1
|
Weber DK, Reddy UV, Robia SL, Veglia G. Pathological mutations in the phospholamban cytoplasmic region affect its topology and dynamics modulating the extent of SERCA inhibition. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184370. [PMID: 38986894 PMCID: PMC11457527 DOI: 10.1016/j.bbamem.2024.184370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phospholamban (PLN) is a 52 amino acid regulin that allosterically modulates the activity of the sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) in the heart muscle. In its unphosphorylated form, PLN binds SERCA within its transmembrane (TM) domains, approximately 20 Å away from the Ca2+ binding site, reducing SERCA's apparent Ca2+ affinity (pKCa) and decreasing cardiac contractility. During the enzymatic cycle, the inhibitory TM domain of PLN remains anchored to SERCA, whereas its cytoplasmic region transiently binds the ATPase's headpiece. Phosphorylation of PLN at Ser16 by protein kinase A increases the affinity of its cytoplasmic domain to SERCA, weakening the TM interactions with the ATPase, reversing its inhibitory function, and augmenting muscle contractility. How the structural changes caused by pathological mutations in the PLN cytoplasmic region are transmitted to its inhibitory TM domain is still unclear. Using solid-state NMR spectroscopy and activity assays, we analyzed the structural and functional effects of a series of mutations and their phosphorylated forms located in the PLN cytoplasmic region and linked to dilated cardiomyopathy. We found that these missense mutations affect the overall topology and dynamics of PLN and ultimately modulate its inhibitory potency. Also, the changes in the TM tilt angle and cytoplasmic dynamics of PLN caused by these mutations correlate well with the extent of SERCA inhibition. Our study unveils new molecular determinants for designing variants of PLN that outcompete endogenous PLN to regulate SERCA in a tunable manner.
Collapse
Affiliation(s)
- Daniel K Weber
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - U Venkateswara Reddy
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Rathod N, Lemieux MJ, Chipot C, Roux B, Young HS. Probing the formation of a hetero-dimeric membrane transport complex with dual in vitro and in silico mutagenesis. Chem Sci 2024:d4sc02915a. [PMID: 39156929 PMCID: PMC11322925 DOI: 10.1039/d4sc02915a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
The reversible association of transmembrane helices is a fundamental mechanism in how living cells convey information and respond to physiological events. The cardiac calcium transport regulator phospholamban (PLN) is an example of a single-span transmembrane protein that populates a variety of reversible and competing oligomeric states. PLN primarily forms monomers and pentamers in the membrane, where the PLN pentamer is a storage form and the PLN monomer forms a hetero-dimeric inhibitory complex with SERCA. The binding affinity and free-energy of formation of the SERCA-PLN complex in a membrane have not been determined. As is the case for most transmembrane protein interactions, measuring these quantities experimentally is extremely challenging. In this study, we estimated binding affinities by employing in silico alchemical free-energy calculations for all PLN transmembrane alanine substitutions in a membrane bilayer. The binding affinities were calculated separately for the SERCA-PLN complex, a PLN monomer, and a PLN pentamer and compared to in vitro functional measurements of SERCA regulation by the PLN alanine substitutions. Initially, the changes in SERCA inhibition by PLN alanine substitutions were compared to the changes in free energy for the SERCA-PLN complex formed from the PLN monomer. However, the functional data for the PLN alanine substitutions were better explained by the formation of the SERCA-PLN complex directly from the PLN pentamer. This finding points to an inhibitory mechanism favoring conformational selection of SERCA and the interaction of a PLN pentamer with SERCA for 'delivery' of a PLN monomer to the inhibitory site. The implications of these findings suggest that the energetics of helix exchange between homo- and hetero-oligomeric signaling complexes is favored over an intermediate involving a free monomeric helix in the membrane bilayer.
Collapse
Affiliation(s)
- Nishadh Rathod
- Department of Biochemistry, University of Alberta Edmonton Alberta Canada T6G 2H7 +1 (780) 492-3931 +1 (780) 492-3931
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta Edmonton Alberta Canada T6G 2H7 +1 (780) 492-3931 +1 (780) 492-3931
| | - Christophe Chipot
- Department of Biochemistry and Molecular Biology, University of Chicago Chicago USA 60637
- Laboratoire International Associé Centre National de la Recherche Scientifique et University of Illinois at Urbana-Champaign, Unité Mixte de Recherche no. 7019, Université de Lorraine B.P. 70239, 54506 Vandœuvre-lès-Nancy Cedex France
- Theoretical and Computational Biophysics Group, Beckman Institute, Department of Physics, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago Chicago USA 60637
| | - Howard S Young
- Department of Biochemistry, University of Alberta Edmonton Alberta Canada T6G 2H7 +1 (780) 492-3931 +1 (780) 492-3931
| |
Collapse
|
3
|
Bovo E, Jamrozik T, Kahn D, Karkut P, Robia SL, Zima AV. Phosphorylation of phospholamban promotes SERCA2a activation by dwarf open reading frame (DWORF). Cell Calcium 2024; 121:102910. [PMID: 38823350 PMCID: PMC11247691 DOI: 10.1016/j.ceca.2024.102910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/03/2024]
Abstract
In cardiac myocytes, the type 2a sarco/endoplasmic reticulum Ca-ATPase (SERCA2a) plays a key role in intracellular Ca regulation. Due to its critical role in heart function, SERCA2a activity is tightly regulated by different mechanisms, including micropeptides. While phospholamban (PLB) is a well-known SERCA2a inhibitor, dwarf open reading frame (DWORF) is a recently identified SERCA2a activator. Since PLB phosphorylation is the most recognized mechanism of SERCA2a activation during adrenergic stress, we studied whether PLB phosphorylation also affects SERCA2a regulation by DWORF. By using confocal Ca imaging in a HEK293 expressing cell system, we analyzed the effect of the co-expression of PLB and DWORF using a bicistronic construct on SERCA2a-mediated Ca uptake. Under these conditions of matched expression of PLB and DWORF, we found that SERCA2a inhibition by non-phosphorylated PLB prevails over DWORF activating effect. However, when PLB is phosphorylated at PKA and CaMKII sites, not only PLB's inhibitory effect was relieved, but SERCA2a was effectively activated by DWORF. Förster resonance energy transfer (FRET) analysis between SERCA2a and DWORF showed that DWORF has a higher relative affinity for SERCA2a when PLB is phosphorylated. Thus, SERCA2a regulation by DWORF responds to the PLB phosphorylation status, suggesting that DWORF might contribute to SERCA2a activation during conditions of adrenergic stress.
Collapse
Affiliation(s)
- Elisa Bovo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA.
| | - Thomas Jamrozik
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Daniel Kahn
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Patryk Karkut
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Loyola University Chicago, Stritch School of Medicine, 2160 South First Avenue, Maywood, IL 60153, USA
| |
Collapse
|
4
|
Zádor E. The Meeting of Micropeptides with Major Ca 2+ Pumps in Inner Membranes-Consideration of a New Player, SERCA1b. MEMBRANES 2023; 13:274. [PMID: 36984661 PMCID: PMC10058886 DOI: 10.3390/membranes13030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Calcium is a major signalling bivalent cation within the cell. Compartmentalization is essential for regulation of calcium mediated processes. A number of players contribute to intracellular handling of calcium, among them are the sarco/endoplasmic reticulum calcium ATP-ases (SERCAs). These molecules function in the membrane of ER/SR pumping Ca2+ from cytoplasm into the lumen of the internal store. Removal of calcium from the cytoplasm is essential for signalling and for relaxation of skeletal muscle and heart. There are three genes and over a dozen isoforms of SERCA in mammals. These can be potentially influenced by small membrane peptides, also called regulins. The discovery of micropeptides has increased in recent years, mostly because of the small ORFs found in long RNAs, annotated formerly as noncoding (lncRNAs). Several excellent works have analysed the mechanism of interaction of micropeptides with each other and with the best known SERCA1a (fast muscle) and SERCA2a (heart, slow muscle) isoforms. However, the array of tissue and developmental expressions of these potential regulators raises the question of interaction with other SERCAs. For example, the most abundant calcium pump in neonatal and regenerating skeletal muscle, SERCA1b has never been looked at with scrutiny to determine whether it is influenced by micropeptides. Further details might be interesting on the interaction of these peptides with the less studied SERCA1b isoform.
Collapse
Affiliation(s)
- Ernő Zádor
- Institute of Biochemistry, Albert Szent-Györgyi Faculty of Medicine, University of Szeged, Dóm tér 9, H-6720 Szeged, Hungary
| |
Collapse
|
5
|
Rustad MD, Roopnarine O, Cornea RL, Thomas DD. Interaction of DWORF with SERCA and PLB as determined by EPR spectroscopy. Biochem Biophys Res Commun 2023; 645:97-102. [PMID: 36682333 PMCID: PMC9951557 DOI: 10.1016/j.bbrc.2023.01.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Insufficient sarco/endoplasmic reticulum calcium ATPase (SERCA) activity significantly contributes to heart failure, which is a leading cause of death worldwide. A characteristic pathology of cardiac disease is the slow and incomplete Ca2+ removal from the myocyte cytoplasm in diastole, which is primarily driven by SERCA, the integral transmembrane Ca2+ pump. Phospholamban (PLB) allosterically inhibits SERCA by reducing its apparent Ca2+ affinity. Recently, the 34-codon novel dwarf open reading frame (DWORF) micropeptide has been identified as a muscle-specific SERCA effector, capable of reversing the inhibitory effects of PLB and independently activating SERCA in the absence of PLB. However, the structural basis for these functions has not yet been determined in a system of defined molecular components. We have used electron paramagnetic resonance (EPR) spectroscopy to investigate the protein-protein interactions of DWORF, co-reconstituted in proteoliposomes with SERCA and spin-labeled PLB. We analyzed the change of PLB rotational mobility in response to varying DWORF concentration, to quantify competitive binding of DWORF and PLB. We determined that DWORF competes with PLB for binding to SERCA at low [Ca2+], although the measured affinity of DWORF for SERCA is an order of magnitude weaker than that of PLB for SERCA, indicating cooperativity. The sensitivity of EPR to structural dynamics, using stereospecifically attached spin labels, allows us to obtain new information needed to refine the molecular model for regulation of SERCA activity, as needed for development of novel therapeutic remedies against cardiac pathologies.
Collapse
Affiliation(s)
- Mark D Rustad
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA; School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Osha Roopnarine
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Razvan L Cornea
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
6
|
Dhar A, Venkadakrishnan J, Roy U, Vedam S, Lalwani N, Ramos KS, Pandita TK, Bhat A. A comprehensive review of the novel therapeutic targets for the treatment of diabetic cardiomyopathy. Ther Adv Cardiovasc Dis 2023; 17:17539447231210170. [PMID: 38069578 PMCID: PMC10710750 DOI: 10.1177/17539447231210170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/09/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by structural and functional abnormalities in the myocardium affecting people with diabetes. Treatment of DCM focuses on glucose control, blood pressure management, lipid-lowering, and lifestyle changes. Due to limited therapeutic options, DCM remains a significant cause of morbidity and mortality in patients with diabetes, thus emphasizing the need to develop new therapeutic strategies. Ongoing research is aimed at understanding the underlying molecular mechanism(s) involved in the development and progression of DCM, including oxidative stress, inflammation, and metabolic dysregulation. The goal is to develope innovative pharmaceutical therapeutics, offering significant improvements in the clinical management of DCM. Some of these approaches include the effective targeting of impaired insulin signaling, cardiac stiffness, glucotoxicity, lipotoxicity, inflammation, oxidative stress, cardiac hypertrophy, and fibrosis. This review focuses on the latest developments in understanding the underlying causes of DCM and the therapeutic landscape of DCM treatment.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | | | - Utsa Roy
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Sahithi Vedam
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Nikita Lalwani
- Department of Pharmacy, Birla Institute of Technology and Science Pilani, Hyderabad, Telangana, India
| | - Kenneth S. Ramos
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Tej K. Pandita
- Center for Genomics and Precision Medicine, Texas A&M College of Medicine, Houston, TX 77030, USA
| | - Audesh Bhat
- Centre for Molecular Biology, Central University of Jammu, Samba, Jammu and Kashmir (UT) 184311, India
| |
Collapse
|
7
|
Cao Y, Yang R, Wang W, Jiang S, Yang C, Wang Q, Liu N, Xue Y, Lee I, Meng X, Yuan Z. Effects of membrane lipids on phospholamban pentameric channel structure and ion transportation mechanisms. Int J Biol Macromol 2022; 224:766-775. [DOI: 10.1016/j.ijbiomac.2022.10.164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
|
8
|
Bak JJ, Aguayo-Ortiz R, Rathod N, Primeau JO, Khan MB, Robia SL, Lemieux MJ, Espinoza-Fonseca LM, Young HS. Primitive Phospholamban- and Sarcolipin-like Peptides Inhibit the Sarcoplasmic Reticulum Calcium Pump SERCA. Biochemistry 2022; 61:1419-1430. [PMID: 35771007 PMCID: PMC10588654 DOI: 10.1021/acs.biochem.2c00246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intracellular calcium signaling is essential for all kingdoms of life. An important part of this process is the sarco-endoplasmic reticulum Ca2+-ATPase (SERCA), which maintains the low cytosolic calcium levels required for intracellular calcium homeostasis. In higher organisms, SERCA is regulated by a series of tissue-specific transmembrane subunits such as phospholamban in cardiac muscles and sarcolipin in skeletal muscles. These regulatory axes are so important for muscle contractility that SERCA, phospholamban, and sarcolipin are practically invariant across mammalian species. With the recent discovery of the arthropod sarcolambans, the family of calcium pump regulatory subunits appears to span more than 550 million years of evolutionary divergence from arthropods to humans. This evolutionary divergence is reflected in the peptide sequences, which vary enormously from one another and only vaguely resemble phospholamban and sarcolipin. The discovery of the sarcolambans allowed us to address two questions. How much sequence variation is tolerated in the regulation of mammalian SERCA activity by the transmembrane peptides? Do divergent peptide sequences mimic phospholamban or sarcolipin in their regulatory activities despite limited sequence similarity? We expressed and purified recombinant sarcolamban peptides from three different arthropods. The peptides were coreconstituted into proteoliposomes with mammalian SERCA1a and the effect of each peptide on the apparent calcium affinity and maximal activity of SERCA was measured. All three peptides were superinhibitors of SERCA, exhibiting either phospholamban-like or sarcolipin-like characteristics. Molecular modeling, protein-protein docking, and molecular dynamics simulations revealed novel features of the divergent peptides and their SERCA regulatory properties.
Collapse
Affiliation(s)
- Jessi J. Bak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nishadh Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Joseph O. Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Muhammad Bashir Khan
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Seth L. Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL 60153, USA
| | - M. Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Howard S. Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| |
Collapse
|
9
|
Understanding the Role of SERCA2a Microdomain Remodeling in Heart Failure Induced by Obesity and Type 2 Diabetes. J Cardiovasc Dev Dis 2022; 9:jcdd9050163. [PMID: 35621874 PMCID: PMC9147026 DOI: 10.3390/jcdd9050163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Obesity and type 2 diabetes (T2D) are on trend to become a huge burden across all ages. They cause harm to almost every organ, especially the heart. For decades, the incidence of heart failure with impaired diastolic function (or called heart failure with preserved ejection fraction, HFpEF) has increased sharply. More and more studies have uncovered obesity and T2D to be closely associated with HFpEF. The sarcoplasmic/endoplasmic reticulum calcium ATPase2a (SERCA2a) microdomain is a key regulator of calcium reuptake into the sarcoplasmic reticulum (SR) during diastole. 3′,5′-cyclic adenosine monophosphate (cAMP) and its downstream effector cAMP dependent protein kinase (PKA) act locally within the SERCA2a microdomain to regulate the phosphorylation state of the small regulatory protein phospholamban (PLN), which forms a complex with SERCA2a. When phosphorylated, PLN promotes calcium reuptake into the SR and diastolic cardiac relaxation by disinhibiting SERCA2a pump function. In this review, we will discuss previous studies investigating the PLN/SERCA2a microdomain in obesity and T2D in order to gain a greater understanding of the underlying mechanisms behind obesity- and T2D-induced diastolic dysfunction, with the aim to identify the current state of knowledge and future work that is needed to guide further research in the field.
Collapse
|
10
|
Maltsev AV, Stern MD, Lakatta EG, Maltsev VA. Functional Heterogeneity of Cell Populations Increases Robustness of Pacemaker Function in a Numerical Model of the Sinoatrial Node Tissue. Front Physiol 2022; 13:845634. [PMID: 35574456 PMCID: PMC9091312 DOI: 10.3389/fphys.2022.845634] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/15/2022] [Indexed: 11/19/2022] Open
Abstract
Each heartbeat is initiated by specialized pacemaker cells operating within the sinoatrial node (SAN). While individual cells within SAN tissue exhibit substantial heterogeneity of their electrophysiological parameters and Ca cycling, the role of this heterogeneity for cardiac pacemaker function remains mainly unknown. Here we investigated the problem numerically in a 25 × 25 square grid of connected coupled-clock Maltsev-Lakatta cell models. The tissue models were populated by cells with different degree of heterogeneity of the two key model parameters, maximum L-type Ca current conductance (gCaL) and sarcoplasmic reticulum Ca pumping rate (Pup). Our simulations showed that in the areas of Pup-gCaL parametric space at the edge of the system stability, where action potential (AP) firing is absent or dysrhythmic in SAN tissue models populated with identical cells, rhythmic AP firing can be rescued by populating the tissues with heterogeneous cells. This robust SAN function is synergistic with respect to heterogeneity in gCaL and Pup and can be further strengthened by clustering of cells with similar properties. The effect of cell heterogeneity is not due to a simple summation of activity of intrinsically firing cells naturally present in heterogeneous SAN; rather AP firing cells locally and critically interact with non-firing/dormant cells. When firing cells prevail, they recruit many dormant cells to fire, strongly enhancing overall SAN function; and vice versa, prevailing dormant cells suppress AP firing in cells with intrinsic automaticity and halt SAN function. The transitions between firing and non-firing states of the system are sharp, resembling phase transitions in statistical physics. Furthermore, robust function of heterogeneous SAN tissue requires weak cell coupling, a known property of the central area of SAN where cardiac impulse emerges; stronger cell coupling reduces AP firing rate and ultimately halts SAN automaticity at the edge of stability.
Collapse
|
11
|
Liu AY, Aguayo-Ortiz R, Guerrero-Serna G, Wang N, Blin MG, Goldstein DR, Michel Espinoza-Fonseca L. Homologous cardiac calcium pump regulators phospholamban and sarcolipin adopt distinct oligomeric states in the membrane. Comput Struct Biotechnol J 2021; 20:380-384. [PMID: 35035790 PMCID: PMC8748397 DOI: 10.1016/j.csbj.2021.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 11/23/2022] Open
Abstract
Phospholamban (PLN) and Sarcolipin (SLN) are homologous membrane proteins that belong to the family of proteins that regulate the activity of the cardiac calcium pump (sarcoplasmic reticulum Ca2+-ATPase, SERCA). PLN and SLN share highly conserved leucine zipper motifs that control self-association; consequently, it has been proposed that both PLN and SLN assemble into stable pentamers in the membrane. In this study, we used molecular dynamics (MD) simulations and Western blot analysis to investigate the precise molecular architecture of the PLN and SLN oligomers. Analysis showed that the PLN pentamer is the predominant oligomer present in mouse ventricles and ventricle-like human iPSC-derived cardiomyocytes, in agreement with the MD simulations showing stable leucine zipper interactions across all protomer-protomer interfaces and MD replicates. Interestingly, we found that the PLN pentamer populates an asymmetric structure of the transmembrane region, which is likely an intrinsic feature of the oligomer in a lipid bilayer. The SLN pentamer is not favorably formed across MD replicates and species of origin; instead, SLN from human and mouse atria primarily populate coexisting dimeric and trimeric states. In contrast to previous studies, our findings indicate that the SLN pentamer is not the predominant oligomeric state populated in the membrane. We conclude that despite their structural homology, PLN and SLN adopt distinct oligomeric states in the membrane. We propose that the distinct oligomeric states populated by PLN and SLN may contribute to tissue-specific SERCA regulation via differences in protomer-oligomer exchange, oligomer-SERCA dynamics, and noise filtering during β-adrenergic stimulation in the heart.
Collapse
Affiliation(s)
- Andy Y. Liu
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- McKetta Department of Chemical Engineering, The University of Texas, Austin, TX 78712, USA
| | - Rodrigo Aguayo-Ortiz
- Departamento de Farmacia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Guadalupe Guerrero-Serna
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nulang Wang
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Muriel G. Blin
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R. Goldstein
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109, USA
- Institute of Gerontology, University of Michigan, Ann Arbor, MI 48109, USA
| | - L. Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Woulfe KC, Jeffrey DA, Pires Da Silva J, Wilson CE, Mahaffey JH, Lau E, Slavov D, Hailu F, Karimpour-Fard A, Dockstader K, Bristow MR, Stauffer BL, Miyamoto SD, Sucharov CC. Serum response factor deletion 5 regulates phospholamban phosphorylation and calcium uptake. J Mol Cell Cardiol 2021; 159:28-37. [PMID: 34139234 PMCID: PMC8546760 DOI: 10.1016/j.yjmcc.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/25/2021] [Accepted: 06/13/2021] [Indexed: 11/25/2022]
Abstract
AIMS Pediatric dilated cardiomyopathy (pDCM) is characterized by unique age-dependent molecular mechanisms that include myocellular responses to therapy. We previously showed that pDCM, but not adult DCM patients respond to phosphodiesterase 3 inhibitors (PDE3i) by increasing levels of the second messenger cAMP and consequent phosphorylation of phospholamban (PLN). However, the molecular mechanisms involved in the differential pediatric and adult response to PDE3i are not clear. METHODS AND RESULTS Quantification of serum response factor (SRF) isoforms from the left ventricle of explanted hearts showed that PDE3i treatment affects expression of SRF isoforms in pDCM hearts. An SRF isoform lacking exon 5 (SRFdel5) was highly expressed in the hearts of pediatric, but not adult DCM patients treated with PDE3i. To determine the functional consequence of expression of SRFdel5, we overexpressed full length SRF or SRFdel5 in cultured cardiomyocytes with and without adrenergic stimulation. Compared to a control adenovirus, expression of SRFdel5 increased phosphorylation of PLN, negatively affected expression of the phosphatase that promotes dephosphorylation of PLN (PP2Cε), and promoted faster calcium reuptake, whereas expression of full length SRF attenuated calcium reuptake through blunted phosphorylation of PLN. CONCLUSIONS Taken together, these data indicate that expression of SRFdel5 in pDCM hearts in response to PDE3i contributes to improved function through regulating PLN phosphorylation and thereby calcium reuptake.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Danielle A Jeffrey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Julie Pires Da Silva
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Cortney E Wilson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jennifer H Mahaffey
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward Lau
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Dobromir Slavov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Frehiwet Hailu
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Anis Karimpour-Fard
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Karen Dockstader
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Michael R Bristow
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Brian L Stauffer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States; Denver Health Medical Center, Denver, CO, United States
| | - Shelley D Miyamoto
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital of Colorado, Aurora, CO, United States
| | - Carmen C Sucharov
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.
| |
Collapse
|
13
|
Nothing Regular about the Regulins: Distinct Functional Properties of SERCA Transmembrane Peptide Regulatory Subunits. Int J Mol Sci 2021; 22:ijms22168891. [PMID: 34445594 PMCID: PMC8396278 DOI: 10.3390/ijms22168891] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/11/2022] Open
Abstract
The sarco-endoplasmic reticulum calcium ATPase (SERCA) is responsible for maintaining calcium homeostasis in all eukaryotic cells by actively transporting calcium from the cytosol into the sarco-endoplasmic reticulum (SR/ER) lumen. Calcium is an important signaling ion, and the activity of SERCA is critical for a variety of cellular processes such as muscle contraction, neuronal activity, and energy metabolism. SERCA is regulated by several small transmembrane peptide subunits that are collectively known as the “regulins”. Phospholamban (PLN) and sarcolipin (SLN) are the original and most extensively studied members of the regulin family. PLN and SLN inhibit the calcium transport properties of SERCA and they are required for the proper functioning of cardiac and skeletal muscles, respectively. Myoregulin (MLN), dwarf open reading frame (DWORF), endoregulin (ELN), and another-regulin (ALN) are newly discovered tissue-specific regulators of SERCA. Herein, we compare the functional properties of the regulin family of SERCA transmembrane peptide subunits and consider their regulatory mechanisms in the context of the physiological and pathophysiological roles of these peptides. We present new functional data for human MLN, ELN, and ALN, demonstrating that they are inhibitors of SERCA with distinct functional consequences. Molecular modeling and molecular dynamics simulations of SERCA in complex with the transmembrane domains of MLN and ALN provide insights into how differential binding to the so-called inhibitory groove of SERCA—formed by transmembrane helices M2, M6, and M9—can result in distinct functional outcomes.
Collapse
|
14
|
Koch D, Alexandrovich A, Funk F, Kho AL, Schmitt JP, Gautel M. Molecular noise filtering in the β-adrenergic signaling network by phospholamban pentamers. Cell Rep 2021; 36:109448. [PMID: 34320358 PMCID: PMC8333238 DOI: 10.1016/j.celrep.2021.109448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/16/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Phospholamban (PLN) is an important regulator of cardiac calcium handling due to its ability to inhibit the calcium ATPase SERCA. β-Adrenergic stimulation reverses SERCA inhibition via PLN phosphorylation and facilitates fast calcium reuptake. PLN also forms pentamers whose physiological significance has remained elusive. Using mathematical modeling combined with biochemical and cell biological experiments, we show that pentamers regulate both the dynamics and steady-state levels of monomer phosphorylation. Substrate competition by pentamers and a feed-forward loop involving inhibitor-1 can delay monomer phosphorylation by protein kinase A (PKA), whereas cooperative pentamer dephosphorylation enables bistable PLN steady-state phosphorylation. Simulations show that phosphorylation delay and bistability act as complementary filters that reduce the effect of random fluctuations in PKA activity, thereby ensuring consistent monomer phosphorylation and SERCA activity despite noisy upstream signals. Preliminary analyses suggest that the PLN mutation R14del could impair noise filtering, offering a new perspective on how this mutation causes cardiac arrhythmias.
Collapse
Affiliation(s)
- Daniel Koch
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK.
| | | | - Florian Funk
- Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Ay Lin Kho
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| | - Joachim P Schmitt
- Institute of Pharmacology and Clinical Pharmacology, and Cardiovascular Research Institute Düsseldorf (CARID), University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Mathias Gautel
- Randall Centre for Cell and Molecular Biophysics, King's College London, SE1 1UL London, UK
| |
Collapse
|
15
|
Fisher ME, Bovo E, Aguayo-Ortiz R, Cho EE, Pribadi MP, Dalton MP, Rathod N, Lemieux MJ, Espinoza-Fonseca LM, Robia SL, Zima AV, Young HS. Dwarf open reading frame (DWORF) is a direct activator of the sarcoplasmic reticulum calcium pump SERCA. eLife 2021; 10:65545. [PMID: 34075877 PMCID: PMC8203291 DOI: 10.7554/elife.65545] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/01/2021] [Indexed: 01/05/2023] Open
Abstract
The sarco-plasmic reticulum calcium pump (SERCA) plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.
Collapse
Affiliation(s)
- M'Lynn E Fisher
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - Elisa Bovo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, United States
| | - Ellen E Cho
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Marsha P Pribadi
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Michael P Dalton
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Nishadh Rathod
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, United States
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Aleksey V Zima
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
16
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
17
|
Hernando MD, Primeau JO, Young HS. Helical Membrane Protein Crystallization in the New Era of Electron Cryo-Microscopy. Methods Mol Biol 2021; 2302:179-199. [PMID: 33877628 DOI: 10.1007/978-1-0716-1394-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Helical assemblies of proteins, which consist of a two-dimensional lattice of identical subunits arranged with helical symmetry, are a common structural motif in nature. For membrane proteins, crystallization protocols can induce helical arrangements and take advantage of the symmetry found in these assemblies for the structural determination of target proteins. Modern advances in the field of electron cryo-microscopy (cryo-EM), in particular the advent of direct electron detectors, have opened the potential for structure determination of membrane proteins in such assemblies at high resolution. The nature of the symmetry in helical crystals of membrane proteins means that a single image potentially contains enough information for three-dimensional structural determination. With the current direct electron detectors, we have never been closer to making this a reality. Here, we present a protocol detailing the preparation of helical crystals, with an emphasis on further cryo-EM analysis and structural determination of the sarco(endo)plasmic reticulum Ca2+-ATPase in the presence of regulatory subunits such as phospholamban.
Collapse
Affiliation(s)
- Mary D Hernando
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
18
|
Phospholamban and sarcolipin prevent thermal inactivation of sarco(endo)plasmic reticulum Ca2+-ATPases. Biochem J 2020; 477:4281-4294. [PMID: 33111944 DOI: 10.1042/bcj20200346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.
Collapse
|
19
|
Tadini-Buoninsegni F. Protein Adsorption on Solid Supported Membranes: Monitoring the Transport Activity of P-Type ATPases. Molecules 2020; 25:molecules25184167. [PMID: 32933017 PMCID: PMC7570688 DOI: 10.3390/molecules25184167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023] Open
Abstract
P-type ATPases are a large family of membrane transporters that are found in all forms of life. These enzymes couple ATP hydrolysis to the transport of various ions or phospholipids across cellular membranes, thereby generating and maintaining crucial electrochemical potential gradients. P-type ATPases have been studied by a variety of methods that have provided a wealth of information about the structure, function, and regulation of this class of enzymes. Among the many techniques used to investigate P-type ATPases, the electrical method based on solid supported membranes (SSM) was employed to investigate the transport mechanism of various ion pumps. In particular, the SSM method allows the direct measurement of charge movements generated by the ATPase following adsorption of the membrane-bound enzyme on the SSM surface and chemical activation by a substrate concentration jump. This kind of measurement was useful to identify electrogenic partial reactions and localize ion translocation in the reaction cycle of the membrane transporter. In the present review, we discuss how the SSM method has contributed to investigate some key features of the transport mechanism of P-type ATPases, with a special focus on sarcoplasmic reticulum Ca2+-ATPase, mammalian Cu+-ATPases (ATP7A and ATP7B), and phospholipid flippase ATP8A2.
Collapse
|
20
|
Alford RF, Smolin N, Young HS, Gray JJ, Robia SL. Protein docking and steered molecular dynamics suggest alternative phospholamban-binding sites on the SERCA calcium transporter. J Biol Chem 2020; 295:11262-11274. [PMID: 32554805 DOI: 10.1074/jbc.ra120.012948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Indexed: 01/27/2023] Open
Abstract
The transport activity of the sarco(endo)plasmic reticulum calcium ATPase (SERCA) in cardiac myocytes is modulated by an inhibitory interaction with a transmembrane peptide, phospholamban (PLB). Previous biochemical studies have revealed that PLB interacts with a specific inhibitory site on SERCA, and low-resolution structural evidence suggests that PLB interacts with distinct alternative sites on SERCA. High-resolution details of the structural determinants of SERCA regulation have been elusive because of the dynamic nature of the regulatory complex. In this study, we used computational approaches to develop a structural model of SERCA-PLB interactions to gain a mechanistic understanding of PLB-mediated SERCA transport regulation. We combined steered molecular dynamics and membrane protein-protein docking experiments to achieve both a global search and all-atom force calculations to determine the relative affinities of PLB for candidate sites on SERCA. We modeled the binding of PLB to several SERCA conformations, representing different enzymatic states sampled during the calcium transport catalytic cycle. The results of the steered molecular dynamics and docking experiments indicated that the canonical PLB-binding site (comprising transmembrane helices M2, M4, and M9) is the preferred site. This preference was even more stringent for a superinhibitory PLB variant. Interestingly, PLB-binding specificity became more ambivalent for other SERCA conformers. These results provide evidence for polymorphic PLB interactions with novel sites on M3 and with the outside of the SERCA helix M9. Our findings are compatible with previous physical measurements that suggest that PLB interacts with multiple binding sites, conferring dynamic responsiveness to changing physiological conditions.
Collapse
Affiliation(s)
- Rebecca F Alford
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nikolai Smolin
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Cardiovascular Research Institute, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
21
|
Association with SERCA2a directs phospholamban trafficking to sarcoplasmic reticulum from a nuclear envelope pool. J Mol Cell Cardiol 2020; 143:107-119. [DOI: 10.1016/j.yjmcc.2020.04.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/23/2020] [Indexed: 11/22/2022]
|
22
|
Fernández-de Gortari E, Aguayo-Ortiz R, Autry JM, Michel Espinoza-Fonseca L. A hallmark of phospholamban functional divergence is located in the N-terminal phosphorylation domain. Comput Struct Biotechnol J 2020; 18:705-713. [PMID: 32257054 PMCID: PMC7114604 DOI: 10.1016/j.csbj.2020.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 01/12/2023] Open
Abstract
Sarcoplasmic reticulum Ca2+ pump (SERCA) is a critical component of the Ca2+ transport machinery in myocytes. There is clear evidence for regulation of SERCA activity by PLB, whose activity is modulated by phosphorylation of its N-terminal domain (residues 1–25), but there is less clear evidence for the role of this domain in PLB’s functional divergence. It is widely accepted that only sarcolipin (SLN), a protein that shares substantial homology with PLB, uncouples SERCA Ca2+ transport from ATP hydrolysis by inducing a structural change of its energy-transduction domain; yet, experimental evidence shows that the transmembrane domain of PLB (residues 26–52, PLB26–52) partially uncouples SERCA in vitro. These apparently conflicting mechanisms suggest that PLB’s uncoupling activity is encoded in its transmembrane domain, and that it is controlled by the N-terminal phosphorylation domain. To test this hypothesis, we performed molecular dynamics simulations (MDS) of the binary complex between PLB26–52 and SERCA. Comparison between PLB26–52 and wild-type PLB (PLBWT) showed no significant changes in the stability and orientation of the transmembrane helix, indicating that PLB26–52 forms a native-like complex with SERCA. MDS showed that PLB26–52 produces key intermolecular contacts and structural changes required for inhibition, in agreement with studies showing that PLB26–52 inhibits SERCA. However, deletion of the N-terminal phosphorylation domain facilitates an order-to-disorder shift in the energy-transduction domain associated with uncoupling of SERCA, albeit weaker than that induced by SLN. This mechanistic evidence reveals that the N-terminal phosphorylation domain of PLB is a primary contributor to the functional divergence among homologous SERCA regulators.
Collapse
Affiliation(s)
- Eli Fernández-de Gortari
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rodrigo Aguayo-Ortiz
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Joseph M Autry
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.,Biophysical Technology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
23
|
Rodríguez Y, Májeková M. Structural Changes of Sarco/Endoplasmic Reticulum Ca 2+-ATPase Induced by Rutin Arachidonate: A Molecular Dynamics Study. Biomolecules 2020; 10:biom10020214. [PMID: 32024167 PMCID: PMC7072167 DOI: 10.3390/biom10020214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 11/16/2022] Open
Abstract
Sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) maintains the level of calcium concentration in cells by pumping calcium ions from the cytoplasm to the lumen while undergoing substantial conformational changes, which can be stabilized or prevented by various compounds. Here we attempted to clarify the molecular mechanism of action of new inhibitor rutin arachidonate, one of the series of the acylated rutin derivatives. We performed molecular dynamics simulations of SERCA1a protein bound to rutin arachidonate positioned in a pure dipalmitoylphosphatidylcholine bilayer membrane. Our study predicted the molecular basis for the binding of rutin arachidonate towards SERCA1a in the vicinity of the binding site of calcium ions and near the location of the well-known inhibitor thapsigargin. The stable hydrogen bond between Glu771 and rutin arachidonate plays a key role in the binding. SERCA1a is kept in the E2 conformation preventing the formation of important salt bridges between the side chains of several residues, primarily Glu90 and Lys297. All in all, the structural changes induced by the binding of rutin arachidonate to SERCA1a may shift proton balance near the titrable residues Glu771 and Glu309 into neutral species, hence preventing the binding of calcium ions to the transmembrane binding sites and thus affecting calcium homeostasis. Our results could lead towards the design of new types of inhibitors, potential drug candidates for cancer treatment, which could be anchored to the transmembrane region of SERCA1a by a lipophilic fatty acid group.
Collapse
Affiliation(s)
- Yoel Rodríguez
- Department of Natural Sciences, Eugenio María de Hostos Community College of The City University of New York, 500 Grand Concourse, Bronx, New York, NY 10451, USA; or
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Magdaléna Májeková
- Center of Experimental Medicine of Slovak Academy of Sciences, Institute of Experimental Pharmacology and Toxicology, Department of Biochemical Pharmacology, Dubravska cesta 9, 841 04 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-3229-5709
| |
Collapse
|
24
|
Glaves JP, Primeau JO, Gorski PA, Espinoza-Fonseca LM, Lemieux MJ, Young HS. Interaction of a Sarcolipin Pentamer and Monomer with the Sarcoplasmic Reticulum Calcium Pump, SERCA. Biophys J 2019; 118:518-531. [PMID: 31858977 DOI: 10.1016/j.bpj.2019.11.3385] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/30/2019] [Accepted: 11/18/2019] [Indexed: 11/27/2022] Open
Abstract
The sequential rise and fall of cytosolic calcium underlies the contraction-relaxation cycle of muscle cells. Whereas contraction is initiated by the release of calcium from the sarcoplasmic reticulum, muscle relaxation involves the active transport of calcium back into the sarcoplasmic reticulum. This reuptake of calcium is catalyzed by the sarcoendoplasmic reticulum Ca2+-ATPase (SERCA), which plays a lead role in muscle contractility. The activity of SERCA is regulated by small membrane protein subunits, the most well-known being phospholamban (PLN) and sarcolipin (SLN). SLN physically interacts with SERCA and differentially regulates contractility in skeletal and atrial muscle. SLN has also been implicated in skeletal muscle thermogenesis. Despite these important roles, the structural mechanisms by which SLN modulates SERCA-dependent contractility and thermogenesis remain unclear. Here, we functionally characterized wild-type SLN and a pair of mutants, Asn4-Ala and Thr5-Ala, which yielded gain-of-function behavior comparable to what has been found for PLN. Next, we analyzed two-dimensional crystals of SERCA in the presence of wild-type SLN by electron cryomicroscopy. The fundamental units of the crystals are antiparallel dimer ribbons of SERCA, known for decades as an assembly of calcium-free SERCA molecules induced by the addition of decavanadate. A projection map of the SERCA-SLN complex was determined to a resolution of 8.5 Å, which allowed the direct visualization of an SLN pentamer. The SLN pentamer was found to interact with transmembrane segment M3 of SERCA, although the interaction appeared to be indirect and mediated by an additional density consistent with an SLN monomer. This SERCA-SLN complex correlated with the ability of SLN to decrease the maximal activity of SERCA, which is distinct from the ability of PLN to increase the maximal activity of SLN. Protein-protein docking and molecular dynamics simulations provided models for the SLN pentamer and the novel interaction between SERCA and an SLN monomer.
Collapse
Affiliation(s)
- John Paul Glaves
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Joseph O Primeau
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Przemek A Gorski
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - L Michel Espinoza-Fonseca
- Center for Arrhythmia Research, Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, Michigan
| | - M Joanne Lemieux
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Howard S Young
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
25
|
Newly Discovered Micropeptide Regulators of SERCA Form Oligomers but Bind to the Pump as Monomers. J Mol Biol 2019; 431:4429-4443. [PMID: 31449798 DOI: 10.1016/j.jmb.2019.07.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/26/2019] [Accepted: 07/31/2019] [Indexed: 12/22/2022]
Abstract
The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly into oligomers affects the availability of the micropeptide to bind to SERCA in a regulatory complex, we used co-immunoprecipitation and fluorescence resonance energy transfer (FRET) to quantify micropeptide oligomerization and SERCA-binding. Micropeptides formed avid homo-oligomers with high-order stoichiometry (n > 2 protomers per homo-oligomer), but it was the monomeric form of all micropeptides that interacted with SERCA. In view of these two alternative binding interactions, we evaluated the possibility that oligomerization occurs at the expense of SERCA-binding. However, even the most avidly oligomeric micropeptide species still showed robust FRET with SERCA, and there was a surprising positive correlation between oligomerization affinity and SERCA-binding. This comparison of micropeptide family members suggests that the same structural determinants that support oligomerization are also important for binding to SERCA. Moreover, the unique oligomerization/SERCA-binding profile of DWORF is in harmony with its distinct role as a PLB-competing SERCA activator, in contrast to the inhibitory function of the other SERCA-binding micropeptides.
Collapse
|