1
|
Scott HL, Burns-Casamayor V, Dixson AC, Standaert RF, Stanley CB, Stingaciu LR, Carrillo JMY, Sumpter BG, Katsaras J, Qiang W, Heberle FA, Mertz B, Ashkar R, Barrera FN. Neutron spin echo shows pHLIP is capable of retarding membrane thickness fluctuations. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184349. [PMID: 38815687 PMCID: PMC11365786 DOI: 10.1016/j.bbamem.2024.184349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/03/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Cell membranes are responsible for a range of biological processes that require interactions between lipids and proteins. While the effects of lipids on proteins are becoming better understood, our knowledge of how protein conformational changes influence membrane dynamics remains rudimentary. Here, we performed experiments and computer simulations to study the dynamic response of a lipid membrane to changes in the conformational state of pH-low insertion peptide (pHLIP), which transitions from a surface-associated (SA) state at neutral or basic pH to a transmembrane (TM) α-helix under acidic conditions. Our results show that TM-pHLIP significantly slows down membrane thickness fluctuations due to an increase in effective membrane viscosity. Our findings suggest a possible membrane regulatory mechanism, where the TM helix affects lipid chain conformations, and subsequently alters membrane fluctuations and viscosity.
Collapse
Affiliation(s)
- Haden L Scott
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Violeta Burns-Casamayor
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America
| | - Andrew C Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America
| | - Robert F Standaert
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America; C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Christopher B Stanley
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Laura-Roxana Stingaciu
- Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; JCNS1, FZJ outstation at SNS, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - Jan-Michael Y Carrillo
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - Bobby G Sumpter
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, United States of America
| | - John Katsaras
- Shull Wollan Center - a Joint Institute for Neutron Sciences, Oak Ridge, TN 37831, United States of America; Labs and Soft Matter Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America; Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| | - Wei Qiang
- Department of Chemistry, the State University of New York, Binghamton, NY 13902, United States of America
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37920, United States of America
| | - Blake Mertz
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, United States of America; West Virginia University Cancer Institute, Morgantown, WV 26506, United States of America
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, United States of America; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, United States of America.
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville 37996, United States of America.
| |
Collapse
|
2
|
Pogharian N, Vlahovska PM, Olvera de la Cruz M. Effects of Normal and Lateral Electric Fields on Membrane Mechanical Properties. J Phys Chem B 2024; 128:9172-9182. [PMID: 39288951 PMCID: PMC11443583 DOI: 10.1021/acs.jpcb.4c04255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
As a core component of biological and synthetic membranes, lipid bilayers are key to compartmentalizing chemical processes. Bilayer morphology and mechanical properties are heavily influenced by electric fields, such as those caused by biological ion concentration gradients. We present atomistic simulations exploring the effects of electric fields applied normally and laterally to lipid bilayers. We find that normal fields decrease membrane tension, while lateral fields increase it. Free energy perturbation calculations indicate the importance of dipole-dipole interactions to these tension changes, especially for lateral fields. We additionally show that membrane area compressibilities can be related to their cohesive energies, allowing us to estimate changes in membrane bending rigidity under applied fields. We find that normal and lateral fields decrease and increase bending rigidity, respectively. These results point to the use of directed electric fields to locally control membrane stiffness, thereby modulating associated cellular processes.
Collapse
Affiliation(s)
- Nicholas Pogharian
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Petia M Vlahovska
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Jalali P, Nowroozi A, Moradi S, Shahlaei M. Exploration of lipid bilayer mechanical properties using molecular dynamics simulation. Arch Biochem Biophys 2024; 761:110151. [PMID: 39265694 DOI: 10.1016/j.abb.2024.110151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Important biological structures known for their exceptional mechanical qualities, lipid bilayers are essential to many cellular functions. Fluidity, elasticity, permeability, stiffness, tensile strength, compressibility, shear viscosity, line tension, and curvature elasticity are some of the fundamental characteristics affecting their behavior. The purpose of this review is to examine these characteristics in more detail by molecular dynamics simulation, elucidating their importance and the elements that lead to their appearance in lipid bilayers. Comprehending the mechanical characteristics of lipid bilayers is critical for creating medications, drug delivery systems, and biomaterials that interact with biological membranes because it allows one to understand how these materials respond to different stresses and deformations. The influence of mechanical characteristics on important lipid bilayer properties is examined in this review. The mechanical properties of lipid bilayers were clarified through the use of molecular dynamics simulation analysis techniques, including bilayer thickness, stress-strain analysis, lipid bilayer area compressibility, membrane bending rigidity, and time- or ensemble-averaged the area per lipid evaluation. We explain the significance of molecular dynamics simulation analysis methods, providing important new information about the stability and dynamic behavior of the bilayer. In the end, we hope to use molecular dynamics simulation to provide a comprehensive understanding of the mechanical properties and behavior of lipid bilayers, laying the groundwork for further studies and applications. Taken together, careful investigation of these mechanical aspects deepens our understanding of the adaptive capacities and functional roles of lipid bilayers in biological environments.
Collapse
Affiliation(s)
- Parvin Jalali
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Nowroozi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Moradi
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Shahlaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Sharma KD, Doktorova M, Waxham MN, Heberle FA. Cryo-EM images of phase-separated lipid bilayer vesicles analyzed with a machine-learning approach. Biophys J 2024; 123:2877-2891. [PMID: 38689500 PMCID: PMC11393711 DOI: 10.1016/j.bpj.2024.04.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
Lateral lipid heterogeneity (i.e., raft formation) in biomembranes plays a functional role in living cells. Three-component mixtures of low- and high-melting lipids plus cholesterol offer a simplified experimental model for raft domains in which a liquid-disordered (Ld) phase coexists with a liquid-ordered (Lo) phase. Using such models, we recently showed that cryogenic electron microscopy (cryo-EM) can detect phase separation in lipid vesicles based on differences in bilayer thickness. However, the considerable noise within cryo-EM data poses a significant challenge for accurately determining the membrane phase state at high spatial resolution. To this end, we have developed an image-processing pipeline that utilizes machine learning (ML) to predict the bilayer phase in projection images of lipid vesicles. Importantly, the ML method exploits differences in both the thickness and molecular density of Lo compared to Ld, which leads to improved phase identification. To assess accuracy, we used artificial images of phase-separated lipid vesicles generated from all-atom molecular dynamics simulations of Lo and Ld phases. Synthetic ground-truth data sets mimicking a series of compositions along a tieline of Ld + Lo coexistence were created and then analyzed with various ML models. For all tieline compositions, we find that the ML approach can correctly identify the bilayer phase with >90% accuracy, thus providing a means to isolate the intensity profiles of coexisting Ld and Lo phases, as well as accurately determine domain-size distributions, number of domains, and phase-area fractions. The method described here provides a framework for characterizing nanoscopic lateral heterogeneities in membranes and paves the way for a more detailed understanding of raft properties in biological contexts.
Collapse
Affiliation(s)
- Karan D Sharma
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia
| | - M Neal Waxham
- Department of Neurobiology and Anatomy, University of Texas Health Science Center, Houston, Texas
| | | |
Collapse
|
5
|
Drabik D, Hinc P, Stephan M, Cavalcanti RRM, Czogalla A, Dimova R. Effect of leaflet asymmetry on the stretching elasticity of lipid bilayers with phosphatidic acid. Biophys J 2024; 123:2406-2421. [PMID: 38822521 PMCID: PMC11365108 DOI: 10.1016/j.bpj.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024] Open
Abstract
The asymmetry of membranes has a significant impact on their biophysical characteristics and behavior. This study investigates the composition and mechanical properties of symmetric and asymmetric membranes in giant unilamellar vesicles (GUVs) made of palmitoyloleoyl phosphatidylcholine (POPC) and palmitoyloleoyl phosphatidic acid (POPA). A combination of fluorescence quantification, zeta potential measurements, micropipette aspiration, and bilayer molecular dynamics simulations are used to characterize these membranes. The outer leaflet composition in vesicles is found consistent across the two preparation methods we employed, namely electroformation and inverted emulsion transfer. However, characterizing the inner leaflet poses challenges. Micropipette aspiration of GUVs show that oil residues do not substantially alter membrane elasticity, but simulations reveal increased membrane thickness and decreased interleaflet coupling in the presence of oil. Asymmetric membranes with a POPC:POPA mixture in the outer leaflet and POPC in the inner leaflet display similar stretching elasticity values to symmetric POPC:POPA membranes, suggesting potential POPA insertion into the inner leaflet during vesicle formation and suppressed asymmetry. The inverse compositional asymmetry, with POPC in the outer leaflet and POPC:POPA in the inner one yield less stretchable membranes with higher compressibility modulus compared with their symmetric counterparts. Challenges in achieving and predicting compositional correspondence highlight the limitations of phase-transfer-based methods. In addition, caution is advised when using fluorescently labeled lipids (even at low fractions of 0.5 mol %), as unexpected gel-like domains in symmetric POPC:POPA membranes were observed only with a specific type of labeled DOPE (dioleoylphosphatidylethanolamine) and the same fraction of unlabeled DOPE. The latter suggest that such domain formation may result from interactions between lipids and membrane fluorescent probes. Overall, this study underscores the complexity of factors influencing GUV membrane asymmetry, emphasizing the need for further research and improvement of characterization techniques.
Collapse
Affiliation(s)
- Dominik Drabik
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland; Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland.
| | - Piotr Hinc
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Mareike Stephan
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | | | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany.
| |
Collapse
|
6
|
Thaden O, Schneider N, Walther T, Spiller E, Taoum A, Göpfrich K, Duarte Campos D. Bioprinting of Synthetic Cell-like Lipid Vesicles to Augment the Functionality of Tissues after Manufacturing. ACS Synth Biol 2024; 13:2436-2446. [PMID: 39025476 PMCID: PMC11334175 DOI: 10.1021/acssynbio.4c00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024]
Abstract
Bioprinting is an automated bioassembly method that enables the formation of human tissue-like constructs to restore or replace damaged tissues. Regardless of the employed bioprinting method, cells undergo mechanical stress that can impact their survival and function postprinting. In this study, we investigate the use of a synthetic cell-like unit, giant unilamellar vesicles (GUVs), as adjuvants of the cellular function of human cells postprinting, or in future as the complete replacement of human cells. We analyzed the impact of two nozzle-based bioprinting methods (drop-on-demand and extrusion bioprinting) on the structure, stability, and function of GUVs. We showed that over 65% of the GUVs remain intact when printing at 0.5 bar, demonstrating the potential of using GUVs as a synthetic cell source. We further increased the stability of GUVs in a cell culture medium by introducing polyethylene glycol (PEG) into the GUV lipid membrane. The presence of PEG, however, diminished the structural properties of GUVs postprinting, and reduced the interaction of GUVs with human cells. Although the design of PEG-GUVs can still be modified in future studies for better cell-GUV interactions, we demonstrated that GUVs are functional postprinting. Chlorin e6-PEG-GUVs loaded with a fluorescent dye were bioprinted, and they released the dye postprinting only upon illumination. This is a new strategy to deliver carriers, such as growth factors, drugs, nutrients, or gases, inside large bioprinted specimens on a millimeter to centimeter scale. Overall, we showed that printed GUVs can augment the functionality of manufactured human tissues.
Collapse
Affiliation(s)
- Ole Thaden
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Nicole Schneider
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Tobias Walther
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Erin Spiller
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Alexandre Taoum
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering of Life Group, Center for Molecular
Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
- Max
Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Daniela Duarte Campos
- Bioprinting
& Tissue Engineering Group, Center for
Molecular Biology of Heidelberg University (ZMBH), Heidelberg 69120, Germany
| |
Collapse
|
7
|
Rzycki M, Drabik D. Multifaceted Activity of Fabimycin: Insights from Molecular Dynamics Studies on Bacterial Membrane Models. J Chem Inf Model 2024; 64:4204-4217. [PMID: 38733348 PMCID: PMC11134499 DOI: 10.1021/acs.jcim.4c00228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024]
Abstract
Membranes─cells' essential scaffolds─are valid molecular targets for substances with an antimicrobial effect. While certain substances, such as octenidine, have been developed to target membranes for antimicrobial purposes, the recently reported molecule, fabimycin (F2B)─a novel agent targeting drug-resistant Gram-negative bacteria─has not received adequate attention regarding its activity on membranes in the literature. The following study aims to investigate the effects of F2B on different bacterial membrane models, including simple planar bilayers and more complex bilayer systems that mimic the Escherichia coli shell equipped with double inner and outer bilayers. Our results show that F2B exhibited more pronounced interactions with bacterial membrane systems compared to the control PC system. Furthermore, we observed significant changes in local membrane property homeostasis in both the inner and outer membrane models, specifically in the case of lateral diffusion, membrane thickness, and membrane resilience (compressibility, tilt). Finally, our results showed that the effect of F2B differed in a complex system and a single membrane system. Our study provides new insights into the multifaceted activity of F2B, demonstrating its potential to disrupt bacterial membrane homeostasis, indicating that its activity extends the currently known mechanism of FabI enzyme inhibition. This disruption, coupled with the ability of F2B to penetrate the outer membrane layers, sheds new light on the behavior of this antimicrobial molecule. This highlights the importance of the interaction with the membrane, crucial in combating bacterial infections, particularly those caused by drug-resistant strains.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| | - Dominik Drabik
- Department of Biomedical Engineering, Wroclaw University of Science and Technology, Wroclaw 50-370, Poland
| |
Collapse
|
8
|
Qutbuddin Y, Guinart A, Gavrilović S, Al Nahas K, Feringa BL, Schwille P. Light-Activated Synthetic Rotary Motors in Lipid Membranes Induce Shape Changes Through Membrane Expansion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311176. [PMID: 38215457 DOI: 10.1002/adma.202311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Indexed: 01/14/2024]
Abstract
Membranes are the key structures to separate and spatially organize cellular systems. Their rich dynamics and transformations during the cell cycle are orchestrated by specific membrane-targeted molecular machineries, many of which operate through energy dissipation. Likewise, man-made light-activated molecular rotary motors have previously shown drastic effects on cellular systems, but their physical roles on and within lipid membranes remain largely unexplored. Here, the impact of rotary motors on well-defined biological membranes is systematically investigated. Notably, dramatic mechanical transformations are observed in these systems upon motor irradiation, indicative of motor-induced membrane expansion. The influence of several factors on this phenomenon is systematically explored, such as motor concentration and membrane composition., Membrane fluidity is found to play a crucial role in motor-induced deformations, while only minor contributions from local heating and singlet oxygen generation are observed. Most remarkably, the membrane area expansion under the influence of the motors continues as long as irradiation is maintained, and the system stays out-of-equilibrium. Overall, this research contributes to a comprehensive understanding of molecular motors interacting with biological membranes, elucidating the multifaceted factors that govern membrane responses and shape transitions in the presence of these remarkable molecular machines, thereby supporting their future applications in chemical biology.
Collapse
Affiliation(s)
- Yusuf Qutbuddin
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ainoa Guinart
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Svetozar Gavrilović
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Kareem Al Nahas
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, 9747 AG, The Netherlands
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| |
Collapse
|
9
|
Xu J, Karra V, Large DE, Auguste DT, Hung FR. Understanding the Mechanical Properties of Ultradeformable Liposomes Using Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9496-9512. [PMID: 37879075 PMCID: PMC10641833 DOI: 10.1021/acs.jpcb.3c04386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/19/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
Improving drug delivery efficiency to solid tumor sites is a central challenge in anticancer therapeutic research. Our previous experimental study (Guo et al., Nat. Commun. 2018, 9, 130) showed that soft, elastic liposomes had increased uptake and accumulation in cancer cells and tumors in vitro and in vivo respectively, relative to rigid particles. As a first step toward understanding how liposomes' molecular structure and composition modulates their elasticity, we performed all-atom and coarse-grained classical molecular dynamics (MD) simulations of lipid bilayers formed by mixing a long-tailed unsaturated phospholipid with a short-tailed saturated lipid with the same headgroup. The former types of phospholipids considered were 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dipalmitoleoyl-sn-glycero-3-phosphocholine (termed here DPMPC). The shorter saturated lipids examined were 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), 1,2-didecanoyl-sn-glycero-3-phosphocholine (DDPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). Several lipid concentrations and surface tensions were considered. Our results show that DOPC or DPMPC systems having 25-35 mol % of the shortest lipids DHPC or DDPC are the least rigid, having area compressibility moduli KA that are ∼10% smaller than the values observed in pure DOPC or DPMPC bilayers. These results agree with experimental measurements of the stretching modulus and lysis tension in liposomes with the same compositions. These mixed systems also have lower areas per lipid and form more uneven x-y interfaces with water, the tails of both primary and secondary lipids are more disordered, and the terminal methyl groups in the tails of the long lipid DOPC or DPMPC wriggle more in the vertical direction, compared to pure DOPC or DPMPC bilayers or their mixtures with the longer saturated lipid DLPC or DMPC. These observations confirm our hypothesis that adding increasing concentrations of the short unsaturated lipid DHPC or DDPC to DOPC or DPMPC bilayers alters lipid packing and thus makes the resulting liposomes more elastic and less rigid. No formation of lipid nanodomains was noted in our simulations, and no clear trends were observed in the lateral diffusivities of the lipids as the concentration, type of secondary lipid, and surface tension were varied.
Collapse
Affiliation(s)
- Jiaming Xu
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Vyshnavi Karra
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Danielle E. Large
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department
of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
10
|
Abdelmessih R, Xu J, Hung FR, Auguste DT. Integration of an LPAR1 Antagonist into Liposomes Enhances Their Internalization and Tumor Accumulation in an Animal Model of Human Metastatic Breast Cancer. Mol Pharm 2023; 20:5500-5514. [PMID: 37844135 PMCID: PMC10631474 DOI: 10.1021/acs.molpharmaceut.3c00348] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
Lysophosphatidic acid receptor 1 (LPAR1) is elevated in breast cancer. The deregulation of LPAR1, including the function and level of expression, is linked to cancer initiation, progression, and metastasis. LPAR1 antagonists, AM095 or Ki16425, may be effective therapeutic molecules, yet their limited water solubility hinders in vivo delivery. In this study, we report on the synthesis of two liposomal formulations incorporating AM095 or Ki16425, embedded within the lipid bilayer, as targeted nanocarriers for metastatic breast cancer (MBC). The data show that the Ki16425 liposomal formulation exhibited a 50% increase in internalization by MBC mouse epithelial cells (4T1) and a 100% increase in tumor accumulation in a mouse model of MBC compared with that of a blank liposomal formulation (control). At the same time, normal mouse epithelial cells (EpH-4Ev) internalized the Ki16425 liposomal formulation 25% lesser than the control formulation. Molecular dynamics simulations show that the integration of AM095 or Ki16425 modified the physical and mechanical properties of the lipid bilayer, making it more flexible in these liposomal formulations compared with liposomes without drug. The incorporation of an LPAR1 antagonist within a liposomal drug delivery system represents a viable therapeutic approach for targeting the LPA-LPAR1 axis, which may hinder the progression of MBC.
Collapse
Affiliation(s)
- Rudolf
G. Abdelmessih
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Jiaming Xu
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Francisco R. Hung
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Debra T. Auguste
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
11
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
12
|
Zakany F, Mándity IM, Varga Z, Panyi G, Nagy P, Kovacs T. Effect of the Lipid Landscape on the Efficacy of Cell-Penetrating Peptides. Cells 2023; 12:1700. [PMID: 37443733 PMCID: PMC10340183 DOI: 10.3390/cells12131700] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Every cell biological textbook teaches us that the main role of the plasma membrane is to separate cells from their neighborhood to allow for a controlled composition of the intracellular space. The mostly hydrophobic nature of the cell membrane presents an impenetrable barrier for most hydrophilic molecules larger than 1 kDa. On the other hand, cell-penetrating peptides (CPPs) are capable of traversing this barrier without compromising membrane integrity, and they can do so on their own or coupled to cargos. Coupling biologically and medically relevant cargos to CPPs holds great promise of delivering membrane-impermeable drugs into cells. If the cargo is able to interact with certain cell types, uptake of the CPP-drug complex can be tailored to be cell-type-specific. Besides outlining the major membrane penetration pathways of CPPs, this review is aimed at deciphering how properties of the membrane influence the uptake mechanisms of CPPs. By summarizing an extensive body of experimental evidence, we argue that a more ordered, less flexible membrane structure, often present in the very diseases planned to be treated with CPPs, decreases their cellular uptake. These correlations are not only relevant for understanding the cellular biology of CPPs, but also for rationally improving their value in translational or clinical applications.
Collapse
Affiliation(s)
- Florina Zakany
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - István M. Mándity
- Department of Organic Chemistry, Faculty of Pharmacy, Semmelweis University, 1085 Budapest, Hungary;
- TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, 1117 Budapest, Hungary
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Peter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| | - Tamas Kovacs
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (F.Z.); (Z.V.); (G.P.)
| |
Collapse
|
13
|
Doktorova M, Khelashvili G, Ashkar R, Brown MF. Molecular simulations and NMR reveal how lipid fluctuations affect membrane mechanics. Biophys J 2023; 122:984-1002. [PMID: 36474442 PMCID: PMC10111610 DOI: 10.1016/j.bpj.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Lipid bilayers form the main matrix of functional cell membranes, and their dynamics underlie a host of physical and biological processes. Here we show that elastic membrane properties and collective molecular dynamics (MD) are related by the mean-square amplitudes (order parameters) and relaxation rates (correlation times) of lipid acyl chain motions. We performed all-atom MD simulations of liquid-crystalline bilayers that allow direct comparison with carbon-hydrogen (CH) bond relaxations measured with NMR spectroscopy. Previous computational and theoretical approaches have assumed isotropic relaxation, which yields inaccurate description of lipid chain dynamics and incorrect data interpretation. Instead, the new framework includes a fixed bilayer normal (director axis) and restricted anisotropic motion of the CH bonds in accord with their segmental order parameters, enabling robust validation of lipid force fields. Simulated spectral densities of thermally excited CH bond fluctuations exhibited well-defined spin-lattice (Zeeman) relaxations analogous to those in NMR measurements. Their frequency signature could be fit to a simple power-law function, indicative of nematic-like collective dynamics. Moreover, calculated relaxation rates scaled as the squared order parameters yielding an apparent κC modulus for bilayer bending. Our results show a strong correlation with κC values obtained from solid-state NMR studies of bilayers without and with cholesterol as validated by neutron spin-echo measurements of membrane elasticity. The simulations uncover a critical role of interleaflet coupling in membrane mechanics and thus provide important insights into molecular sites of emerging elastic properties within lipid bilayers.
Collapse
Affiliation(s)
- Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia.
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York; Institute of Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, Virginia; Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona; Department of Physics, University of Arizona, Tucson, Arizona; Program in Applied Mathematics, University of Arizona, Tucson, Arizona.
| |
Collapse
|
14
|
Ivanova N, Chamati H. The Effect of Cholesterol in SOPC Lipid Bilayers at Low Temperatures. MEMBRANES 2023; 13:275. [PMID: 36984662 PMCID: PMC10058253 DOI: 10.3390/membranes13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
We study the behavior of lipid bilayers composed of SOPC (1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine) with different concentrations of cholesterol, ranging from 10 mol% to 50 mol% at 273 K. To this end, we carry out extensive atomistic molecular dynamic simulations with the aid of the Slipid force field aiming at computing basic bilayer parameters, as well as thermodynamic properties and structural characteristics. The obtained results are compared to available relevant experimental data and the outcome of atomistic simulations performed on bilayers composed of analogous phospholipids. Our results show a good quantitative, as well as qualitative, agreement with the main trends associated with the concentration increase in cholesterol. Moreover, it comes out that a change in the behavior of the bilayer is brought about at a concentration of about 30 mol% cholesterol. At this very concentration, some of the bilayer properties are found to exhibit a saturation and a significant long-range ordering of the lipid molecules in the membrane shows up.
Collapse
Affiliation(s)
- Nikoleta Ivanova
- Department of Physical Chemistry, University of Chemical Technology and Metallurgy, 8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| | - Hassan Chamati
- Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria
| |
Collapse
|
15
|
Doole FT, Gupta S, Kumarage T, Ashkar R, Brown MF. Biophysics of Membrane Stiffening by Cholesterol and Phosphatidylinositol 4,5-bisphosphate (PIP2). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:61-85. [PMID: 36988877 DOI: 10.1007/978-3-031-21547-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Cell membranes regulate a wide range of phenomena that are implicated in key cellular functions. Cholesterol, a critical component of eukaryotic cell membranes, is responsible for cellular organization, membrane elasticity, and other critical physicochemical parameters. Besides cholesterol, other lipid components such as phosphatidylinositol 4,5-bisphosphate (PIP2) are found in minor concentrations in cell membranes yet can also play a major regulatory role in various cell functions. In this chapter, we describe how solid-state deuterium nuclear magnetic resonance (2H NMR) spectroscopy together with neutron spin-echo (NSE) spectroscopy can inform synergetic changes to lipid molecular packing due to cholesterol and PIP2 that modulate the bending rigidity of lipid membranes. Fundamental structure-property relations of molecular self-assembly are illuminated and point toward a length and time-scale dependence of cell membrane mechanics, with significant implications for biological activity and membrane lipid-protein interactions.
Collapse
Affiliation(s)
- Fathima T Doole
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Sudipta Gupta
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Teshani Kumarage
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA
| | - Rana Ashkar
- Department of Physics and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, USA.
| | - Michael F Brown
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA.
- Department of Physics, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
16
|
Pinigin KV. Determination of Elastic Parameters of Lipid Membranes with Molecular Dynamics: A Review of Approaches and Theoretical Aspects. MEMBRANES 2022; 12:membranes12111149. [PMID: 36422141 PMCID: PMC9692374 DOI: 10.3390/membranes12111149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 05/12/2023]
Abstract
Lipid membranes are abundant in living organisms, where they constitute a surrounding shell for cells and their organelles. There are many circumstances in which the deformations of lipid membranes are involved in living cells: fusion and fission, membrane-mediated interaction between membrane inclusions, lipid-protein interaction, formation of pores, etc. In all of these cases, elastic parameters of lipid membranes are important for the description of membrane deformations, as these parameters determine energy barriers and characteristic times of membrane-involved phenomena. Since the development of molecular dynamics (MD), a variety of in silico methods have been proposed for the determination of elastic parameters of simulated lipid membranes. These MD methods allow for the consideration of details unattainable in experimental techniques and represent a distinct scientific field, which is rapidly developing. This work provides a review of these MD approaches with a focus on theoretical aspects. Two main challenges are identified: (i) the ambiguity in the transition from the continuum description of elastic theories to the discrete representation of MD simulations, and (ii) the determination of intrinsic elastic parameters of lipid mixtures, which is complicated due to the composition-curvature coupling effect.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| |
Collapse
|
17
|
Doole FT, Kumarage T, Ashkar R, Brown MF. Cholesterol Stiffening of Lipid Membranes. J Membr Biol 2022; 255:385-405. [PMID: 36219221 PMCID: PMC9552730 DOI: 10.1007/s00232-022-00263-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022]
Abstract
Biomembrane order, dynamics, and other essential physicochemical parameters are controlled by cholesterol, a major component of mammalian cell membranes. Although cholesterol is well known to exhibit a condensing effect on fluid lipid membranes, the extent of stiffening that occurs with different degrees of lipid acyl chain unsaturation remains an enigma. In this review, we show that cholesterol locally increases the bending rigidity of both unsaturated and saturated lipid membranes, suggesting there may be a length-scale dependence of the bending modulus. We review our published data that address the origin of the mechanical effects of cholesterol on unsaturated and polyunsaturated lipid membranes and their role in biomembrane functions. Through a combination of solid-state deuterium NMR spectroscopy and neutron spin-echo spectroscopy, we show that changes in molecular packing cause the universal effects of cholesterol on the membrane bending rigidity. Our findings have broad implications for the role of cholesterol in lipid–protein interactions as well as raft-like mixtures, drug delivery applications, and the effects of antimicrobial peptides on lipid membranes.
Collapse
Affiliation(s)
- Fathima T Doole
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA
| | - Teshani Kumarage
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA. .,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Michael F Brown
- Deaprtment of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85712, USA. .,Department of Physics, University of Arizona, Tucson, AZ, 85712, USA.
| |
Collapse
|
18
|
DiPasquale M, Nguyen MHL, Pabst G, Marquardt D. Partial Volumes of Phosphatidylcholines and Vitamin E: α-Tocopherol Prefers Disordered Membranes. J Phys Chem B 2022; 126:6691-6699. [PMID: 36027485 DOI: 10.1021/acs.jpcb.2c04209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Despite its discovery over 95 years ago, the biological and nutritional roles of vitamin E remain subjects of much controversy. Though it is known to possess antioxidant properties, recent assertions have implied that vitamin E may not be limited to this function in living systems. Through densitometry measurements and small-angle X-ray scattering we observe favorable interactions between α-tocopherol and unsaturated phospholipids, with more favorable interactions correlating to an increase in lipid chain unsaturation. Our data provide evidence that vitamin E may preferentially associate with oxygen sensitive lipids─an association that is considered innate for a viable membrane antioxidant.
Collapse
Affiliation(s)
- Mitchell DiPasquale
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Michael H L Nguyen
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Georg Pabst
- Institute of Molecular Biosciences, Biophysics Division, NAWI Graz, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Graz 8010, Austria
| | - Drew Marquardt
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.,Department of Physics, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| |
Collapse
|
19
|
Tran TM, Chng CP, Pu X, Ma Z, Han X, Liu X, Yang L, Huang C, Miao Y. Potentiation of plant defense by bacterial outer membrane vesicles is mediated by membrane nanodomains. THE PLANT CELL 2022; 34:395-417. [PMID: 34791473 PMCID: PMC8846181 DOI: 10.1093/plcell/koab276] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/14/2021] [Indexed: 05/04/2023]
Abstract
Outer membrane vesicles (OMVs) are released from the outer membranes of Gram-negative bacteria during infection and modulate host immunity during host-pathogen interactions. The mechanisms by which OMVs are perceived by plants and affect host immunity are unclear. Here, we used the pathogen Xanthomonas campestris pv. campestris to demonstrate that OMV-plant interactions at the Arabidopsis thaliana plasma membrane (PM) modulate various host processes, including endocytosis, innate immune responses, and suppression of pathogenesis by phytobacteria. The lipid phase of OMVs is highly ordered and OMVs directly insert into the Arabidopsis PM, thereby enhancing the plant PM's lipid order; this also resulted in strengthened plant defenses. Strikingly, the integration of OMVs into the plant PM is host nanodomain- and remorin-dependent. Using coarse-grained simulations of molecular dynamics, we demonstrated that OMV integration into the plant PM depends on the membrane lipid order. Our computational simulations further showed that the saturation level of the OMV lipids could fine-tune the enhancement of host lipid order. Our work unraveled the mechanisms underlying the ability of OMVs produced by a plant pathogen to insert into the host PM, alter host membrane properties, and modulate plant immune responses.
Collapse
Affiliation(s)
- Tuan Minh Tran
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
| | - Xiaoming Pu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiao Han
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Xiaolin Liu
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| | - Liang Yang
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551
- School of Medicine, Southern University of Science and Technology, China
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551
| |
Collapse
|
20
|
Bryer AJ, Reddy T, Lyman E, Perilla JR. Full scale structural, mechanical and dynamical properties of HIV-1 liposomes. PLoS Comput Biol 2022; 18:e1009781. [PMID: 35041642 PMCID: PMC8797243 DOI: 10.1371/journal.pcbi.1009781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 01/28/2022] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
Enveloped viruses are enclosed by a lipid membrane inside of which are all of the components necessary for the virus life cycle; viral proteins, the viral genome and metabolites. Viral envelopes are lipid bilayers that adopt morphologies ranging from spheres to tubes. The envelope is derived from the host cell during viral replication. Thus, the composition of the bilayer depends on the complex constitution of lipids from the host-cell's organelle(s) where assembly and/or budding of the viral particle occurs. Here, molecular dynamics (MD) simulations of authentic, asymmetric HIV-1 liposomes are used to derive a unique level of resolution of its full-scale structure, mechanics and dynamics. Analysis of the structural properties reveal the distribution of thicknesses of the bilayers over the entire liposome as well as its global fluctuations. Moreover, full-scale mechanical analyses are employed to derive the global bending rigidity of HIV-1 liposomes. Finally, dynamical properties of the lipid molecules reveal important relationships between their 3D diffusion, the location of lipid-rafts and the asymmetrical composition of the envelope. Overall, our simulations reveal complex relationships between the rich lipid composition of the HIV-1 liposome and its structural, mechanical and dynamical properties with critical consequences to different stages of HIV-1's life cycle.
Collapse
Affiliation(s)
- Alexander J. Bryer
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| | - Tyler Reddy
- CCS-7 Applied Computer Science, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Edward Lyman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware, United States of America
| | - Juan R. Perilla
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, United States of America
| |
Collapse
|
21
|
Nagle JF. Measuring the bending modulus of lipid bilayers with cholesterol. Phys Rev E 2021; 104:044405. [PMID: 34781561 DOI: 10.1103/physreve.104.044405] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/22/2021] [Indexed: 11/07/2022]
Abstract
The effect of cholesterol on the bending modulus of DOPC lipid bilayers has become a controversial topic that has implications for methods of measuring the bending modulus. Recent results using neutron spin echo and nuclear magnetic resonance relaxation methods that involve linear transport properties have conflicted with earlier results from purely equilibrium experiments that do not involve linear transport properties. A general discussion indicates how one can be misled by data obtained by methods that involve linear transport properties. It is then shown specifically how the recent neutron spin echo results can be interpreted to agree with the earlier purely equilibrium experimental results, thereby resolving that conflict. Regarding the nuclear magnetic resonance relaxation method, it is noted that current interpretation of the data is unclear regarding the identity of the modulus that is involved, and an alternative interpretation is explored that does not disagree with the results of the equilibrium experiments.
Collapse
Affiliation(s)
- John F Nagle
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
22
|
Kalathingal M, Sumikama T, Oiki S, Saito S. Vectorial insertion of a β-helical peptide into membrane: a theoretical study on polytheonamide B. Biophys J 2021; 120:4786-4797. [PMID: 34555359 DOI: 10.1016/j.bpj.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a β6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: "landing," "penetration," and "equilibration" phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely "trapped" and "untrapped" insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Takashi Sumikama
- PRESTO, JST, Kawaguchi, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| | - Shinji Saito
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan; Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
23
|
Simple Does Not Mean Trivial: Behavior of Phosphatidic Acid in Lipid Mono- and Bilayers. Int J Mol Sci 2021; 22:ijms222111523. [PMID: 34768953 PMCID: PMC8584262 DOI: 10.3390/ijms222111523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 01/21/2023] Open
Abstract
Phosphatidic acid (PA) is one of the simplest membrane phospholipids, yet it plays a crucial role in various biologically relevant processes that take place in cells. Since PA generation may be triggered by a variety of factors, very often of antagonistic character, the specific nature of physiological responses driven by PA is not clear. In order to shed more light on these issues, we carried out a systematic characterization of membranes containing one of the three biologically significant PA molecular species. The effect of these molecules on the properties of membranes composed of phosphatidylcholine and/or cholesterol was assessed in a multidisciplinary approach, including molecular dynamic simulations, flicker noise spectroscopy, and Langmuir monolayer isotherms. The first enables the determination of various macroscopic and microscopic parameters such as lateral diffusion, membrane thickness, and defect analysis. The obtained data revealed a strong interaction between unsaturated PA species and phosphatidylcholine. On the other hand, the behavior of saturated PA was greatly influenced by cholesterol. Additionally, a strong effect on mechanical properties was observed in the case of three-component systems, which could not be explained by the simple extrapolation of parameters of the corresponding two-component systems. Our data show that various PA species are not equivalent in terms of their influence on lipid mono- and bilayers and that membrane composition/properties, particularly those related to the presence of cholesterol, may strongly modulate PA behavior.
Collapse
|
24
|
Rzycki M, Kaczorowska A, Kraszewski S, Drabik D. A Systematic Approach: Molecular Dynamics Study and Parametrisation of Gemini Type Cationic Surfactants. Int J Mol Sci 2021; 22:ijms222010939. [PMID: 34681599 PMCID: PMC8536075 DOI: 10.3390/ijms222010939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 01/07/2023] Open
Abstract
The spreading of antibiotic-resistant bacteria strains is one of the most serious problem in medicine to struggle nowadays. This triggered the development of alternative antimicrobial agents in recent years. One of such group is Gemini surfactants which are massively synthesised in various structural configurations to obtain the most effective antibacterial properties. Unfortunately, the comparison of antimicrobial effectiveness among different types of Gemini agents is unfeasible since various protocols for the determination of Minimum Inhibitory Concentration are used. In this work, we proposed alternative, computational, approach for such comparison. We designed a comprehensive database of 250 Gemini surfactants. Description of structure parameters, for instance spacer type and length, are included in the database. We parametrised modelled molecules to obtain force fields for the entire Gemini database. This was used to conduct in silico studies using the molecular dynamics to investigate the incorporation of these agents into model E. coli inner membrane system. We evaluated the effect of Gemini surfactants on structural, stress and mechanical parameters of the membrane after the agent incorporation. This enabled us to select four most likely membrane properties that could correspond to Gemini’s antimicrobial effect. Based on our results we selected several types of Gemini spacers which could demonstrate a particularly strong effect on the bacterial membranes.
Collapse
Affiliation(s)
- Mateusz Rzycki
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
- Correspondence:
| | - Aleksandra Kaczorowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
| | - Sebastian Kraszewski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
| | - Dominik Drabik
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland; (A.K.); (S.K.); (D.D.)
- Laboratory of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
25
|
Canepa E, Bochicchio D, Gasbarri M, Odino D, Canale C, Ferrando R, Canepa F, Stellacci F, Rossi G, Dante S, Relini A. Cholesterol Hinders the Passive Uptake of Amphiphilic Nanoparticles into Fluid Lipid Membranes. J Phys Chem Lett 2021; 12:8583-8590. [PMID: 34468146 PMCID: PMC8436204 DOI: 10.1021/acs.jpclett.1c02077] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Plasma membranes represent pharmacokinetic barriers for the passive transport of site-specific drugs within cells. When engineered nanoparticles (NPs) are considered as transmembrane drug carriers, the plasma membrane composition can affect passive NP internalization in many ways. Among these, cholesterol-regulated membrane fluidity is probably one of the most biologically relevant. Herein, we consider small (2-5 nm in core diameter) amphiphilic gold NPs capable of spontaneously and nondisruptively entering the lipid bilayer of plasma membranes. We study their incorporation into model 1,2-dioleoyl-sn-glycero-3-phosphocholine membranes with increasing cholesterol content. We combine dissipative quartz crystal microbalance experiments, atomic force microscopy, and molecular dynamics simulations to show that membrane cholesterol, at biologically relevant concentrations, hinders the molecular mechanism for passive NP penetration within fluid bilayers, resulting in a dramatic reduction in the amount of NP incorporated.
Collapse
Affiliation(s)
- Ester Canepa
- Department
of Chemistry and Industrial Chemistry, University
of Genoa, via Dodecaneso 31, 16146 Genoa, Italy
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Davide Bochicchio
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Matteo Gasbarri
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Davide Odino
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Claudio Canale
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Riccardo Ferrando
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Fabio Canepa
- Department
of Chemistry and Industrial Chemistry, University
of Genoa, via Dodecaneso 31, 16146 Genoa, Italy
| | - Francesco Stellacci
- Institute
of Materials, École Polytechnique
Fédérale de Lausanne, Route Cantonale, 1015 Lausanne, Switzerland
| | - Giulia Rossi
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| | - Silvia Dante
- Materials
Characterization Facility, Istituto Italiano
di Tecnologia, via Morego 30, 16163 Genoa, Italy
| | - Annalisa Relini
- Department
of Physics, University of Genoa, via Dodecaneso 33, 16146 Genoa, Italy
| |
Collapse
|
26
|
Abstract
Cell membranes - primarily composed of lipids, sterols, and proteins - form a dynamic interface between living cells and their environment. They act as a mechanical barrier around the cell while selectively facilitating material transport, signal transduction, and various other functions necessary for the cell viability. The complex functionality of cell membranes and the hierarchical motions and responses they exhibit demand a thorough understanding of the origin of different membrane dynamics and how they are influenced by molecular additives and environmental cues. These dynamic modes include single-molecule diffusion, thermal fluctuations, and large-scale membrane deformations, to name a few. This review highlights advances in investigating structure-driven dynamics associated with model cell membranes, with a particular focus on insights gained from neutron scattering and spectroscopy experiments. We discuss the uniqueness of neutron contrast variation and its remarkable potential in probing selective membrane structure and dynamics on spatial and temporal scales over which key biological functions occur. We also present a summary of current and future opportunities in synergistic combinations of neutron scattering with molecular dynamics (MD) simulations to gain further understanding of the molecular mechanisms underlying complex membrane functions.
Collapse
Affiliation(s)
- Sudipta Gupta
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA 24061, USA. and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
27
|
Phenothiazines alter plasma membrane properties and sensitize cancer cells to injury by inhibiting annexin-mediated repair. J Biol Chem 2021; 297:101012. [PMID: 34324830 PMCID: PMC8363839 DOI: 10.1016/j.jbc.2021.101012] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 01/11/2023] Open
Abstract
Repair of damaged plasma membrane in eukaryotic cells is largely dependent on the binding of annexin repair proteins to phospholipids. Changing the biophysical properties of the plasma membrane may provide means to compromise annexin-mediated repair and sensitize cells to injury. Since, cancer cells experience heightened membrane stress and are more dependent on efficient plasma membrane repair, inhibiting repair may provide approaches to sensitize cancer cells to plasma membrane damage and cell death. Here, we show that derivatives of phenothiazines, which have widespread use in the fields of psychiatry and allergy treatment, strongly sensitize cancer cells to mechanical-, chemical-, and heat-induced injury by inhibiting annexin-mediated plasma membrane repair. Using a combination of cell biology, biophysics, and computer simulations, we show that trifluoperazine acts by thinning the membrane bilayer, making it more fragile and prone to ruptures. Secondly, it decreases annexin binding by compromising the lateral diffusion of phosphatidylserine, inhibiting the ability of annexins to curve and shape membranes, which is essential for their function in plasma membrane repair. Our results reveal a novel avenue to target cancer cells by compromising plasma membrane repair in combination with noninvasive approaches that induce membrane injuries.
Collapse
|
28
|
Jiang W, Lin YC, Luo YL. Mechanical properties of anionic asymmetric bilayers from atomistic simulations. J Chem Phys 2021; 154:224701. [PMID: 34241213 PMCID: PMC8189722 DOI: 10.1063/5.0048232] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/12/2021] [Indexed: 11/14/2022] Open
Abstract
Mechanotransduction, the biological response to mechanical stress, is often initiated by activation of mechanosensitive (MS) proteins upon mechanically induced deformations of the cell membrane. A current challenge in fully understanding this process is in predicting how lipid bilayers deform upon the application of mechanical stress. In this context, it is now well established that anionic lipids influence the function of many proteins. Here, we test the hypothesis that anionic lipids could indirectly modulate MS proteins by alteration of the lipid bilayer mechanical properties. Using all-atom molecular dynamics simulations, we computed the bilayer bending rigidity (KC), the area compressibility (KA), and the surface shear viscosity (ηm) of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (PC) lipid bilayers with and without phosphatidylserine (PS) or phosphatidylinositol bisphosphate (PIP2) at physiological concentrations in the lower leaflet. Tensionless leaflets were first checked for each asymmetric bilayer model, and a formula for embedding an asymmetric channel in an asymmetric bilayer is proposed. Results from two different sized bilayers show consistently that the addition of 20% surface charge in the lower leaflet of the PC bilayer with PIP2 has minimal impact on its mechanical properties, while PS reduced the bilayer bending rigidity by 22%. As a comparison, supplementing the PIP2-enriched PC membrane with 30% cholesterol, a known rigidifying steroid lipid, produces a significant increase in all three mechanical constants. Analysis of pairwise splay moduli suggests that the effect of anionic lipids on bilayer bending rigidity largely depends on the number of anionic lipid pairs formed during simulations. The potential implication of bilayer bending rigidity is discussed in the framework of MS piezo channels.
Collapse
Affiliation(s)
- Wenjuan Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yi-Chun Lin
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| | - Yun Lyna Luo
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, California 91766, USA
| |
Collapse
|
29
|
Reply to Nagle et al.: The universal stiffening effects of cholesterol on lipid membranes. Proc Natl Acad Sci U S A 2021; 118:2102845118. [PMID: 33952694 PMCID: PMC8157964 DOI: 10.1073/pnas.2102845118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Kinnun JJ, Scott HL, Ashkar R, Katsaras J. Biomembrane Structure and Material Properties Studied With Neutron Scattering. Front Chem 2021; 9:642851. [PMID: 33987167 PMCID: PMC8110834 DOI: 10.3389/fchem.2021.642851] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Cell membranes and their associated structures are dynamical supramolecular structures where different physiological processes take place. Detailed knowledge of their static and dynamic structures is therefore needed, to better understand membrane biology. The structure–function relationship is a basic tenet in biology and has been pursued using a range of different experimental approaches. In this review, we will discuss one approach, namely the use of neutron scattering techniques as applied, primarily, to model membrane systems composed of lipid bilayers. An advantage of neutron scattering, compared to other scattering techniques, is the differential sensitivity of neutrons to isotopes of hydrogen and, as a result, the relative ease of altering sample contrast by substituting protium for deuterium. This property makes neutrons an ideal probe for the study of hydrogen-rich materials, such as biomembranes. In this review article, we describe isotopic labeling studies of model and viable membranes, and discuss novel applications of neutron contrast variation in order to gain unique insights into the structure, dynamics, and molecular interactions of biological membranes. We specifically focus on how small-angle neutron scattering data is modeled using different contrast data and molecular dynamics simulations. We also briefly discuss neutron reflectometry and present a few recent advances that have taken place in neutron spin echo spectroscopy studies and the unique membrane mechanical data that can be derived from them, primarily due to new models used to fit the data.
Collapse
Affiliation(s)
- Jacob J Kinnun
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Haden L Scott
- Large Scale Structures Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States
| | - Rana Ashkar
- Department of Physics, Virginia Tech, Blacksburg, VA, United States.,Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States
| | - John Katsaras
- Oak Ridge National Laboratory, Shull-Wollan Center, Oak Ridge, TN, United States.,Sample Environment Group, Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States.,Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
31
|
Chng CP, Sadovsky Y, Hsia KJ, Huang C. Curvature-Regulated Lipid Membrane Softening of Nano-Vesicles. EXTREME MECHANICS LETTERS 2021; 43:101174. [PMID: 33542946 PMCID: PMC7853652 DOI: 10.1016/j.eml.2021.101174] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The physico-mechanical properties of nanoscale lipid vesicles (e.g., natural nano-vesicles and artificial nano-liposomes) dictate their interaction with biological systems. Understanding the interplay between vesicle size and stiffness is critical to both the understanding of the biological functions of natural nano-vesicles and the optimization of nano-vesicle-based diagnostics and therapeutics. It has been predicted that, when vesicle size is comparable to its membrane thickness, the effective bending stiffness of the vesicle increases dramatically due to both the entropic effect as a result of reduced thermal undulation and the nonlinear curvature elasticity effect. Through systematic molecular dynamics simulations, we show that the vesicle membrane thins and softens with the decrease in vesicle size, which effectively counteracts the stiffening effects as already mentioned. Our simulations indicate that the softening of nano-vesicles results from a change in the bilayer's interior structure - a decrease in lipid packing order - as the membrane curvature increases. Our work thus leads to a more complete physical framework to understand the physico-mechanical properties of nanoscale lipid vesicles, paving the way to further advances in the biophysics of nano-vesicles and their biomedical applications.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- corresponding authors: and
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- corresponding authors: and
| |
Collapse
|
32
|
Eid J, Jraij A, Greige-Gerges H, Monticelli L. Effect of quercetin on lipid membrane rigidity: assessment by atomic force microscopy and molecular dynamics simulations. BBA ADVANCES 2021; 1:100018. [PMID: 37082004 PMCID: PMC10074961 DOI: 10.1016/j.bbadva.2021.100018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Quercetin (3,3',4',5,7-pentahydroxyl-flavone) is a natural flavonoid with many valuable biological effects, but its solubility in water is low, posing major limitations in applications. Quercetin encapsulation in liposomes increases its bioavailability; the drug effect on liposome elastic properties is required for formulation development. Here, we quantify the effect of quercetin molecules on the rigidity of lipoid E80 liposomes using atomic force microscopy (AFM) and molecular dynamics (MD) simulations. AFM images show no effect of quercetin molecules on liposomes morphology and structure. However, AFM force curves suggest that quercetin softens lipid membranes; the Young modulus measured for liposomes encapsulating quercetin is smaller than that determined for blank liposomes. We then used MD simulations to interpret the effect of quercetin on membrane rigidity in terms of molecular interactions. The decrease in membrane rigidity was confirmed by the simulations, which also revealed that quercetin affects structural and dynamic properties: membrane thickness is decreased, acyl chains disorder is increased, and diffusion coefficients of lipid molecules are also increased. Such changes appear to be related to the preferential localization of quercetin within the membrane, near the interface between the hydrophobic core and polar head groups of the lipids.
Collapse
Affiliation(s)
- Jad Eid
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
| | - Alia Jraij
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Corresponding authors.
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| | - Luca Monticelli
- Molecular Microbiology and Structural Biochemistry (MMSB), CNRS & Univ. Claude Bernard Lyon I, UMR 5086, Lyon F-69007, France
- Corresponding authors.
| |
Collapse
|
33
|
Rosário-Ferreira N, Marques-Pereira C, Gouveia RP, Mourão J, Moreira IS. Guardians of the Cell: State-of-the-Art of Membrane Proteins from a Computational Point-of-View. Methods Mol Biol 2021; 2315:3-28. [PMID: 34302667 DOI: 10.1007/978-1-0716-1468-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Membrane proteins (MPs) encompass a large family of proteins with distinct cellular functions, and although representing over 50% of existing pharmaceutical drug targets, their structural and functional information is still very scarce. Over the last years, in silico analysis and algorithm development were essential to characterize MPs and overcome some limitations of experimental approaches. The optimization and improvement of these methods remain an ongoing process, with key advances in MPs' structure, folding, and interface prediction being continuously tackled. Herein, we discuss the latest trends in computational methods toward a deeper understanding of the atomistic and mechanistic details of MPs.
Collapse
Affiliation(s)
- Nícia Rosário-Ferreira
- Coimbra Chemistry Center, Department of Chemistry, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Catarina Marques-Pereira
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Raquel P Gouveia
- Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Joana Mourão
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Irina S Moreira
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
34
|
Ion Channels in Biophysics and Physiology: Methods & Challenges to Study Mechanosensitive Ion Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1349:33-49. [DOI: 10.1007/978-981-16-4254-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
35
|
Chng CP, Sadovsky Y, Hsia KJ, Huang C. Site-Specific Peroxidation Modulates Lipid Bilayer Mechanics. EXTREME MECHANICS LETTERS 2021; 42:101148. [PMID: 33748376 PMCID: PMC7978408 DOI: 10.1016/j.eml.2020.101148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Peroxidation of plasma membranes, characterized by oxidative attack of lipidic carbon-carbon double-bonds in unsaturated fatty acids, has been identified as an important biochemical event in multiple pathological conditions, including neurodegenerative diseases, atherosclerosis, diabetes, preeclampsia, aging, cancer, etc. Changes to the lipid bilayer structure as a result of lipid peroxidation may lead to lipid membrane malfunction, and consequently initiate further downstream biochemical cascades. However, how lipid peroxidation modulates the mechanical properties of lipid membranes remains largely controversial. In this study, we investigate the peroxidation of lipids with polyunsaturated fatty acid tails using molecular dynamics simulations. By systematically varying the oxidation site, we find that lipid peroxidation alters the biophysical properties of bilayer membrane in a peroxidation site-specific manner. Specifically, our results suggest that peroxidation at sites in the bilayer interior disturbs and softens the membrane, whereas peroxidation at sites near the membrane-water interface results in a more ordered and stiffer membrane. Such a peroxidation site-specific modulation of lipid membrane mechanics provides an explanation for the contradictory results obtained in previous experiments. Our study paves the way for an improved understanding of the initiation of the downstream cellular dysfunction caused by lipid peroxidation.
Collapse
Affiliation(s)
- Choon-Peng Chng
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - K. Jimmy Hsia
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- Corresponding authors: and
| | - Changjin Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Republic of Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Republic of Singapore
- Corresponding authors: and
| |
Collapse
|
36
|
Foley S, Deserno M. Stabilizing Leaflet Asymmetry under Differential Stress in a Highly Coarse-Grained Lipid Membrane Model. J Chem Theory Comput 2020; 16:7195-7206. [PMID: 33126796 DOI: 10.1021/acs.jctc.0c00862] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a version of the coarse-grained Cooke lipid model, modified to simulate asymmetric lipid membranes. It is inspired by a method employed by Wang et al. [ Commun. Comput. Phys. 2013, 13, 1093-1106] for artificially penalizing lipid flip-flop but copes more robustly with differential stress, at the cost of one additional bead per lipid and the concomitant increase in computational overhead. Bilayer asymmetry ultimately breaks down beyond a system size dependent critical differential stress, which can be predicted from a simple analytical model. We remeasure many important material parameters for the new model and find it to be consistent with typical fluid lipid membranes. Maintaining a stable stress asymmetry has many applications, and we give two examples: (i) connecting monolayer stress to lipid number asymmetry in order to directly measure the monolayer area modulus and (ii) finding its strain-dependent higher-order correction by monitoring the equilibrium bilayer area.
Collapse
Affiliation(s)
- Samuel Foley
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Deserno
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
37
|
Kelley EG, Butler PD, Ashkar R, Bradbury R, Nagao M. Scaling relationships for the elastic moduli and viscosity of mixed lipid membranes. Proc Natl Acad Sci U S A 2020; 117:23365-23373. [PMID: 32883879 PMCID: PMC7519290 DOI: 10.1073/pnas.2008789117] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The elastic and viscous properties of biological membranes play a vital role in controlling cell functions that require local reorganization of the membrane components as well as dramatic shape changes such as endocytosis, vesicular trafficking, and cell division. These properties are widely acknowledged to depend on the unique composition of lipids within the membrane, yet the effects of lipid mixing on the membrane biophysical properties remain poorly understood. Here, we present a comprehensive characterization of the structural, elastic, and viscous properties of fluid membranes composed of binary mixtures of lipids with different tail lengths. We show that the mixed lipid membrane properties are not simply additive quantities of the single-component analogs. Instead, the mixed membranes are more dynamic than either of their constituents, quantified as a decrease in their bending modulus, area compressibility modulus, and viscosity. While the enhanced dynamics are seemingly unexpected, we show that the measured moduli and viscosity for both the mixed and single-component bilayers all scale with the area per lipid and collapse onto respective master curves. This scaling links the increase in dynamics to mixing-induced changes in the lipid packing and membrane structure. More importantly, the results show that the membrane properties can be manipulated through lipid composition the same way bimodal blends of surfactants, liquid crystals, and polymers are used to engineer the mechanical properties of soft materials, with broad implications for understanding how lipid diversity relates to biomembrane function.
Collapse
Affiliation(s)
- Elizabeth G Kelley
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Paul D Butler
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996
| | - Rana Ashkar
- Physics Department, Virginia Tech, Blacksburg, VA 20461
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA 20461
| | - Robert Bradbury
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
| | - Michihiro Nagao
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Center for Exploration of Energy and Matter, Indiana University, Bloomington, IN 47408
- Department of Physics and Astronomy, University of Delaware, Newark, DE 19716
| |
Collapse
|
38
|
Abstract
Cholesterol is an integral component of eukaryotic cell membranes and a key molecule in controlling membrane fluidity, organization, and other physicochemical parameters. It also plays a regulatory function in antibiotic drug resistance and the immune response of cells against viruses, by stabilizing the membrane against structural damage. While it is well understood that, structurally, cholesterol exhibits a densification effect on fluid lipid membranes, its effects on membrane bending rigidity are assumed to be nonuniversal; i.e., cholesterol stiffens saturated lipid membranes, but has no stiffening effect on membranes populated by unsaturated lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). This observation presents a clear challenge to structure-property relationships and to our understanding of cholesterol-mediated biological functions. Here, using a comprehensive approach-combining neutron spin-echo (NSE) spectroscopy, solid-state deuterium NMR (2H NMR) spectroscopy, and molecular dynamics (MD) simulations-we report that cholesterol locally increases the bending rigidity of DOPC membranes, similar to saturated membranes, by increasing the bilayer's packing density. All three techniques, inherently sensitive to mesoscale bending fluctuations, show up to a threefold increase in effective bending rigidity with increasing cholesterol content approaching a mole fraction of 50%. Our observations are in good agreement with the known effects of cholesterol on the area-compressibility modulus and membrane structure, reaffirming membrane structure-property relationships. The current findings point to a scale-dependent manifestation of membrane properties, highlighting the need to reassess cholesterol's role in controlling membrane bending rigidity over mesoscopic length and time scales of important biological functions, such as viral budding and lipid-protein interactions.
Collapse
|
39
|
Direct label-free imaging of nanodomains in biomimetic and biological membranes by cryogenic electron microscopy. Proc Natl Acad Sci U S A 2020; 117:19943-19952. [PMID: 32759206 DOI: 10.1073/pnas.2002200117] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The nanoscale organization of biological membranes into structurally and compositionally distinct lateral domains is believed to be central to membrane function. The nature of this organization has remained elusive due to a lack of methods to directly probe nanoscopic membrane features. We show here that cryogenic electron microscopy (cryo-EM) can be used to directly image coexisting nanoscopic domains in synthetic and bioderived membranes without extrinsic probes. Analyzing a series of single-component liposomes composed of synthetic lipids of varying chain lengths, we demonstrate that cryo-EM can distinguish bilayer thickness differences as small as 0.5 Å, comparable to the resolution of small-angle scattering methods. Simulated images from computational models reveal that features in cryo-EM images result from a complex interplay between the atomic distribution normal to the plane of the bilayer and imaging parameters. Simulations of phase-separated bilayers were used to predict two sources of contrast between coexisting ordered and disordered phases within a single liposome, namely differences in membrane thickness and molecular density. We observe both sources of contrast in biomimetic membranes composed of saturated lipids, unsaturated lipids, and cholesterol. When extended to isolated mammalian plasma membranes, cryo-EM reveals similar nanoscale lateral heterogeneities. The methods reported here for direct, probe-free imaging of nanodomains in unperturbed membranes open new avenues for investigation of nanoscopic membrane organization.
Collapse
|
40
|
Eid J, Razmazma H, Jraij A, Ebrahimi A, Monticelli L. On Calculating the Bending Modulus of Lipid Bilayer Membranes from Buckling Simulations. J Phys Chem B 2020; 124:6299-6311. [DOI: 10.1021/acs.jpcb.0c04253] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jad Eid
- University of Lyon, CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), F-69007 Lyon, France
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Beirut VHH9+P3, Lebanon
| | - Hafez Razmazma
- University of Lyon, CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), F-69007 Lyon, France
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran
| | - Alia Jraij
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Beirut VHH9+P3, Lebanon
| | - Ali Ebrahimi
- Laboratory of Computational Quantum Chemistry and Drug Design, Department of Chemistry, University of Sistan and Baluchestan, Zahedan 98167-45845, Iran
| | - Luca Monticelli
- University of Lyon, CNRS, Molecular Microbiology and Structural Biochemistry (MMSB, UMR 5086), F-69007 Lyon, France
| |
Collapse
|
41
|
Khelashvili G, Cheng X, Falzone ME, Doktorova M, Accardi A, Weinstein H. Membrane lipids are both the substrates and a mechanistically responsive environment of TMEM16 scramblase proteins. J Comput Chem 2020; 41:538-551. [PMID: 31750558 PMCID: PMC7261202 DOI: 10.1002/jcc.26105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/04/2019] [Accepted: 10/17/2019] [Indexed: 12/21/2022]
Abstract
Recent discoveries about functional mechanisms of proteins in the TMEM16 family of phospholipid scramblases have illuminated the dual role of the membrane as both the substrate and a mechanistically responsive environment in the wide range of physiological processes and genetic disorders in which they are implicated. This is highlighted in the review of recent findings from our collaborative investigations of molecular mechanisms of TMEM16 scramblases that emerged from iterative functional, structural, and computational experimentation. In the context of this review, we present new MD simulations and trajectory analyses motivated by the fact that new structural information about the TMEM16 scramblases is emerging from cryo-EM determinations in lipid nanodiscs. Because the functional environment of these proteins in in vivo and in in vitro is closer to flat membranes, we studied comparatively the responses of the membrane to the TMEM16 proteins in flat membranes and nanodiscs. We find that bilayer shapes in the nanodiscs are very different from those observed in the flat membrane systems, but the function-related slanting of the membrane observed at the nhTMEM16 boundary with the protein is similar in the nanodiscs and in the flat bilayers. This changes, however, in the bilayer composed of longer-tail lipids, which is thicker near the phospholipid translocation pathway, which may reflect an enhanced tendency of the long tails to penetrate the pathway and create, as shown previously, a nonconductive environment. These findings support the correspondence between the mechanistic involvement of the lipid environment in the flat membranes, and the nanodiscs. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Xiaolu Cheng
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Maria E Falzone
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Alessio Accardi
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Biochemistry, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Department of Anesthesiology, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| | - Harel Weinstein
- Department of Physiology and Biophysics, Weill Cornell Medical College of Cornell University, New York, New York, 10065
- Institute for Computational Biomedicine, Weill Cornell Medical College of Cornell University, New York, New York, 10065
| |
Collapse
|
42
|
Ballweg S, Sezgin E, Doktorova M, Covino R, Reinhard J, Wunnicke D, Hänelt I, Levental I, Hummer G, Ernst R. Regulation of lipid saturation without sensing membrane fluidity. Nat Commun 2020; 11:756. [PMID: 32029718 PMCID: PMC7005026 DOI: 10.1038/s41467-020-14528-1] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022] Open
Abstract
Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. We have reconstituted the core machinery for regulating lipid saturation in baker’s yeast to study its molecular mechanism. By combining molecular dynamics simulations with experiments, we uncover a remarkable sensitivity of the transcriptional regulator Mga2 to the abundance, position, and configuration of double bonds in lipid acyl chains, and provide insights into the molecular rules of membrane adaptation. Our data challenge the prevailing hypothesis that membrane fluidity serves as the measured variable for regulating lipid saturation. Rather, we show that Mga2 senses the molecular lipid-packing density in a defined region of the membrane. Our findings suggest that membrane property sensors have evolved remarkable sensitivities to highly specific aspects of membrane structure and dynamics, thus paving the way toward the development of genetically encoded reporters for such properties in the future. Cells maintain membrane fluidity by regulating lipid saturation, but the molecular mechanisms of this homeoviscous adaptation remain poorly understood. Here authors reconstituted the core machinery for regulating lipid saturation in baker’s yeast to directly characterize its response to defined membrane environments and uncover its mode-of-action.
Collapse
Affiliation(s)
- Stephanie Ballweg
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Milka Doktorova
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Roberto Covino
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany
| | - John Reinhard
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany.,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany
| | - Dorith Wunnicke
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Inga Hänelt
- Institute of Biochemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 9, 60438, Frankfurt, Germany
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue-Strasse 3, 60438, Frankfurt, Germany.,Institute of Biophysics, Goethe University Frankfurt, 60438, Frankfurt, Germany
| | - Robert Ernst
- Medical Biochemistry and Molecular Biology, Medical Faculty, Saarland University, Kirrberger Strasse 100, Building 61.4, 66421, Homburg, Germany. .,PZMS, Center for Molecular Signaling (PZMS), Medical Faculty, Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
43
|
Rózsa ZB, Németh LJ, Jójárt B, Nehéz K, Viskolcz B, Szőri M. Molecular Dynamics and Metadynamics Insights of 1,4-Dioxane-Induced Structural Changes of Biomembrane Models. J Phys Chem B 2019; 123:7869-7884. [DOI: 10.1021/acs.jpcb.9b04313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zsófia Borbála Rózsa
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Lukács József Németh
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Balázs Jójárt
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Mars tér 7, 6724 Szeged, Hungary
| | - Károly Nehéz
- Department of Information Engineering, University of Miskolc, Miskolc-Egyetemváros Informatics Building, H-3515 Miskolc, Hungary
| | - Béla Viskolcz
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| | - Milán Szőri
- Institute of Chemistry, University of Miskolc, Egyetemváros A/2, H-3515 Miskolc, Hungary
| |
Collapse
|
44
|
Area Compressibility Moduli of the Monolayer Leaflets of Asymmetric Bilayers from Simulations. Biophys J 2019; 117:1051-1056. [PMID: 31493860 DOI: 10.1016/j.bpj.2019.08.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/02/2019] [Accepted: 08/13/2019] [Indexed: 11/24/2022] Open
Abstract
Extraction from simulations of the area compressibility moduli of the monolayers in a bilayer is considered theoretically. A statistical mechanical derivation shows that the bilayer modulus is the sum of the two monolayer moduli, as is often supposed but contrary to a recent study. Seemingly plausible assumptions regarding fluctuations are tested rigorously. Prospects for future research are discussed.
Collapse
|
45
|
Losasso V, Hsiao YW, Martelli F, Winn MD, Crain J. Modulation of Antimicrobial Peptide Potency in Stressed Lipid Bilayers. PHYSICAL REVIEW LETTERS 2019; 122:208103. [PMID: 31172786 DOI: 10.1103/physrevlett.122.208103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 06/09/2023]
Abstract
It is shown that the tendency of an archetypal antimicrobial peptide to insert into and perforate a simple lipid bilayer is strongly modulated by tensile stress in the membrane. The results, obtained through molecular dynamics simulations, have been demonstrated with several lipid compositions and appear to be general, although quantitative details differ. The findings imply that the potency of antimicrobial peptides may not be a purely intrinsic chemical property and, instead, depends on the mechanical state of the target membrane.
Collapse
Affiliation(s)
- Valeria Losasso
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Ya-Wen Hsiao
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Fausto Martelli
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
| | - Martyn D Winn
- Daresbury Laboratory, STFC, Daresbury, Warrington, England WA4 4AD, United Kingdom
| | - Jason Crain
- IBM Research, Hartree Centre, Daresbury, England WA4 4AD, United Kingdom
- Dept. of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, England
| |
Collapse
|