correlated with thrombotic complications (p value = 0.016), vasopressor need (p value = 0.033), acute kidney injury (p value = 0.027), and pneumonia (p value = 0.036), whereas PEAs were associated with positive bacterial cultures (p value = 0.033). In predictive in silico simulations, CLCs were more likely to result in microcirculatory obstruction at low flow velocities (≤1 mm/s) and at higher branching angles. Further studies on the cellular component of hyperinflammatory prothrombotic states may lead to the identification of novel biomarkers and drug targets for inflammation-related thrombosis.
Collapse
Affiliation(s)
- Ander Dorken-Gallastegi
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Yao Lee
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| | - Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - He Li
- Center for Biomedical Engineering, School of Engineering, Brown University, Providence, RI 02912, USA
| | - Leon Naar
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Ting Ye
- Information and Computational Mathematics, Ji Lin University, Changchun, China
| | - Elizabeth Van Cott
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rachel Rosovsky
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Gregory
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Ronald Tompkins
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - Haytham MA. Kaafarani
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - George C. Velmahos
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jarone Lee
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Galit H. Frydman
- Division of Trauma, Emergency Surgery, and Surgical Critical Care, Massachusetts General Hospital, Boston, MA 02114, USA
- Center for Biomedical Engineering & Division of Comparative Medicine, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02039, USA
| |
Collapse
|
8
|
Li G, Qiang Y, Li H, Li X, Dao M, Karniadakis GE. In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease. Biophys J 2023; 122:2590-2604. [PMID: 37231647 PMCID: PMC10323029 DOI: 10.1016/j.bpj.2023.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/12/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
Erythrophagocytosis occurring in the spleen is a critical process for removing senescent and diseased red blood cells (RBCs) from the microcirculation. Although some progress has been made in understanding how the biological signaling pathways mediate the phagocytic processes, the role of the biophysical interaction between RBCs and macrophages, particularly under pathological conditions such as sickle cell disease, has not been adequately studied. Here, we combine computational simulations with microfluidic experiments to quantify RBC-macrophage adhesion dynamics under flow conditions comparable to those in the red pulp of the spleen. We also investigate the RBC-macrophage interaction under normoxic and hypoxic conditions. First, we calibrate key model parameters in the adhesion model using microfluidic experiments for normal and sickle RBCs under normoxia and hypoxia. We then study the adhesion dynamics between the RBC and the macrophage. Our simulation illustrates three typical adhesion states, each characterized by a distinct dynamic motion of the RBCs, namely firm adhesion, flipping adhesion, and no adhesion (either due to no contact with macrophages or detachment from the macrophages). We also track the number of bonds formed when RBCs and macrophages are in contact, as well as the contact area between the two interacting cells, providing mechanistic explanations for the three adhesion states observed in the simulations and microfluidic experiments. Furthermore, we quantify, for the first time to our knowledge, the adhesive forces between RBCs (normal and sickle) and macrophages under different oxygenated conditions. Our results show that the adhesive forces between normal cells and macrophages under normoxia are in the range of 33-58 pN and 53-92 pN for sickle cells under normoxia and 155-170 pN for sickle cells under hypoxia. Taken together, our microfluidic and simulation results improve our understanding of the biophysical interaction between RBCs and macrophages in sickle cell disease and provide a solid foundation for investigating the filtration function of the splenic macrophages under physiological and pathological conditions.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia.
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts.
| | | |
Collapse
|
9
|
Li G, Qiang Y, Li H, Li X, Buffet PA, Dao M, Karniadakis GE. A combined computational and experimental investigation of the filtration function of splenic macrophages in sickle cell disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543007. [PMID: 37398427 PMCID: PMC10312537 DOI: 10.1101/2023.05.31.543007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Being the largest lymphatic organ in the body, the spleen also constantly controls the quality of red blood cells (RBCs) in circulation through its two major filtration components, namely interendothelial slits (IES) and red pulp macrophages. In contrast to the extensive studies in understanding the filtration function of IES, there are relatively fewer works on investigating how the splenic macrophages retain the aged and diseased RBCs, i.e., RBCs in sickle cell disease (SCD). Herein, we perform a computational study informed by companion experiments to quantify the dynamics of RBCs captured and retained by the macrophages. We first calibrate the parameters in the computational model based on microfluidic experimental measurements for sickle RBCs under normoxia and hypoxia, as those parameters are not available in the literature. Next, we quantify the impact of a set of key factors that are expected to dictate the RBC retention by the macrophages in the spleen, namely, blood flow conditions, RBC aggregation, hematocrit, RBC morphology, and oxygen levels. Our simulation results show that hypoxic conditions could enhance the adhesion between the sickle RBCs and macrophages. This, in turn, increases the retention of RBCs by as much as five-fold, which could be a possible cause of RBC congestion in the spleen of patients with SCD. Our study on the impact of RBC aggregation illustrates a 'clustering effect', where multiple RBCs in one aggregate can make contact and adhere to the macrophages, leading to a higher retention rate than that resulting from RBC-macrophage pair interactions. Our simulations of sickle RBCs flowing past macrophages for a range of blood flow velocities indicate that the increased blood velocity could quickly attenuate the function of the red pulp macrophages on detaining aged or diseased RBCs, thereby providing a possible rationale for the slow blood flow in the open circulation of the spleen. Furthermore, we quantify the impact of RBC morphology on their tendency to be retained by the macrophages. We find that the sickle and granular-shaped RBCs are more likely to be filtered by macrophages in the spleen. This finding is consistent with the observation of low percentages of these two forms of sickle RBCs in the blood smear of SCD patients. Taken together, our experimental and simulation results aid in our quantitative understanding of the function of splenic macrophages in retaining the diseased RBCs and provide an opportunity to combine such knowledge with the current knowledge of the interaction between IES and traversing RBCs to apprehend the complete filtration function of the spleen in SCD.
Collapse
Affiliation(s)
- Guansheng Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, 02906
| | - Yuhao Qiang
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | - He Li
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia, 30602
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Pierre A. Buffet
- Université Paris Cité and Université des Antilles, Inserm, Biologie Intégrée du Globule Rouge, 75015, Paris, France
- Laboratoire d′Excellence du Globule Rouge, 75015, Paris, France
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | | |
Collapse
|
10
|
Lovegrove JT, Raveendran R, Spicer P, Förster S, Garvey CJ, Stenzel MH. Margination of 2D Platelet Microparticles in Blood. ACS Macro Lett 2023; 12:344-349. [PMID: 36821525 DOI: 10.1021/acsmacrolett.2c00718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Margination describes the movement of particles toward the endothelial wall within blood vessels. While there have been several studies tracking the margination of spherical particles in blood, the behavior of anisotropic particle shapes is not well described. In this study 2D platelet particles which possess many attractive qualities for use as a drug delivery system, with their high surface area allowing for increased surface binding activity, were directly monitored and margination quantified. The margination propensity of 1 and 2 μm 2D platelet particles was contrasted to that of 2 μm spherical particles at apparent wall shear rates (WSRs) of 50, 100, and 200 s-1 by both directly tracking labeled particles using fluorescent microscopy as well as using small-angle X-ray scattering (SAXS). For fluorescence studies, margination was quantified using the margination parameter M, which describes the number of particles found closest to the walls of a microfluidic device, with an M-value of 0.2 indicating no margination. Increased margination was seen in 2D platelet particles when compared to spherical particles tested at all flow rates, with M-values of 0.39 and 0.31 seen for 1 and 2 μm 2D platelet particles, respectively, while 2 μm spherical particles had an M-value of 0.21. Similarly, margination was observed qualitatively using SAXS, with increased scattering seen for platelet particles near the microfluidic channel wall. For all particles, increased margination was seen at increasing shear rates.
Collapse
Affiliation(s)
- Jordan Thomas Lovegrove
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Radhika Raveendran
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Patrick Spicer
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Stephan Förster
- Forschungszentrum Jülich GmbH, JCNS-1, Leo-Brandt-Straße, 52428 Jülich, Germany
| | - Christopher J Garvey
- Australian Centre for Neutron Scattering, Australia Nuclear Science and Technology Organization, Lucas Heights, NSW 2234, Australia
- Technische Universität München, Forschungsneutronenquelle Heinz Maier-Leibnitz FRM II and Physik Department E13, Lichtenbergstr. 1, 85747 Garching, Germany
| | - Martina H Stenzel
- Centre for Advanced Macromolecular Design, School of Chemistry, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Li L, Wang S, Han K, Qi X, Ma S, Li L, Yin J, Li D, Li X, Qian J. Quantifying Shear-induced Margination and Adhesion of Platelets in Microvascular Blood Flow. J Mol Biol 2023; 435:167824. [PMID: 36108775 DOI: 10.1016/j.jmb.2022.167824] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 02/04/2023]
Abstract
Platelet margination and adhesion are two critical and closely related steps in thrombus formation. Using dissipative particle dynamics (DPD) method that seamlessly models blood cells, blood plasma, and vessel walls with functionalized surfaces, we quantify the shear-induced margination and adhesion of platelets in microvascular blood flow. The results show that the occurrence of shear-induced RBC-platelet collisions has a remarkable influence on the degree of platelet margination. We characterize the lateral motion of individual platelets by a mean square displacement analysis of platelet trajectories, and find that the wall-induced lift force and the shear-induced displacement in wall-bounded flow cause the variation in near-wall platelet distribution. We then investigate the platelet adhesive dynamics under different flow conditions, by conducting DPD simulations of blood flow in a microtube with fibrinogen-coated wall surfaces. We find that the platelet adhesion is enhanced with the increase of fibrinogen concentration level but decreased with the increase of shear rate. These results are consistent with available experimental results. In addition, we demonstrate that the adherent platelets have a negative impact on the margination dynamics of the circulating platelets, which is mainly due to the climbing effect induced by the adherent ones. Taken together, these findings provide useful insights into the platelet margination and adhesion dynamics, which may facilitate the understanding of the predominant processes governing the initial stage of thrombus formation.
Collapse
Affiliation(s)
- Lujuan Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Keqin Han
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Xiaojing Qi
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Shuhao Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Jun Yin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; School of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Dechang Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| | - Xuejin Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China; The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China.
| | - Jin Qian
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, China; Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
| |
Collapse
|
12
|
Wu LT, Wang JL, Wang YL. Ophthalmic artery changes in type 2 diabetes with and without acute coronary syndrome. J Transl Med 2022; 20:512. [PMCID: PMC9636615 DOI: 10.1186/s12967-022-03712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Background
Ocular blood flow provides a new perspective for studying the effects of diabetes and ischemic heart disease on systemic blood flow, pathological mechanisms, and prognosis. Previous studies have analyzed the hemodynamic changes of the ophthalmic artery (OA) in patients with diabetes and ischemic heart disease, but the results remain controversial due to limited observation methods. We aimed to explore the morphological and hemodynamic features in the OA in patients with type 2 diabetes (T2D) with and without acute coronary syndrome (ACS).
Methods
In total, 134 participants, including 30 control participants, 34 with ACS only, 34 with T2D only, and 36 with both ACS and T2D, undergoing computed tomography angiography were enrolled. Three-dimensional OA models were reconstructed, and morphological parameters of the OA were measured. In addition, numerical simulations using computational fluid dynamics were used to acquire hemodynamic parameters of the OA.
Results
In this study, 134 OA models were reconstructed. Morphological measurements revealed a smaller initial OA diameter in the T2D group than in the other two ACS groups. A hemodynamic simulation showed a significantly lower OA blood velocity in patients with ACS and T2D than that in controls (P < 0.001). The mass flow ratios in all disease groups were lower than those in the control group (P < 0.001, P = 0.020, and P < 0.001, respectively). The ACS and T2D groups had higher OA pressure levels than those of the control group (P = 0.013). The OA blood velocity and mass flow ratio were correlated with several clinical parameters.
Conclusions
This study revealed morphological and hemodynamic differences in the OA between patients with T2D with and without ACS. Furthermore, the hemodynamic characteristics of the OA correlated with clinical prognostic biomarkers, suggesting the potential predictive ability of the OA.
Collapse
|
13
|
Javadi E, Li H, Gallastegi AD, Frydman GH, Jamali S, Karniadakis GE. Circulating cell clusters aggravate the hemorheological abnormalities in COVID-19. Biophys J 2022; 121:3309-3319. [PMID: 36028998 PMCID: PMC9420024 DOI: 10.1016/j.bpj.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 11/02/2022] Open
Abstract
Microthrombi and circulating cell clusters are common microscopic findings in patients with coronavirus disease 2019 (COVID-19) at different stages in the disease course, implying that they may function as the primary drivers in disease progression. Inspired by a recent flow imaging cytometry study of the blood samples from patients with COVID-19, we perform computational simulations to investigate the dynamics of different types of circulating cell clusters, namely white blood cell (WBC) clusters, platelet clusters, and red blood cell clusters, over a range of shear flows and quantify their impact on the viscosity of the blood. Our simulation results indicate that the increased level of fibrinogen in patients with COVID-19 can promote the formation of red blood cell clusters at relatively low shear rates, thereby elevating the blood viscosity, a mechanism that also leads to an increase in viscosity in other blood diseases, such as sickle cell disease and type 2 diabetes mellitus. We further discover that the presence of WBC clusters could also aggravate the abnormalities of local blood rheology. In particular, the extent of elevation of the local blood viscosity is enlarged as the size of the WBC clusters grows. On the other hand, the impact of platelet clusters on the local rheology is found to be negligible, which is likely due to the smaller size of the platelets. The difference in the impact of WBC and platelet clusters on local hemorheology provides a compelling explanation for the clinical finding that the number of WBC clusters is significantly correlated with thrombotic events in COVID-19 whereas platelet clusters are not. Overall, our study demonstrates that our computational models based on dissipative particle dynamics can serve as a powerful tool to conduct quantitative investigation of the mechanism causing the pathological alterations of hemorheology and explore their connections to the clinical manifestations in COVID-19.
Collapse
Affiliation(s)
- Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - He Li
- School of Engineering, Brown University, Providence, Rhode Island; School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia.
| | - Ander Dorken Gallastegi
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, Massachusetts
| | - Galit H Frydman
- Division of Trauma, Emergency Surgery and Surgical Critical Care at the Massachusetts General Hospital, Boston, Massachusetts; Department of Biological Engineering at the Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts.
| | - George Em Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island; Division of Applied Mathematics and School of Engineering, Brown University, Providence, Rhode Island.
| |
Collapse
|
14
|
Aguiar Bucsai M, Idel C, Wollenberg B, Mannhalter C, Verschoor A. Tirofiban potentiates agonist-induced platelet activation and degranulation, despite effectively inhibiting aggregation. Platelets 2022; 33:1192-1198. [PMID: 35701857 DOI: 10.1080/09537104.2022.2078489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We aimed to investigate the effects of integrin αIIbβ3 inhibitor tirofiban on hallmarks of platelet activation, degranulation, and aggregation during its use to analyze activated but non-complexed platelets via flow cytometry. To do so, we used washed platelets from healthy human donors. We combined aggregometry, an assay of platelet functionality, with flow cytometry and ELISA to detect and correlate, respectively, platelet aggregation, activation, and granule release. While tirofiban effectively inhibited agonist-induced platelet aggregation (thrombin receptor-activating peptide 6 (TRAP), convulxin (CVX), U46619 and IV.3), the surface expression of P-selectin and CD63 and granule release of RANTES were significantly increased, indicating that tirofiban enhances degranulation, uncoupled from aggregation. The results show that tirofiban alters the activation phenotype of platelets, something that should be considered when using tirofiban to enable flow cytometric analysis of activated but unaggregated platelet suspensions.
Collapse
Affiliation(s)
- Martina Aguiar Bucsai
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany.,Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christian Idel
- Department of Otorhinolaryngology, University of Lübeck and University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Barbara Wollenberg
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| | - Christine Mannhalter
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Admar Verschoor
- Department of Otorhinolaryngology, Technische Universität München and Klinikum Rechts der Isar, Munich, Germany
| |
Collapse
|
15
|
Compact Smartphone-Based Laser Speckle Contrast Imaging Endoscope Device for Point-of-Care Blood Flow Monitoring. BIOSENSORS 2022; 12:bios12060398. [PMID: 35735546 PMCID: PMC9220785 DOI: 10.3390/bios12060398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Laser speckle contrast imaging (LSCI) is a powerful visualization tool for quantifying blood flow in tissues, providing simplicity of configuration, ease of use, and intuitive results. With recent advancements, smartphone and camera technologies are suitable for the development of smartphone-based LSCI applications for point-of-care (POC) diagnosis. A smartphone-based portable LSCI endoscope system was validated for POC diagnosis of vascular disorders. The endoscope consisted of compact LED and laser illumination, imaging optics, and a flexible fiberscope assembled in a 3D-printed hand-held cartridge for access to body cavities and organs. A smartphone’s rear camera was mounted thereto, enabling endoscopy, LSCI image acquisition, and processing. Blood flow imaging was calibrated in a perfused tissue phantom consisting of a microparticle solution pumped at known rates through tissue-mimicking gel and validated in a live rat model of BBN-induced bladder cancer. Raw LSCI images successfully visualized phantom flow: speckle flow index showed linearity with the pump flow rate. In the rat model, healthy and cancerous bladders were distinguishable in structure and vasculature. The smartphone-based low-cost portable mobile endoscope for monitoring blood flow and perfusion shows promise for preclinical applications and may be suitable for primary diagnosis at home or as a cost-effective POC testing assay.
Collapse
|
16
|
Numerical Study of Particle Margination in a Square Channel Flow with Red Blood Cells. FLUIDS 2022. [DOI: 10.3390/fluids7030096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Red blood cells flow near the axis in a small vessel, known as axial accumulation. This causes a region called the cell-free layer, which does not contain red blood cells near the wall. Then, small particles such as platelets come out to the cell-free layer. This phenomenon is called platelet margination. In this study, related to this phenomenon, direct numerical simulations were conducted using the immersed boundary method. The effects of the shear rate, channel size, and hematocrit value were investigated on the pressure-driven flow in a straight tube with a square cross-section. The simulation results indicated that the margination rate, which is the ratio of the distance traveled in the flow direction to the margination distance in the wall direction, is independent of the shear rate. The effect of the channel size on platelet margination was found to be well scaled by introducing a dimensionless parameter, which included the shear rate and effective area of the particle movement. It was also found that the margination rate varied nonlinearly with the tube hematocrit. This was due to the volume exclusion effect of red blood cells, which facilitated or hindered the motion of particles depending on the hematocrit. The relationship between the stable position of the particles near the corner and the width of the cell-free layer was also found. Furthermore, velocity fluctuations normalized by wall shear rate in a cross-section collapsed to one curve in the presented simulations. This indicates that the lateral force acting on the particles increases linearly with the shear rate.
Collapse
|
17
|
Sun J, Han K, Xu M, Li L, Qian J, Li L, Li X. Blood Viscosity in Subjects With Type 2 Diabetes Mellitus: Roles of Hyperglycemia and Elevated Plasma Fibrinogen. Front Physiol 2022; 13:827428. [PMID: 35283762 PMCID: PMC8914209 DOI: 10.3389/fphys.2022.827428] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/20/2022] [Indexed: 12/21/2022] Open
Abstract
The viscosity of blood is an indicator in the understanding and treatment of disease. An elevated blood viscosity has been demonstrated in patients with Type 2 Diabetes Mellitus (T2DM), which might represent a risk factor for cardiovascular complications. However, the roles of glycated hemoglobin (HbA1c) and plasma fibrinogen levels on the elevated blood viscosity in subjects with T2DM at different chronic glycemic conditions are still not clear. Here, we evaluate the relationship between the blood viscosity and HbA1c as well as plasma fibrinogen levels in patients with T2DM. The experimental data show that the mean values of the T2DM blood viscosity are higher in groups with higher HbA1c levels, but the correlation between the T2DM blood viscosity and the HbA1c level is not obvious. Instead, when we investigate the influence of plasma fibrinogen level on the blood viscosity in T2DM subjects, we find that the T2DM blood viscosity is significantly and positively correlated with the plasma fibrinogen level. Further, to probe the combined effects of multiple factors (including the HbA1c and plasma fibrinogen levels) on the altered blood viscosity in T2DM, we regroup the experimental data based on the T2DM blood viscosity values at both the low and high shear rates, and our results suggest that the influence of the elevated HbA1c level on blood viscosity is quite limited, although it is an important indicator of glycemic control in T2DM patients. Instead, the elevated blood hematocrit, the enhanced red blood cell (RBC) aggregation induced by the increased plasma fibrinogen level, and the reduced RBC deformation play key roles in the determination of blood viscosity in T2DM. Together, these experimental results are helpful in identifying the key determinants for the altered T2DM blood viscosity, which can be used in future studies of the hemorheological disturbances of T2DM patients.
Collapse
Affiliation(s)
- Jiehui Sun
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Keqin Han
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Lujuan Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Jin Qian
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Li Li
- Department of Endocrinology and Metabolism, Ningbo First Hospital, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
18
|
Deng YX, Chang HY, Li H. Recent Advances in Computational Modeling of Biomechanics and Biorheology of Red Blood Cells in Diabetes. Biomimetics (Basel) 2022; 7:15. [PMID: 35076493 PMCID: PMC8788472 DOI: 10.3390/biomimetics7010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/01/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus, a metabolic disease characterized by chronically elevated blood glucose levels, affects about 29 million Americans and more than 422 million adults all over the world. Particularly, type 2 diabetes mellitus (T2DM) accounts for 90-95% of the cases of vascular disease and its prevalence is increasing due to the rising obesity rates in modern societies. Although multiple factors associated with diabetes, such as reduced red blood cell (RBC) deformability, enhanced RBC aggregation and adhesion to the endothelium, as well as elevated blood viscosity are thought to contribute to the hemodynamic impairment and vascular occlusion, clinical or experimental studies cannot directly quantify the contributions of these factors to the abnormal hematology in T2DM. Recently, computational modeling has been employed to dissect the impacts of the aberrant biomechanics of diabetic RBCs and their adverse effects on microcirculation. In this review, we summarize the recent advances in the developments and applications of computational models in investigating the abnormal properties of diabetic blood from the cellular level to the vascular level. We expect that this review will motivate and steer the development of new models in this area and shift the attention of the community from conventional laboratory studies to combined experimental and computational investigations, aiming to provide new inspirations for the development of advanced tools to improve our understanding of the pathogenesis and pathology of T2DM.
Collapse
Affiliation(s)
- Yi-Xiang Deng
- School of Engineering, Brown University, Providence, RI 02912, USA;
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA;
| | - He Li
- Center for Biomedical Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
19
|
Li H, Deng Y, Sampani K, Cai S, Li Z, Sun JK, Karniadakis GE. Computational investigation of blood cell transport in retinal microaneurysms. PLoS Comput Biol 2022; 18:e1009728. [PMID: 34986147 PMCID: PMC8730408 DOI: 10.1371/journal.pcbi.1009728] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Microaneurysms (MAs) are one of the earliest clinically visible signs of diabetic retinopathy (DR). MA leakage or rupture may precipitate local pathology in the surrounding neural retina that impacts visual function. Thrombosis in MAs may affect their turnover time, an indicator associated with visual and anatomic outcomes in the diabetic eyes. In this work, we perform computational modeling of blood flow in microchannels containing various MAs to investigate the pathologies of MAs in DR. The particle-based model employed in this study can explicitly represent red blood cells (RBCs) and platelets as well as their interaction in the blood flow, a process that is very difficult to observe in vivo. Our simulations illustrate that while the main blood flow from the parent vessels can perfuse the entire lumen of MAs with small body-to-neck ratio (BNR), it can only perfuse part of the lumen in MAs with large BNR, particularly at a low hematocrit level, leading to possible hypoxic conditions inside MAs. We also quantify the impacts of the size of MAs, blood flow velocity, hematocrit and RBC stiffness and adhesion on the likelihood of platelets entering MAs as well as their residence time inside, two factors that are thought to be associated with thrombus formation in MAs. Our results show that enlarged MA size, increased blood velocity and hematocrit in the parent vessel of MAs as well as the RBC-RBC adhesion promote the migration of platelets into MAs and also prolong their residence time, thereby increasing the propensity of thrombosis within MAs. Overall, our work suggests that computational simulations using particle-based models can help to understand the microvascular pathology pertaining to MAs in DR and provide insights to stimulate and steer new experimental and computational studies in this area.
Collapse
Affiliation(s)
- He Li
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Yixiang Deng
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
| | - Konstantina Sampani
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, United States of America
| | - Jennifer K. Sun
- Beetham Eye Institute, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - George E. Karniadakis
- School of Engineering, Brown University, Providence, Rhode Island, United States of America
- Division of Applied Mathematics, Brown University, Providence, Rhode Island, United States of America
| |
Collapse
|
20
|
Sugihara-Seki M, Takinouchi N. Margination of Platelet-Sized Particles in the Red Blood Cell Suspension Flow through Square Microchannels. MICROMACHINES 2021; 12:mi12101175. [PMID: 34683226 PMCID: PMC8539585 DOI: 10.3390/mi12101175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023]
Abstract
In the blood flow through microvessels, platelets show high concentrations near the vessel wall. This phenomenon is called margination of platelets and is closely associated with hemostasis and thrombosis. In the present study, we conducted in vitro experiments using platelet-sized fluorescent particles as platelet substitutes to investigate the cross-sectional distribution of these particles in the red blood cell suspension flowing through microchannels with a square cross section. Fluorescence observations were performed to measure the transverse distribution of particles at various heights from the bottom face with the use of a confocal laser scanning microscope system. In downstream cross sections of the channel, particles showed focusing near the four corners rather than uniform margination along the entire circumference of the cross section. The focusing of particles near the corners was more enhanced for higher hematocrits. On the other hand, particles in circular channel flows showed nearly axisymmetric uniform accumulation adjacent to the channel wall. The present result suggests that the segregation of suspended particles in the flow of multicomponent suspensions could have such heterogeneous 2D features of particle distribution in the cross section of channels, especially for rectangular channels often used in microfluidics.
Collapse
Affiliation(s)
- Masako Sugihara-Seki
- Department of Pure and Applied Physics, Kansai University, Osaka 564-8680, Japan;
- Graduate School of Engineering Science, Osaka University, Osaka 560-8531, Japan
- Correspondence: ; Tel.: +81-6-6368-0866
| | - Nozomi Takinouchi
- Department of Pure and Applied Physics, Kansai University, Osaka 564-8680, Japan;
| |
Collapse
|
21
|
Sun X, Ma T, Liu Z, Wu X, Zhang B, Zhu S, Li F, Chen M, Zheng Y, Liu X. Sequential numerical simulation of vascular remodeling and thrombosis in unconventional hybrid repair of ruptured middle aortic syndrome. Med Eng Phys 2021; 94:87-95. [PMID: 34303507 DOI: 10.1016/j.medengphy.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/16/2021] [Accepted: 06/28/2021] [Indexed: 11/26/2022]
Abstract
Unconventional surgical procedures may be utilized in treating complicated middle aortic syndrome (MAS), the outcome and prognosis of which remain largely undetermined due to limited numbers and significant heterogeneity of this population. Using computational fluid dynamics (CFD) analysis, this study aimed to assess the dynamic changes of postoperative aortic flow in seeking to unveil the relationship between hemodynamics and vascular remodeling and thrombotic events. One patient with middle aortic syndrome complicated with aortic rupture was treated with hybrid repair of extra-anatomic bypass and fenestrated endovascular aortic repair. The patient was followed-up for 8 months by computational tomography angiography and Doppler ultrasound. Thoracoabdominal aortic blood flow and locations with ongoing thrombosis at 1, 3, and 6 months postoperatively were simulated and analyzed. Remodeling processes, including low wall shear-mediated constrictive remodeling of non-stented aorta, neointimal hyperplasia at suture lines, and minimal thrombosis at various locations, were evident. Meanwhile, abdominal blood flow was tri-phasic at 1 month after surgery, and was reversed and stabilized at 6 months. The distribution of newly formed thrombus vary at different follow-up stages, which were in line with the numerical simulation of thrombosis from different postoperative time points. CFD-based sequential monitoring is of promising value in capturing dynamic changes of vascular outcome.
Collapse
Affiliation(s)
- Xiaoning Sun
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Tianxiang Ma
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zhili Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xiao Wu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Bo Zhang
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China; Department of Diagnostic Ultrasound, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shenling Zhu
- Department of Diagnostic Ultrasound, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Fangda Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Mengyin Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China.
| | - Xiao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
22
|
Classification of Red Blood Cell Rigidity from Sequence Data of Blood Flow Simulations Using Neural Networks. Symmetry (Basel) 2021. [DOI: 10.3390/sym13060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Numerical models for the flow of blood and other fluids can be used to design and optimize microfluidic devices computationally and thus to save time and resources needed for production, testing, and redesigning of the physical microfluidic devices. Like biological experiments, computer simulations have their limitations. Data from both the biological and the computational experiments can be processed by machine learning methods to obtain new insights which then can be used for the optimization of the microfluidic devices and also for diagnostic purposes. In this work, we propose a method for identifying red blood cells in flow by their stiffness based on their movement data processed by neural networks. We describe the performed classification experiments and evaluate their accuracy in various modifications of the neural network model. We outline other uses of the model for processing data from video recordings of blood flow. The proposed model and neural network methodology classify healthy and more rigid (diseased) red blood cells with the accuracy of about 99.5% depending on the selected dataset that represents the flow of a suspension of blood cells of various levels of stiffness.
Collapse
|
23
|
Cai S, Li H, Zheng F, Kong F, Dao M, Karniadakis GE, Suresh S. Artificial intelligence velocimetry and microaneurysm-on-a-chip for three-dimensional analysis of blood flow in physiology and disease. Proc Natl Acad Sci U S A 2021; 118:e2100697118. [PMID: 33762307 PMCID: PMC8020788 DOI: 10.1073/pnas.2100697118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the mechanics of blood flow is necessary for developing insights into mechanisms of physiology and vascular diseases in microcirculation. Given the limitations of technologies available for assessing in vivo flow fields, in vitro methods based on traditional microfluidic platforms have been developed to mimic physiological conditions. However, existing methods lack the capability to provide accurate assessment of these flow fields, particularly in vessels with complex geometries. Conventional approaches to quantify flow fields rely either on analyzing only visual images or on enforcing underlying physics without considering visualization data, which could compromise accuracy of predictions. Here, we present artificial-intelligence velocimetry (AIV) to quantify velocity and stress fields of blood flow by integrating the imaging data with underlying physics using physics-informed neural networks. We demonstrate the capability of AIV by quantifying hemodynamics in microchannels designed to mimic saccular-shaped microaneurysms (microaneurysm-on-a-chip, or MAOAC), which signify common manifestations of diabetic retinopathy, a leading cause of vision loss from blood-vessel damage in the retina in diabetic patients. We show that AIV can, without any a priori knowledge of the inlet and outlet boundary conditions, infer the two-dimensional (2D) flow fields from a sequence of 2D images of blood flow in MAOAC, but also can infer three-dimensional (3D) flow fields using only 2D images, thanks to the encoded physics laws. AIV provides a unique paradigm that seamlessly integrates images, experimental data, and underlying physics using neural networks to automatically analyze experimental data and infer key hemodynamic indicators that assess vascular injury.
Collapse
Affiliation(s)
- Shengze Cai
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912
| | - Fuyin Zheng
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Fang Kong
- School of Biological Sciences, Nanyang Technological University, 639798 Singapore
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139;
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912;
- School of Engineering, Brown University, Providence, RI 02912
| | - Subra Suresh
- Nanyang Technological University, 639798 Singapore
| |
Collapse
|
24
|
Lv Y, Li F, Wang S, Lu G, Bao W, Wang Y, Tian Z, Wei W, Ma G. Near-infrared light-triggered platelet arsenal for combined photothermal-immunotherapy against cancer. SCIENCE ADVANCES 2021; 7:eabd7614. [PMID: 33771861 PMCID: PMC7997510 DOI: 10.1126/sciadv.abd7614] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/08/2021] [Indexed: 05/04/2023]
Abstract
To address long-standing issues with tumor penetration and targeting among cancer therapeutics, we developed an anticancer platelet-based biomimetic formulation (N+R@PLTs), integrating photothermal nanoparticles (N) and immunostimulator (R) into platelets (PLTs). Exploiting the aggregative properties of platelets and high photothermal capacity, N+R@PLTs functioned as an arsenal by targeting defective tumor vascular endothelial cells, accumulating in a positive feedback aggregation cascade at sites of acute vascular damage induced by N-generated local hyperthermia, and subsequently secreting nanosized proplatelets (nPLTs) to transport active components to deep tumor tissue. The immunostimulator augmented the immunogenicity of antigens released from ablated tumors, inducing a stronger immunological response to attack residual, metastatic, and recurrent tumors. Following activation by low-power near-infrared light irradiation, the photothermal and immunological components synergistically provide exceptionally high therapeutic efficacy across nine murine models that mimicked a range of clinical requirements, and, most notably, a sophisticated model based on humanized mouse and patient-derived tumor xenograft.
Collapse
Affiliation(s)
- Yanlin Lv
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Weier Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yugang Wang
- Department of Gastroenterology, Shanghai Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P. R. China
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
25
|
Wang S, Ye T, Li G, Zhang X, Shi H. Margination and adhesion dynamics of tumor cells in a real microvascular network. PLoS Comput Biol 2021; 17:e1008746. [PMID: 33606686 PMCID: PMC7928530 DOI: 10.1371/journal.pcbi.1008746] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/03/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
In tumor metastasis, the margination and adhesion of tumor cells are two critical and closely related steps, which may determine the destination where the tumor cells extravasate to. We performed a direct three-dimensional simulation on the behaviors of the tumor cells in a real microvascular network, by a hybrid method of the smoothed dissipative particle dynamics and immersed boundary method (SDPD-IBM). The tumor cells are found to adhere at the microvascular bifurcations more frequently, and there is a positive correlation between the adhesion of the tumor cells and the wall-directed force from the surrounding red blood cells (RBCs). The larger the wall-directed force is, the closer the tumor cells are marginated towards the wall, and the higher the probability of adhesion behavior happen is. A relatively low or high hematocrit can help to prevent the adhesion of tumor cells, and similarly, increasing the shear rate of blood flow can serve the same purpose. These results suggest that the tumor cells may be more likely to extravasate at the microvascular bifurcations if the blood flow is slow and the hematocrit is moderate.
Collapse
Affiliation(s)
- Sitong Wang
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
| | - Ting Ye
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
- * E-mail:
| | - Guansheng Li
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
| | - Xuejiao Zhang
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
| | - Huixin Shi
- Department of Computational Mathematics, School of Mathematics, Jilin University, Changchun, China
| |
Collapse
|
26
|
Kotsalos C, Latt J, Beny J, Chopard B. Digital blood in massively parallel CPU/GPU systems for the study of platelet transport. Interface Focus 2021; 11:20190116. [PMID: 33335703 PMCID: PMC7739916 DOI: 10.1098/rsfs.2019.0116] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 01/13/2023] Open
Abstract
We propose a highly versatile computational framework for the simulation of cellular blood flow focusing on extreme performance without compromising accuracy or complexity. The tool couples the lattice Boltzmann solver Palabos for the simulation of blood plasma, a novel finite-element method (FEM) solver for the resolution of deformable blood cells, and an immersed boundary method for the coupling of the two phases. The design of the tool supports hybrid CPU-GPU executions (fluid, fluid-solid interaction on CPUs, deformable bodies on GPUs), and is non-intrusive, as each of the three components can be replaced in a modular way. The FEM-based kernel for solid dynamics outperforms other FEM solvers and its performance is comparable to state-of-the-art mass-spring systems. We perform an exhaustive performance analysis on Piz Daint at the Swiss National Supercomputing Centre and provide case studies focused on platelet transport, implicitly validating the accuracy of our tool. The tests show that this versatile framework combines unprecedented accuracy with massive performance, rendering it suitable for upcoming exascale architectures.
Collapse
Affiliation(s)
- Christos Kotsalos
- Computer Science Department, University of Geneva, 7 route de Drize, 1227 Carouge, Switzerland
| | | | | | | |
Collapse
|
27
|
Sugihara-Seki M, Onozawa T, Takinouchi N, Itano T, Seki J. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels. Biorheology 2021; 57:101-116. [PMID: 33523035 DOI: 10.3233/bir-201010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND In the blood flow through microvessels, platelets exhibit enhanced concentrations in the layer free of red blood cells (cell-free layer) adjacent to the vessel wall. The motion of platelets in the cell-free layer plays an essential role in their interaction with the vessel wall, and hence it affects their functions of hemostasis and thrombosis. OBJECTIVE We aimed to estimate the diffusivity of platelet-sized particles in the transverse direction (the direction of vorticity) across the channel width in the cell-free layer by in vitro experiments for the microchannel flow of red blood cell (RBC) suspensions containing platelet-sized particles. METHODS Fluorescence microscope observations were performed to measure the transverse distribution of spherical particles immersed in RBC suspensions flowing through a Y-shaped bifurcating microchannel. We examined the development of the particle concentration profiles along the flow direction in the daughter channels, starting from asymmetric distributions with low concentrations on the inner side of the bifurcation at the inlet of the daughter channels. RESULTS In daughter channels of 40 μm width, reconstruction of particle margination revealed that a symmetric concentration profile was attained in ∼30 mm from the bifurcation, independent of flow rate. CONCLUSIONS We presented experimental evidence of particle margination developing in a bifurcating flow channel where the diffusivity of 2.9-μm diameter particles was estimated to be ∼40 μm2/s at a shear rate of 1000 s-1 and hematocrit of 0.2.
Collapse
Affiliation(s)
- Masako Sugihara-Seki
- Department of Pure and Applied Physics, Kansai University, Suita, Osaka, Japan.,Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tenki Onozawa
- Department of Pure and Applied Physics, Kansai University, Suita, Osaka, Japan
| | - Nozomi Takinouchi
- Department of Pure and Applied Physics, Kansai University, Suita, Osaka, Japan
| | - Tomoaki Itano
- Department of Pure and Applied Physics, Kansai University, Suita, Osaka, Japan
| | - Junji Seki
- Department of Pure and Applied Physics, Kansai University, Suita, Osaka, Japan
| |
Collapse
|
28
|
Yazdani A, Deng Y, Li H, Javadi E, Li Z, Jamali S, Lin C, Humphrey JD, Mantzoros CS, Em Karniadakis G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J R Soc Interface 2021; 18:20200834. [PMID: 33530862 PMCID: PMC8086870 DOI: 10.1098/rsif.2020.0834] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/12/2022] Open
Abstract
Normal haemostasis is an important physiological mechanism that prevents excessive bleeding during trauma, whereas the pathological thrombosis especially in diabetics leads to increased incidence of heart attacks and strokes as well as peripheral vascular events. In this work, we propose a new multiscale framework that integrates seamlessly four key components of blood clotting, namely transport of coagulation factors, coagulation kinetics, blood cell mechanics and platelet adhesive dynamics, to model the development of thrombi under physiological and pathological conditions. We implement this framework to simulate platelet adhesion due to the exposure of tissue factor in a three-dimensional microchannel. Our results show that our model can simulate thrombin-mediated platelet activation in the flowing blood, resulting in platelet adhesion to the injury site of the channel wall. Furthermore, we simulate platelet adhesion in diabetic blood, and our results show that both the pathological alterations in the biomechanics of blood cells and changes in the amount of coagulation factors contribute to the excessive platelet adhesion and aggregation in diabetic blood. Taken together, this new framework can be used to probe synergistic mechanisms of thrombus formation under physiological and pathological conditions, and open new directions in modelling complex biological problems that involve several multiscale processes.
Collapse
Affiliation(s)
- Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
- School of Engineering, Brown University, Providence, RI 02912, USA
| | - He Li
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Elahe Javadi
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Zhen Li
- Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA
| | - Safa Jamali
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA 02115, USA
| | - Chensen Lin
- Division of Applied Mathematics, Brown University, Providence, RI 02912, USA
| | - Jay D. Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | |
Collapse
|
29
|
Zouaoui Boudjeltia K, Kotsalos C, de Sousa DR, Rousseau A, Lelubre C, Sartenaer O, Piagnerelli M, Dohet-Eraly J, Dubois F, Tasiaux N, Chopard B, Van Meerhaeghe A. Spherization of red blood cells and platelet margination in COPD patients. Ann N Y Acad Sci 2020; 1485:71-82. [PMID: 33009705 DOI: 10.1111/nyas.14489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/06/2023]
Abstract
Red blood cells (RBCs) in pathological situations undergo biochemical and conformational changes, leading to alterations in rheology involved in cardiovascular events. The shape of RBCs in volunteers and stable and exacerbated chronic obstructive pulmonary disease (COPD) patients was analyzed. The effects of RBC spherization on platelet transport (displacement in the flow field caused by their interaction with RBCs) were studied in vitro and by numerical simulations. RBC spherization was observed in COPD patients compared with volunteers. In in vitro experiments at a shear rate of 100 s-1 , treatment of RBCs with neuraminidase induced greater sphericity, which mainly affected platelet aggregates without changing aggregate size. At 400 s-1 , neuraminidase treatment changes both the size of the aggregates and the number of platelet aggregates. Numerical simulations indicated that RBC spherization induces an increase of the platelet mean square displacement, which is traditionally linked to the platelet diffusion coefficient. RBCs of COPD patients are more spherical than healthy volunteers. Experimentally, RBC spherization induces increased platelet transport to the wall. Additional studies are needed to understand the link between the effect of RBCs on platelet transport and the increased cardiovascular events observed in COPD patients.
Collapse
Affiliation(s)
- Karim Zouaoui Boudjeltia
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Christos Kotsalos
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Daniel Ribeiro de Sousa
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Alexandre Rousseau
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Christophe Lelubre
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium.,Internal Medicine, CHU de Charleroi - Hôpital Civil Marie Curie, Charleroi, Belgium
| | - Olivier Sartenaer
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| | - Michael Piagnerelli
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium.,Intensive Care, CHU de Charleroi - Hôpital Civil Marie Curie, Charleroi, Belgium
| | - Jérôme Dohet-Eraly
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium.,Microgravity Research Centre, Université libre de Bruxelles, Brussels, Belgium
| | - Frank Dubois
- Microgravity Research Centre, Université libre de Bruxelles, Brussels, Belgium
| | - Nicole Tasiaux
- Clinical Biology, Haematology Department, CHU de Charleroi, Charleroi, Belgium
| | - Bastien Chopard
- Computer Science Department, University of Geneva, Geneva, Switzerland
| | - Alain Van Meerhaeghe
- Laboratory of Experimental Medicine (ULB222), Faculty of Medicine, Université libre de Bruxelles, CHU de Charleroi, Charleroi, Belgium
| |
Collapse
|
30
|
Deng Y, Papageorgiou DP, Li X, Perakakis N, Mantzoros CS, Dao M, Karniadakis GE. Quantifying Fibrinogen-Dependent Aggregation of Red Blood Cells in Type 2 Diabetes Mellitus. Biophys J 2020; 119:900-912. [PMID: 32814061 PMCID: PMC7474208 DOI: 10.1016/j.bpj.2020.07.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Fibrinogen is regarded as the main glycoprotein in the aggregation of red blood cells (RBCs), a normally occurring phenomenon that has a major impact on blood rheology and hemodynamics, especially under pathological conditions, including type 2 diabetes mellitus (T2DM). In this study, we investigate the fibrinogen-dependent aggregation dynamics of T2DM RBCs through patient-specific predictive computational simulations that invoke key parameters derived from microfluidic experiments. We first calibrate our model parameters at the doublet (a rouleau consisting of two aggregated RBCs) level for healthy blood samples by matching the detaching force required to fully separate RBC doublets with measurements using atomic force microscopy and optical tweezers. Using results from companion microfluidic experiments that also provide in vitro quantitative information on cell-cell adhesive dynamics, we then quantify the rouleau dissociation dynamics at the doublet and multiplet (a rouleau consisting of three or more aggregated RBCs) levels for obese patients with or without T2DM. Specifically, we examine the rouleau breakup rate when it passes through microgates at doublet level and investigate the effect of rouleau alignment in altering its breakup pattern at multiplet level. This study seamlessly integrates in vitro experiments and simulations and consequently enhances our understanding of the complex cell-cell interaction, highlighting the importance of the aggregation and disaggregation dynamics of RBCs in patients at increased risk of microvascular complications.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Xuejin Li
- Department of Engineering Mechanics and Center for X-Mechanics, Zhejiang University, Hangzhou, People's Republic of China
| | - Nikolaos Perakakis
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Christos S Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Boston VA Healthcare System, Boston, Massachusetts
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|
31
|
Platelets: Mechanistic and Diagnostic Significance in Transplantation. CURRENT TRANSPLANTATION REPORTS 2020. [DOI: 10.1007/s40472-020-00272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of Review
In addition to their function in coagulation, platelets recently have been recognized as an important component of innate immune responses. This review relates salient immune functions of platelets to transplants.
Recent Findings
Platelets are critical bridges between vascular endothelium and leukocytes. Real-time imaging of platelets has demonstrated that platelets rapidly adhere to vascular endothelium and form a nidus for attachment of neutrophils and then monocytes. However, the majority of platelets subsequently release from endothelium and return to the circulation in an activated state. These recycled platelets have the potential to transport proteins and RNA from the graft to the recipient. Some of the platelets that return to the circulation are attached to leukocytes.
Summary
Platelets have the potential to modulate many elements of the graft and the immune response from the time of organ retrieval through ischemia-reperfusion to acute and chronic rejection. Beyond mechanistic considerations, assays that detect changes in platelet protein or RNA expression could be used to monitor early inflammatory responses in transplants.
Collapse
|
32
|
Laxmi V, Tripathi S, Joshi SS, Agrawal A. Separation and Enrichment of Platelets from Whole Blood Using a PDMS-Based Passive Microdevice. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vijai Laxmi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Siddhartha Tripathi
- Birla Institute of Technology and Science Pilani, Goa Campus, Sancoale, Goa 403726, India
| | - Suhas S. Joshi
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| | - Amit Agrawal
- Indian Institute of Technology, Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
33
|
Czaja B, Gutierrez M, Závodszky G, de Kanter D, Hoekstra A, Eniola-Adefeso O. The influence of red blood cell deformability on hematocrit profiles and platelet margination. PLoS Comput Biol 2020; 16:e1007716. [PMID: 32163405 PMCID: PMC7093031 DOI: 10.1371/journal.pcbi.1007716] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/24/2020] [Accepted: 02/05/2020] [Indexed: 12/29/2022] Open
Abstract
The influence of red blood cell (RBC) deformability in whole blood on platelet margination is investigated using confocal microscopy measurements of flowing human blood and cell resolved blood flow simulations. Fluorescent platelet concentrations at the wall of a glass chamber are measured using confocal microscopy with flowing human blood containing varying healthy-to-stiff RBC fractions. A decrease is observed in the fluorescent platelet signal at the wall due to the increase of stiffened RBCs in flow, suggesting a decrease of platelet margination due to an increased fraction of stiffened RBCs present in the flow. In order to resolve the influence of stiffened RBCs on platelet concentration at the channel wall, cell-pair and bulk flow simulations are performed. For homogeneous collisions between RBC pairs, a decrease in final displacement after a collision with increasing membrane stiffness is observed. In heterogeneous collisions between healthy and stiff RBC pairs, it is found that the stiffened RBC is displaced most. The influence of RBC deformability on collisions between RBCs and platelets was found to be negligible due to their size and mass difference. For a straight vessel geometry with varying healthy-to-stiff RBC ratios, a decrease was observed in the red blood cell-free layer and platelet margination due to an increase in stiffened RBCs present in flow.
Collapse
Affiliation(s)
- Benjamin Czaja
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Mario Gutierrez
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gábor Závodszky
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
- Department of Hydrodynamic Systems, Budapest University of Technology and Economics, Budapest, Hungary
| | - David de Kanter
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Alfons Hoekstra
- Computational Science Lab, Faculty of Science, Institute for Informatics, University of Amsterdam, Amsterdam, Netherlands
| | - Omolola Eniola-Adefeso
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
34
|
Gaertner F, Massberg S. Patrolling the vascular borders: platelets in immunity to infection and cancer. Nat Rev Immunol 2019; 19:747-760. [DOI: 10.1038/s41577-019-0202-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 12/13/2022]
|
35
|
Pretini V, Koenen MH, Kaestner L, Fens MHAM, Schiffelers RM, Bartels M, Van Wijk R. Red Blood Cells: Chasing Interactions. Front Physiol 2019; 10:945. [PMID: 31417415 PMCID: PMC6684843 DOI: 10.3389/fphys.2019.00945] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Collapse
Affiliation(s)
- Virginia Pretini
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
| | - Mischa H. Koenen
- Department of Laboratory of Translational Immunology and Department of Pediatric Immunology, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Lars Kaestner
- Theoretical Medicine and Biosciences, Saarland University, Homburg, Germany
- Experimental Physics, Saarland University, Saarbrücken, Germany
| | - Marcel H. A. M. Fens
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences (UIPS), Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Raymond M. Schiffelers
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Marije Bartels
- Paediatric Haematology Department, Wilhelmina Children’s Hospital, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Richard Van Wijk
- Department of Clinical Chemistry and Haematology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
36
|
König CS, Balabani S, Hackett GI, Strange RC, Ramachandran S. Testosterone Therapy: An Assessment of the Clinical Consequences of Changes in Hematocrit and Blood Flow Characteristics. Sex Med Rev 2019; 7:650-660. [PMID: 30926458 DOI: 10.1016/j.sxmr.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/19/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Clinical guidelines indicate that hematocrit should be monitored during testosterone replacement therapy (TTh), with action taken if a level of 0.54 is exceeded. AIM To consider the extent of changes in hematocrit and putative effects on viscosity, blood flow, and mortality rates after TTh. METHODS We focused on literature describing benefits and possible pitfalls of TTh, including increased hematocrit. We used data from the BLAST RCT to determine change in hematocrit after 30 weeks of TTh and describe a clinical case showing the need for monitoring. We consider the validity of the current hematocrit cutoff value at which TTh may be modified. Ways in which hematocrit alters blood flow in the micro- and macro-vasculature are also considered. MAIN OUTCOME MEASURES The following measures were assessed: (i) change in hematocrit, (ii) corresponding actions taken in clinical practice, and (iii) possible blood flow changes following change in hematocrit. RESULTS Analysis of data from the BLAST RCT showed a significant increase in mean hematocrit of 0.01, the increase greater in men with lower baseline values. Although 0 of 61 men given TTh breached the suggested cutoff of 0.54 after 30 weeks, a clinical case demonstrates the need to monitor hematocrit. An association between hematocrit and morbidity and mortality appears likely but not proven and may be evident only in patient subgroups. The consequences of an increased hematocrit may be mediated by alterations in blood viscosity, oxygen delivery, and flow. Their relative impact may vary in different vascular beds. CONCLUSIONS TTh can effect an increased hematocrit via poorly understood mechanisms and may have harmful effects on blood flow that differ in patient subgroups. At present, there appears no scientific basis for using a hematocrit of 0.54 to modify TTh; other values may be more appropriate in particular patient groups. König CS, Balabani S, Hackett GI, et al. Testosterone Therapy: An Assessment of the Clinical Consequences of Changes in Hematocrit and Blood Flow Characteristics. Sex Med Rev 2019;7:650-660.
Collapse
Affiliation(s)
- Carola S König
- College of Engineering, Design & Physical Sciences, Brunel University, London, England, United Kingdom
| | - Stavroula Balabani
- Faculty of Engineering Sciences, University College London, London, United Kingdom
| | - Geoffrey I Hackett
- Department of Urology, University Hospitals Birmingham NHS Foundation Trust, West Midlands, England, United Kingdom
| | - Richard C Strange
- Institute for Science and Technology in Medicine, Keele University, Staffordshire, England, United Kingdom
| | - Sudarshan Ramachandran
- College of Engineering, Design & Physical Sciences, Brunel University, London, England, United Kingdom; Department of Clinical Biochemistry, University Hospitals Birmingham NHS Foundation Trust, West Midlands, England, United Kingdom; Department of Clinical Biochemistry, University Hospitals of North Midlands / Faculty of Health Sciences, Staffordshire University, Staffordshire, England, United Kingdom.
| |
Collapse
|
37
|
Takeishi N, Ito H, Kaneko M, Wada S. Deformation of a Red Blood Cell in a Narrow Rectangular Microchannel. MICROMACHINES 2019; 10:E199. [PMID: 30901883 PMCID: PMC6470855 DOI: 10.3390/mi10030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/16/2019] [Indexed: 01/14/2023]
Abstract
The deformability of a red blood cell (RBC) is one of the most important biological parameters affecting blood flow, both in large arteries and in the microcirculation, and hence it can be used to quantify the cell state. Despite numerous studies on the mechanical properties of RBCs, including cell rigidity, much is still unknown about the relationship between deformability and the configuration of flowing cells, especially in a confined rectangular channel. Recent computer simulation techniques have successfully been used to investigate the detailed behavior of RBCs in a channel, but the dynamics of a translating RBC in a narrow rectangular microchannel have not yet been fully understood. In this study, we numerically investigated the behavior of RBCs flowing at different velocities in a narrow rectangular microchannel that mimicked a microfluidic device. The problem is characterized by the capillary number C a , which is the ratio between the fluid viscous force and the membrane elastic force. We found that confined RBCs in a narrow rectangular microchannel maintained a nearly unchanged biconcave shape at low C a , then assumed an asymmetrical slipper shape at moderate C a , and finally attained a symmetrical parachute shape at high C a . Once a RBC deformed into one of these shapes, it was maintained as the final stable configurations. Since the slipper shape was only found at moderate C a , measuring configurations of flowing cells will be helpful to quantify the cell state.
Collapse
Affiliation(s)
- Naoki Takeishi
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| | - Hiroaki Ito
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Makoto Kaneko
- Department of Mechanical Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Shigeo Wada
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
| |
Collapse
|
38
|
Deng Y, Papageorgiou DP, Chang HY, Abidi SZ, Li X, Dao M, Karniadakis GE. Quantifying Shear-Induced Deformation and Detachment of Individual Adherent Sickle Red Blood Cells. Biophys J 2018; 116:360-371. [PMID: 30612714 DOI: 10.1016/j.bpj.2018.12.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/26/2018] [Accepted: 12/10/2018] [Indexed: 02/02/2023] Open
Abstract
Vaso-occlusive crisis, a common painful complication of sickle cell disease, is a complex process triggered by intercellular adhesive interactions among blood cells and the endothelium in all human organs (e.g., the oxygen-rich lung as well as hypoxic systems such as liver and kidneys). We present a combined experimental-computational study to quantify the adhesive characteristics of sickle mature erythrocytes (SMEs) and irreversibly sickled cells (ISCs) under flow conditions mimicking those in postcapillary venules. We employed an in vitro microfluidic cell adherence assay, which is coated uniformly with fibronectin. We investigated the adhesion dynamics of SMEs and ISCs in pulsatile flow under well-controlled hypoxic conditions, inferring the cell adhesion strength by increasing the flow rate (or wall shear stress (WSS)) until the onset of cell detachment. In parallel, we performed simulations of individual SMEs and ISCs under shear. We introduced two metrics to quantify the adhesion process, the cell aspect ratio (AR) as a function of WSS and its rate of change (the dynamic deformability index). We found that the AR of SMEs decreases significantly with the increase of WSS, consistent between the experiments and simulations. In contrast, the AR of ISCs remains constant in time and independent of the flow rate. The critical WSS value for detaching a single SME in oxygenated state is in the range of 3.9-5.5 Pa depending on the number of adhesion sites; the critical WSS value for ISCs is lower than that of SMEs. Our simulations show that the critical WSS value for SMEs in deoxygenated state is above 6.2 Pa (multiple adhesion sites), which is greater than their oxygenated counterparts. We investigated the effect of cell shear modulus on the detachment process; we found that for the same cell adhesion spring constant, the higher shear modulus leads to an earlier cell detachment from the functionalized surface. These findings may aid in the understanding of individual roles of sickle cell types in sickle cell disease vaso-occlusion.
Collapse
Affiliation(s)
- Yixiang Deng
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; School of Engineering, Brown University, Providence, Rhode Island
| | - Dimitrios P Papageorgiou
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hung-Yu Chang
- Division of Applied Mathematics, Brown University, Providence, Rhode Island
| | - Sabia Z Abidi
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts; Department of Bioengineering, Rice University, Houston, Texas
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island; Department of Engineering Mechanics, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou, People's Republic of China.
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | |
Collapse
|