1
|
Mahdi S, Lim S, Bezsonova I, Beuning PJ, Korzhnev DM. The backbone NMR resonance assignments of the stabilized E. coli β clamp. BIOMOLECULAR NMR ASSIGNMENTS 2024; 18:293-297. [PMID: 39269602 DOI: 10.1007/s12104-024-10202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
The 81 kDa E. coli β clamp is a ring-shaped head-to-tail homodimer that encircles DNA and plays a central role in bacterial DNA replication by serving as a processivity factor for DNA polymerases and a binding platform for other DNA replication and repair proteins. Here we report the backbone 1H, 15N, and 13C NMR resonance assignments of the stabilized T45R/S107R β clamp variant obtained using standard TROSY-based triple-resonance experiments (BMRB 52548). The backbone assignments were aided by 13C and 15N edited NOESY experiments, allowing us to utilize our previously reported assignments of the β clamp ILV side-chain methyl groups (BMRB 51430, 51431). The backbone assignments of the T45R/S107R β clamp variant were transferred to the wild-type β clamp using a minimal set of TROSY-based 15N edited NOESY, NHCO and NHCA experiments (BMRB 52549). The reported backbone and previous ILV side-chain resonance assignments will enable NMR studies of the β clamp interactions and dynamics using amide and methyl groups as probes.
Collapse
Affiliation(s)
- Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Socheata Lim
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Irina Bezsonova
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, 02115, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
2
|
Simonsen S, Søgaard CK, Olsen JG, Otterlei M, Kragelund BB. The bacterial DNA sliding clamp, β-clamp: structure, interactions, dynamics and drug discovery. Cell Mol Life Sci 2024; 81:245. [PMID: 38814467 PMCID: PMC11139829 DOI: 10.1007/s00018-024-05252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
Collapse
Affiliation(s)
- Signe Simonsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johan G Olsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Birthe B Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Zein U, Turgimbayeva A, Abeldenov S. Biochemical Assessment of the Mutant Sliding β-Clamp on Stimulation of Endonuclease IV from Staphylococcus aureus. Indian J Microbiol 2024; 64:165-174. [PMID: 38468727 PMCID: PMC10924856 DOI: 10.1007/s12088-023-01148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 11/13/2023] [Indexed: 03/13/2024] Open
Abstract
Staphylococcus aureus is a pathogenic bacterium that causes various infections in humans. The emergence of methicillin-resistant Staphylococcus aureus makes treatment more challenging. Recent research has shown that bacterial β-clamp is not only a processivity factor but can also stimulate the activity of other enzymes of DNA metabolism. This article examines the interaction between apurinic/apyrimidinic (AP) endonuclease IV (Nfo) and β-clamp from Staphylococcus aureus, which has not been previously researched. Recombinant DNA repair enzymes, beta-clamp, were cloned, expressed, and purified. Biochemical methods were employed to assess the stimulation of beta-clamp-activated AP endonuclease activity of Nfo. We demonstrated that mutations in the C-terminal conserved region led to disruption of stimulation of Nfo AP endonuclease activity. The study provides evidence of a specific interaction between Nfo and β-clamp, which suggests that β-clamp may play a more direct role in DNA repair processes than previously thought. These findings have important implications for understanding the mechanism of DNA repair, particularly in relation to the role of β-clamp. Understanding the underlying mechanisms of interaction between DNA metabolism enzymes can aid in predicting new drug targets for antibiotic resistance battle. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-023-01148-8.
Collapse
Affiliation(s)
- Ulan Zein
- National Center for Biotechnology, Astana, 010000 Kazakhstan
- L. N. Gumilyov Eurasian National University, Astana, 010000 Kazakhstan
| | | | | |
Collapse
|
4
|
Berger MB, Cisneros GA. Distal Mutations in the β-Clamp of DNA Polymerase III* Disrupt DNA Orientation and Affect Exonuclease Activity. J Am Chem Soc 2023; 145:3478-3490. [PMID: 36745735 PMCID: PMC10237177 DOI: 10.1021/jacs.2c11713] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA polymerases are responsible for the replication and repair of DNA found in all DNA-based organisms. DNA Polymerase III is the main replicative polymerase of E. coli and is composed of over 10 proteins. A subset of these proteins (Pol III*) includes the polymerase (α), exonuclease (ϵ), clamp (β), and accessory protein (θ). Mutations of residues in, or around the active site of the catalytic subunits (α and ϵ), can have a significant impact on catalysis. However, the effects of distal mutations in noncatalytic subunits on the activity of catalytic subunits are less well-characterized. Here, we investigate the effects of two Pol III* variants, β-L82E/L82'E and β-L82D/L82'D, on the proofreading reaction catalyzed by ϵ. MD simulations reveal major changes in the dynamics of Pol III*, which extend throughout the complex. These changes are mostly induced by a shift in the position of the DNA substrate inside the β-clamp, although no major structural changes are observed in the protein complex. Quantum mechanics/molecular mechanics (QM/MM) calculations indicate that the β-L82D/L82'D variant has reduced catalytic proficiency due to highly endoergic reaction energies resulting from structural changes in the active site and differences in the electric field at the active site arising from the protein and substrate. Conversely, the β-L82E/L82'E variant is predicted to maintain proofreading activity, exhibiting a similar reaction barrier for nucleotide excision compared with the WT system. However, significant differences in the reaction mechanism are obtained due to the changes induced by the mutations on the β-clamp.
Collapse
Affiliation(s)
- Madison B Berger
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
5
|
Mulye M, Singh MI, Jain V. From Processivity to Genome Maintenance: The Many Roles of Sliding Clamps. Genes (Basel) 2022; 13:2058. [PMID: 36360296 PMCID: PMC9690074 DOI: 10.3390/genes13112058] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 07/30/2023] Open
Abstract
Sliding clamps play a pivotal role in the process of replication by increasing the processivity of the replicative polymerase. They also serve as an interacting platform for a plethora of other proteins, which have an important role in other DNA metabolic processes, including DNA repair. In other words, clamps have evolved, as has been correctly referred to, into a mobile "tool-belt" on the DNA, and provide a platform for several proteins that are involved in maintaining genome integrity. Because of the central role played by the sliding clamp in various processes, its study becomes essential and relevant in understanding these processes and exploring the protein as an important drug target. In this review, we provide an updated report on the functioning, interactions, and moonlighting roles of the sliding clamps in various organisms and its utilization as a drug target.
Collapse
Affiliation(s)
- Meenakshi Mulye
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| | | | - Vikas Jain
- Correspondence: (M.M.); (V.J.); Tel.: +91-755-269-1425 (V.J.); Fax: +91-755-269-2392 (V.J.)
| |
Collapse
|
6
|
Lim S, Mahdi S, Beuning PJ, Korzhnev DM. ILV methyl NMR resonance assignments of the 81 kDa E. coli β-clamp. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:317-323. [PMID: 35687262 PMCID: PMC10752501 DOI: 10.1007/s12104-022-10097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
The ring-shaped E. coli β-clamp protein is an 81 kDa head-to-tail homodimer, which serves as a processivity factor anchoring the replicative polymerase to DNA, thereby increasing replication processivity and speed. In addition, it facilitates numerous protein transactions that take place on DNA during replication, repair, and damage response. We used a structure-based approach to obtain nearly complete Ile, Leu and Val side-chain methyl NMR resonance assignments of the wild-type β-clamp and its stabilized T45R/S107R variant based on site directed mutagenesis and the analysis of methyl-methyl NOESY data. The obtained assignments will facilitate future studies of the β-clamp interactions and dynamics.
Collapse
Affiliation(s)
- Socheata Lim
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 06030, Farmington, CT, USA
| | - Sam Mahdi
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 06030, Farmington, CT, USA
| | - Penny J Beuning
- Department of Chemistry and Chemical Biology, Northeastern University, 02115, Boston, MA, USA
| | - Dmitry M Korzhnev
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 06030, Farmington, CT, USA.
| |
Collapse
|
7
|
Gokcan H, Bedoyan JK, Isayev O. Simulations of Pathogenic E1α Variants: Allostery and Impact on Pyruvate Dehydrogenase Complex-E1 Structure and Function. J Chem Inf Model 2022; 62:3463-3475. [PMID: 35797142 DOI: 10.1021/acs.jcim.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency is a major cause of primary lactic acidemia resulting in high morbidity and mortality, with limited therapeutic options. The E1 component of the mitochondrial multienzyme PDC (PDC-E1) is a symmetric dimer of heterodimers (αβ/α'β') encoded by the PDHA1 and PDHB genes, with two symmetric active sites each consisting of highly conserved phosphorylation loops A and B. PDHA1 mutations are responsible for 82-88% of cases. Greater than 85% of E1α residues with disease-causing missense mutations (DMMs) are solvent-inaccessible, with ∼30% among those involved in subunit-subunit interface contact (SSIC). We performed molecular dynamics simulations of wild-type (WT) PDC-E1 and E1 variants with E1α DMMs at R349 and W185 (residues involved in SSIC), to investigate their impact on human PDC-E1 structure. We evaluated the change in E1 structure and dynamics and examined their implications on E1 function with the specific DMMs. We found that the dynamics of phosphorylation Loop A, which is crucial for E1 biological activity, changes with DMMs that are at least about 15 Å away. Because communication is essential for PDC-E1 activity (with alternating active sites), we also investigated the possible communication network within WT PDC-E1 via centrality analysis. We observed that DMMs altered/disrupted the communication network of PDC-E1. Collectively, these results indicate allosteric effect in PDC-E1, with implications for the development of novel small-molecule therapeutics for specific recurrent E1α DMMs such as replacements of R349 responsible for ∼10% of PDC deficiency due to E1α DMMs.
Collapse
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jirair K Bedoyan
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania 15224, United States.,Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Gokcan H, Isayev O. Prediction of protein p K a with representation learning. Chem Sci 2022; 13:2462-2474. [PMID: 35310485 PMCID: PMC8864681 DOI: 10.1039/d1sc05610g] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
The behavior of proteins is closely related to the protonation states of the residues. Therefore, prediction and measurement of pK a are essential to understand the basic functions of proteins. In this work, we develop a new empirical scheme for protein pK a prediction that is based on deep representation learning. It combines machine learning with atomic environment vector (AEV) and learned quantum mechanical representation from ANI-2x neural network potential (J. Chem. Theory Comput. 2020, 16, 4192). The scheme requires only the coordinate information of a protein as the input and separately estimates the pK a for all five titratable amino acid types. The accuracy of the approach was analyzed with both cross-validation and an external test set of proteins. Obtained results were compared with the widely used empirical approach PROPKA. The new empirical model provides accuracy with MAEs below 0.5 for all amino acid types. It surpasses the accuracy of PROPKA and performs significantly better than the null model. Our model is also sensitive to the local conformational changes and molecular interactions.
Collapse
Affiliation(s)
- Hatice Gokcan
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University Pittsburgh PA USA
| | - Olexandr Isayev
- Department of Chemistry, Mellon College of Science, Carnegie Mellon University Pittsburgh PA USA
| |
Collapse
|
9
|
Fouque KJD, Garabedian A, Leng F, Tse-Dinh YC, Ridgeway ME, Park MA, Fernandez-Lima F. Trapped Ion Mobility Spectrometry of Native Macromolecular Assemblies. Anal Chem 2021; 93:2933-2941. [PMID: 33492949 PMCID: PMC8327357 DOI: 10.1021/acs.analchem.0c04556] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The structural elucidation of native macromolecular assemblies has been a subject of considerable interest in native mass spectrometry (MS), and more recently in tandem with ion mobility spectrometry (IMS-MS), for a better understanding of their biochemical and biophysical functions. In the present work, we describe a new generation trapped ion mobility spectrometer (TIMS), with extended mobility range (K0 = 0.185-1.84 cm2·V-1·s-1), capable of trapping high-molecular-weight (MW) macromolecular assemblies. This compact 4 cm long TIMS analyzer utilizes a convex electrode, quadrupolar geometry with increased pseudopotential penetration in the radial dimension, extending the mobility trapping to high-MW species under native state (i.e., lower charge states). The TIMS capabilities to perform variable scan rate (Sr) mobility measurements over short time (100-500 ms), high-mobility resolution, and ion-neutral collision cross-section (CCSN2) measurements are presented. The trapping capabilities of the convex electrode TIMS geometry and ease of operation over a wide gas flow, rf range, and electric field trapping range are illustrated for the first time using a comprehensive list of standards varying from CsI clusters (n = 6-73), Tuning Mix oligomers (n = 1-5), common proteins (e.g., ubiquitin, cytochrome C, lysozyme, concanavalin (n = 1-4), carbonic anhydrase, β clamp (n = 1-4), topoisomerase IB, bovine serum albumin (n = 1-3), topoisomerase IA, alcohol dehydrogenase), IgG antibody (e.g., avastin), protein-DNA complexes, and macromolecular assemblies (e.g., GroEL and RNA polymerase (n = 1-2)) covering a wide mass (up to m/z 19 000) and CCS range (up to 22 000 Å2 with <0.6% relative standard deviation (RSD)).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Alyssa Garabedian
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | - Yuk-Ching Tse-Dinh
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| | | | - Melvin A. Park
- Bruker Daltonics Inc., Billerica, MA 01821, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
10
|
Potassium Glutamate and Glycine Betaine Induce Self-Assembly of the PCNA and β-Sliding Clamps. Biophys J 2020; 120:73-85. [PMID: 33221249 DOI: 10.1016/j.bpj.2020.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/06/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
Sliding clamps are oligomeric ring-shaped proteins that increase the efficiency of DNA replication. The stability of the Escherichia coli β-clamp, a homodimer, is particularly remarkable. The dissociation equilibrium constant of the β-clamp is of the order of 10 pM in buffers of moderate ionic strength. Coulombic electrostatic interactions have been shown to contribute to this remarkable stability. Increasing NaCl concentration in the assay buffer results in decreased dimer stability and faster subunit dissociation kinetics in a way consistent with simple charge-screening models. Here, we examine non-Coulombic ionic effects on the oligomerization properties of sliding clamps. We determined relative diffusion coefficients of two sliding clamps using fluorescence correlation spectroscopy. Replacing NaCl by KGlu, the primary cytoplasmic salt in E. coli, results in a decrease of the diffusion coefficient of these proteins consistent with the formation of protein assemblies. The UV-vis spectrum of the β-clamp labeled with tetramethylrhodamine shows the characteristic absorption band of dimers of rhodamine when KGlu is present in the buffer. This suggests that KGlu induces the formation of assemblies that involve two or more rings stacked face-to-face. Results can be quantitatively explained on the basis of unfavorable interactions between KGlu and the functional groups on the protein surface, which drive biomolecular processes that bury exposed surface. Similar results were obtained with the Saccharomyces cerevisiae PCNA sliding clamp, suggesting that KGlu effects are not specific to the β-clamp. Clamp association is also promoted by glycine betaine, a zwitterionic compound that accumulates intracellularly when E. coli is exposed to high concentrations of extracellular solute. Possible biological implications are discussed.
Collapse
|
11
|
Jeanne Dit Fouque K, Fernandez-Lima F. Following Structural Changes by Thermal Denaturation Using Trapped Ion Mobility Spectrometry-Mass Spectrometry. J Phys Chem B 2020; 124:6257-6265. [PMID: 32560586 PMCID: PMC8341290 DOI: 10.1021/acs.jpcb.0c04276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The behavior of biomolecules as a function of the solution temperature is often crucial to assessing their biological activity and function. While heat-induced changes of biomolecules are traditionally monitored using optical spectroscopy methods, their conformational changes and unfolding transitions remain challenging to interpret. In the present work, the structural transitions of bovine serum albumin (BSA) in native conditions (100 mM aqueous ammonium acetate) were investigated as a function of the starting solution temperature (T ∼ 23-70 °C) using a temperature-controlled nanoelectrospray ionization source (nESI) coupled to a trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) instrument. The charge state distribution of the monomeric BSA changed from a native-like, narrow charge state ([M + 12H]12+ to [M + 16H]16+ at ∼23 °C) and narrow mobility distribution toward an unfolded-like, broad charge state (up to [M + 46H]46+ at ∼70 °C) and broad mobility distribution. Inspection of the average charge state and collision cross section (CCS) distribution suggested a two-state unfolding transition with a melting temperature Tm ∼ 56 ± 1 °C; however, the inspection of the CCS profiles at the charge state level as a function of the solution temperature showcases at least six structural transitions (T1-T7). If the starting solution concentration is slightly increased (from 2 to 25 μM), this method can detect nonspecific BSA dimers and trimers which dissociate early (Td ∼ 34 ± 1 °C) and may disturb the melting curve of the BSA monomer. In a single experiment, this technology provides a detailed view of the solution, protein structural landscape (mobility vs solution temperature vs relative intensity for each charge state).
Collapse
Affiliation(s)
- Kevin Jeanne Dit Fouque
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Francisco Fernandez-Lima
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
- Biomolecular Sciences Institute, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
12
|
Li H, Doruker P, Hu G, Bahar I. Modulation of Toroidal Proteins Dynamics in Favor of Functional Mechanisms upon Ligand Binding. Biophys J 2020; 118:1782-1794. [PMID: 32130874 DOI: 10.1016/j.bpj.2020.01.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/05/2020] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Toroidal proteins serve as molecular machines and play crucial roles in biological processes such as DNA replication and RNA transcription. Despite progress in the structural characterization of several toroidal proteins, we still lack a mechanistic understanding of the significance of their architecture, oligomerization states, and intermolecular interactions in defining their biological function. In this work, we analyze the collective dynamics of toroidal proteins with different oligomerization states, namely, dimeric and trimeric DNA sliding clamps, nucleocapsid proteins (4-, 5-, and 6-mers) and Trp RNA-binding attenuation proteins (11- and 12-mers). We observe common global modes, among which cooperative rolling stands out as a mechanism enabling DNA processivity, and clamshell motions as those underlying the opening/closure of the sliding clamps. Alterations in global dynamics due to complexation with DNA or the clamp loader are shown to assist in enhancing motions to enable robust function. The analysis provides new insights into the differentiation and enhancement of functional motions upon intersubunit and intermolecular interactions.
Collapse
Affiliation(s)
- Hongchun Li
- Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China; Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Research Center for Computer-Aided Drug Discovery, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Pemra Doruker
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guang Hu
- Center for Systems Biology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China.
| | - Ivet Bahar
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|