1
|
Seifi B, Wallin S. Impact of N-Terminal Domain Conformation and Domain Interactions on RfaH Fold Switching. Proteins 2024. [PMID: 39400465 DOI: 10.1002/prot.26755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/30/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024]
Abstract
RfaH is a two-domain metamorphic protein involved in transcription regulation and translation initiation. To carry out its dual functions, RfaH relies on two coupled structural changes: Domain dissociation and fold switching. In the free state, the C-terminal domain (CTD) of RfaH adopts an all-α fold and is tightly associated with the N-terminal domain (NTD). Upon binding to RNA polymerase (RNAP), the domains dissociate and the CTD transforms into an all-β fold while the NTD remains largely, but not entirely, unchanged. We test the idea that a change in the conformation of an extended β-hairpin (β3-β4) located on the NTD, helps trigger domain dissociation. To this end, we use homology modeling to construct a structure, H1, which is similar to free RfaH but with a remodeled β3-β4 hairpin. We then use an all-atom physics-based model enhanced with a dual basin structure-based potential to simulate domain separation driven by the thermal unfolding of the CTD with NTD in a fixed, folded conformation. We apply our model to both free RfaH and H1. For H1 we find, in line with our hypothesis, that the CTD exhibits lower stability and the domains dissociate at a lower temperature T, as compared to free RfaH. We do not, however, observe complete refolding to the all-β state in these simulations, suggesting that a change in β3-β4 orientation aids in, but is not sufficient for, domain dissociation. In addition, we study the reverse fold switch in which RfaH returns from a domain-open all-β state to its domain-closed all-α state. We observe a T-dependent transition rate; fold switching is slow at low T, where the CTD tends to be kinetically trapped in its all-β state, and at high-T, where the all-α state becomes unstable. Consequently, our simulations suggest an optimal T at which fold switching is most rapid. At this T, the stabilities of both folds are reduced. Overall, our study suggests that both inter-domain interactions and conformational changes within NTD may be important for the proper functioning of RfaH.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, NL, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, NL, Canada
| |
Collapse
|
2
|
González‐Higueras J, Freiberger MI, Galaz‐Davison P, Parra RG, Ramírez‐Sarmiento CA. A contact-based analysis of local energetic frustration dynamics identifies key residues enabling RfaH fold-switch. Protein Sci 2024; 33:e5182. [PMID: 39324667 PMCID: PMC11425668 DOI: 10.1002/pro.5182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024]
Abstract
Fold-switching enables metamorphic proteins to reversibly interconvert between two highly dissimilar native states to regulate their protein functions. While about 100 proteins have been identified to undergo fold-switching, unveiling the key residues behind this mechanism for each protein remains challenging. Reasoning that fold-switching in proteins is driven by dynamic changes in local energetic frustration, we combined fold-switching simulations generated using simplified structure-based models with frustration analysis to identify key residues involved in this process based on the change in the density of minimally frustrated contacts during refolding. Using this approach to analyze the fold-switch of the bacterial transcription factor RfaH, we identified 20 residues that significantly change their frustration during its fold-switch, some of which have been experimentally and computationally reported in previous works. Our approach, which we developed as an additional module for the FrustratometeR package, highlights the role of local frustration dynamics in protein fold-switching and offers a robust tool to enhance our understanding of other proteins with significant conformational shifts.
Collapse
Affiliation(s)
- Jorge González‐Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| | - María Inés Freiberger
- Protein Physiology Laboratory, Departamento de Química Biológica, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Sorbonne Université, CNRS, IBPSParisFrance
| | - Pablo Galaz‐Davison
- Center for Bioinformatics, Simulation and Modeling (CBSM), Faculty of EngineeringUniversidad de TalcaTalcaChile
| | | | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative ProgramMillennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
3
|
Hong L, Kortemme T. An integrative approach to protein sequence design through multiobjective optimization. PLoS Comput Biol 2024; 20:e1011953. [PMID: 38991035 PMCID: PMC11265717 DOI: 10.1371/journal.pcbi.1011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/23/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
With recent methodological advances in the field of computational protein design, in particular those based on deep learning, there is an increasing need for frameworks that allow for coherent, direct integration of different models and objective functions into the generative design process. Here we demonstrate how evolutionary multiobjective optimization techniques can be adapted to provide such an approach. With the established Non-dominated Sorting Genetic Algorithm II (NSGA-II) as the optimization framework, we use AlphaFold2 and ProteinMPNN confidence metrics to define the objective space, and a mutation operator composed of ESM-1v and ProteinMPNN to rank and then redesign the least favorable positions. Using the two-state design problem of the foldswitching protein RfaH as an in-depth case study, and PapD and calmodulin as examples of higher-dimensional design problems, we show that the evolutionary multiobjective optimization approach leads to significant reduction in the bias and variance in RfaH native sequence recovery, compared to a direct application of ProteinMPNN. We suggest that this improvement is due to three factors: (i) the use of an informative mutation operator that accelerates the sequence space exploration, (ii) the parallel, iterative design process inherent to the genetic algorithm that improves upon the ProteinMPNN autoregressive sequence decoding scheme, and (iii) the explicit approximation of the Pareto front that leads to optimal design candidates representing diverse tradeoff conditions. We anticipate this approach to be readily adaptable to different models and broadly relevant for protein design tasks with complex specifications.
Collapse
Affiliation(s)
- Lu Hong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, California, United States of America
- Chan Zuckerberg Biohub, San Francisco, California, United States of America
| |
Collapse
|
4
|
Porter LL, Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins and how to find them. Curr Opin Struct Biol 2024; 86:102807. [PMID: 38537533 PMCID: PMC11102287 DOI: 10.1016/j.sbi.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024]
Abstract
In the last two decades, our existing notion that most foldable proteins have a unique native state has been challenged by the discovery of metamorphic proteins, which reversibly interconvert between multiple, sometimes highly dissimilar, native states. As the number of known metamorphic proteins increases, several computational and experimental strategies have emerged for gaining insights about their refolding processes and identifying unknown metamorphic proteins amongst the known proteome. In this review, we describe the current advances in biophysically and functionally ascertaining the structural interconversions of metamorphic proteins and how coevolution can be harnessed to identify novel metamorphic proteins from sequence information. We also discuss the challenges and ongoing efforts in using artificial intelligence-based protein structure prediction methods to discover metamorphic proteins and predict their corresponding three-dimensional structures.
Collapse
Affiliation(s)
- Lauren L Porter
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA; Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA.
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile; ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago 833150, Chile.
| |
Collapse
|
5
|
Zuber PK, Said N, Hilal T, Wang B, Loll B, González-Higueras J, Ramírez-Sarmiento CA, Belogurov GA, Artsimovitch I, Wahl MC, Knauer SH. Concerted transformation of a hyper-paused transcription complex and its reinforcing protein. Nat Commun 2024; 15:3040. [PMID: 38589445 PMCID: PMC11001881 DOI: 10.1038/s41467-024-47368-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024] Open
Abstract
RfaH, a paralog of the universally conserved NusG, binds to RNA polymerases (RNAP) and ribosomes to activate expression of virulence genes. In free, autoinhibited RfaH, an α-helical KOW domain sequesters the RNAP-binding site. Upon recruitment to RNAP paused at an ops site, KOW is released and refolds into a β-barrel, which binds the ribosome. Here, we report structures of ops-paused transcription elongation complexes alone and bound to the autoinhibited and activated RfaH, which reveal swiveled, pre-translocated pause states stabilized by an ops hairpin in the non-template DNA. Autoinhibited RfaH binds and twists the ops hairpin, expanding the RNA:DNA hybrid to 11 base pairs and triggering the KOW release. Once activated, RfaH hyper-stabilizes the pause, which thus requires anti-backtracking factors for escape. Our results suggest that the entire RfaH cycle is solely determined by the ops and RfaH sequences and provide insights into mechanisms of recruitment and metamorphosis of NusG homologs across all life.
Collapse
Affiliation(s)
- Philipp K Zuber
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Nelly Said
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
- Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Berlin, Germany
| | - Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Bernhard Loll
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology, Santiago, Chile
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| | - Markus C Wahl
- Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Freie Universität Berlin, Berlin, Germany.
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany.
| | - Stefan H Knauer
- Biochemistry IV-Biophysical Chemistry, Universität Bayreuth, Bayreuth, Germany.
- Bristol-Myers Squibb GmbH & Co. KGaA, Munich, Germany.
| |
Collapse
|
6
|
Hong L, Kortemme T. An integrative approach to protein sequence design through multiobjective optimization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.01.582670. [PMID: 38496480 PMCID: PMC10942313 DOI: 10.1101/2024.03.01.582670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
With recent methodological advances in the field of computational protein design, in particular those based on deep learning, there is an increasing need for frameworks that allow for coherent, direct integration of different models and objective functions into the generative design process. Here we demonstrate how evolutionary multiobjective optimization techniques can be adapted to provide such an approach. With the established Non-dominated Sorting Genetic Algorithm II (NSGA-II) as the optimization framework, we use AlphaFold2 and ProteinMPNN confidence metrics to define the objective space, and a mutation operator composed of ESM-1v and ProteinMPNN to rank and then redesign the least favorable positions. Using the multistate design problem of the foldswitching protein RfaH as an in-depth case study, we show that the evolutionary multiobjective optimization approach leads to significant reduction in the bias and variance in RfaH native sequence recovery, compared to a direct application of ProteinMPNN. We suggest that this improvement is due to three factors: (i) the use of an informative mutation operator that accelerates the sequence space exploration, (ii) the parallel, iterative design process inherent to the genetic algorithm that improves upon the ProteinMPNN autoregressive sequence decoding scheme, and (iii) the explicit approximation of the Pareto front that leads to optimal design candidates representing diverse tradeoff conditions. We anticipate this approach to be readily adaptable to different models and broadly relevant for protein design tasks with complex specifications.
Collapse
Affiliation(s)
- Lu Hong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tanja Kortemme
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Bhuvaneshwari RA, Shivamani A, Sengupta I. Line Shape Analysis of 19F NMR-Monitored Chemical Denaturation of a Fold-Switching Protein RfaH Reveals Its Slow Folding Dynamics. J Phys Chem B 2024; 128:465-471. [PMID: 37991741 DOI: 10.1021/acs.jpcb.3c06550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The recent discovery of metamorphic proteins, which can switch between multiple conformations under native conditions, has challenged the well-established one sequence-one structure paradigm of protein folding. This is exemplified in the C-terminal domain of the multidomain transcription factor RfaH, which converts from an α-helical coiled-coil conformation in its autoinhibited state to a β-barrel conformation upon activation. Here, we use multisite line shape analysis of 19F NMR-monitored equilibrium chemical denaturation measurements of two 19F-labeled variants of full-length RfaH, to show that it folds/unfolds slowly on the NMR time scale, in an apparent all-or-none fashion at physiological pH and room temperature in the 3.3-4.8 M urea concentration range. The significant thermodynamic stability and slow unfolding rate (kinetic stability) are likely responsible for maintaining the closed autoinhibited state of RfaH, preventing spurious interactions with RNA polymerase (RNAP) when not functional. Our results provide a quantitative understanding of the folding-function relationship in the model fold-switching protein RfaH.
Collapse
Affiliation(s)
| | - Anish Shivamani
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Retamal-Farfán I, González-Higueras J, Galaz-Davison P, Rivera M, Ramírez-Sarmiento CA. Exploring the structural acrobatics of fold-switching proteins using simplified structure-based models. Biophys Rev 2023; 15:787-799. [PMID: 37681096 PMCID: PMC10480104 DOI: 10.1007/s12551-023-01087-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/22/2023] [Indexed: 09/09/2023] Open
Abstract
Metamorphic proteins are a paradigm of the protein folding process, by encoding two or more native states, highly dissimilar in terms of their secondary, tertiary, and even quaternary structure, on a single amino acid sequence. Moreover, these proteins structurally interconvert between these native states in a reversible manner at biologically relevant timescales as a result of different environmental cues. The large-scale rearrangements experienced by these proteins, and their sometimes high mass interacting partners that trigger their metamorphosis, makes the computational and experimental study of their structural interconversion challenging. Here, we present our efforts in studying the refolding landscapes of two quintessential metamorphic proteins, RfaH and KaiB, using simplified dual-basin structure-based models (SBMs), rigorously footed on the energy landscape theory of protein folding and the principle of minimal frustration. By using coarse-grained models in which the native contacts and bonded interactions extracted from the available experimental structures of the two native states of RfaH and KaiB are merged into a single Hamiltonian, dual-basin SBM models can be generated and savvily calibrated to explore their fold-switch in a reversible manner in molecular dynamics simulations. We also describe how some of the insights offered by these simulations have driven the design of experiments and the validation of the conformational ensembles and refolding routes observed using this simple and computationally efficient models.
Collapse
Affiliation(s)
- Ignacio Retamal-Farfán
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- Department of Chemistry, Faculty of Science, McGill University, Montreal, Quebec H3A 0B8 Canada
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile
- ANID — Millennium Science Initiative Program — Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
9
|
Coñuecar R, Asela I, Rivera M, Galaz-Davison P, González-Higueras J, Hamilton GL, Engelberger F, Ramírez-Sarmiento CA, Babul J, Sanabria H, Medina E. DNA facilitates heterodimerization between human transcription factors FoxP1 and FoxP2 by increasing their conformational flexibility. iScience 2023; 26:107228. [PMID: 37485372 PMCID: PMC10362293 DOI: 10.1016/j.isci.2023.107228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/15/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Transcription factors regulate gene expression by binding to DNA. They have disordered regions and specific DNA-binding domains. Binding to DNA causes structural changes, including folding and interactions with other molecules. The FoxP subfamily of transcription factors in humans is unique because they can form heterotypic interactions without DNA. However, it is unclear how they form heterodimers and how DNA binding affects their function. We used computational and experimental methods to study the structural changes in FoxP1's DNA-binding domain when it forms a heterodimer with FoxP2. We found that FoxP1 has complex and diverse conformational dynamics, transitioning between compact and extended states. Surprisingly, DNA binding increases the flexibility of FoxP1, contrary to the typical folding-upon-binding mechanism. In addition, we observed a 3-fold increase in the rate of heterodimerization after FoxP1 binds to DNA. These findings emphasize the importance of structural flexibility in promoting heterodimerization to form transcriptional complexes.
Collapse
Affiliation(s)
- Ricardo Coñuecar
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Isabel Asela
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Maira Rivera
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Jorge González-Higueras
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - George L. Hamilton
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Felipe Engelberger
- Institute for Drug Discovery, Leipzig University Medical School, 04107 Leipzig, Germany
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Jorge Babul
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Hugo Sanabria
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Exequiel Medina
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Department of Physics & Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
10
|
Abstract
Mechanisms of emergence and divergence of protein folds pose central questions in biological sciences. Incremental mutation and stepwise adaptation explain relationships between topologically similar protein folds. However, the universe of folds is diverse and riotous, suggesting more potent and creative forces are at play. Sequence and structure similarity are observed between distinct folds, indicating that proteins with distinct folds may share common ancestry. We found evidence of common ancestry between three distinct β-barrel folds: Scr kinase family homology (SH3), oligonucleotide/oligosaccharide-binding (OB), and cradle loop barrel (CLB). The data suggest a mechanism of fold evolution that interconverts SH3, OB, and CLB. This mechanism, which we call creative destruction, can be generalized to explain many examples of fold evolution including circular permutation. In creative destruction, an open reading frame duplicates or otherwise merges with another to produce a fused polypeptide. A merger forces two ancestral domains into a new sequence and spatial context. The fused polypeptide can explore folding landscapes that are inaccessible to either of the independent ancestral domains. However, the folding landscapes of the fused polypeptide are not fully independent of those of the ancestral domains. Creative destruction is thus partially conservative; a daughter fold inherits some motifs from ancestral folds. After merger and refolding, adaptive processes such as mutation and loss of extraneous segments optimize the new daughter fold. This model has application in disease states characterized by genetic instability. Fused proteins observed in cancer cells are likely to experience remodeled folding landscapes and realize altered folds, conferring new or altered functions.
Collapse
|
11
|
Artsimovitch I, Ramírez-Sarmiento CA. Metamorphic proteins under a computational microscope: Lessons from a fold-switching RfaH protein. Comput Struct Biotechnol J 2022; 20:5824-5837. [PMID: 36382197 PMCID: PMC9630627 DOI: 10.1016/j.csbj.2022.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/28/2022] Open
Abstract
Metamorphic proteins constitute unexpected paradigms of the protein folding problem, as their sequences encode two alternative folds, which reversibly interconvert within biologically relevant timescales to trigger different cellular responses. Once considered a rare aberration, metamorphism may be common among proteins that must respond to rapidly changing environments, exemplified by NusG-like proteins, the only transcription factors present in every domain of life. RfaH, a specialized paralog of bacterial NusG, undergoes an all-α to all-β domain switch to activate expression of virulence and conjugation genes in many animal and plant pathogens and is the quintessential example of a metamorphic protein. The dramatic nature of RfaH structural transformation and the richness of its evolutionary history makes for an excellent model for studying how metamorphic proteins switch folds. Here, we summarize the structural and functional evidence that sparked the discovery of RfaH as a metamorphic protein, the experimental and computational approaches that enabled the description of the molecular mechanism and refolding pathways of its structural interconversion, and the ongoing efforts to find signatures and general properties to ultimately describe the protein metamorphome.
Collapse
Affiliation(s)
- Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID, Millennium Science Initiative Program, Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
12
|
Molina JA, Galaz-Davison P, Komives EA, Artsimovitch I, Ramírez-Sarmiento CA. Allosteric couplings upon binding of RfaH to transcription elongation complexes. Nucleic Acids Res 2022; 50:6384-6397. [PMID: 35670666 PMCID: PMC9226497 DOI: 10.1093/nar/gkac453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
In every domain of life, NusG-like proteins bind to the elongating RNA polymerase (RNAP) to support processive RNA synthesis and to couple transcription to ongoing cellular processes. Structures of factor-bound transcription elongation complexes (TECs) reveal similar contacts to RNAP, consistent with a shared mechanism of action. However, NusG homologs differ in their regulatory roles, modes of recruitment, and effects on RNA synthesis. Some of these differences could be due to conformational changes in RNAP and NusG-like proteins, which cannot be captured in static structures. Here, we employed hydrogen-deuterium exchange mass spectrometry to investigate changes in local and non-local structural dynamics of Escherichia coli NusG and its paralog RfaH, which have opposite effects on expression of xenogenes, upon binding to TEC. We found that NusG and RfaH regions that bind RNAP became solvent-protected in factor-bound TECs, whereas RNAP regions that interact with both factors showed opposite deuterium uptake changes when bound to NusG or RfaH. Additional changes far from the factor-binding site were observed only with RfaH. Our results provide insights into differences in structural dynamics exerted by NusG and RfaH during binding to TEC, which may explain their different functional outcomes and allosteric regulation of transcriptional pausing by RfaH.
Collapse
Affiliation(s)
- José Alejandro Molina
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Elizabeth A Komives
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Artsimovitch
- Department of Microbiology and The Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| | - César A Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,ANID - Millennium Science Initiative Program - Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| |
Collapse
|
13
|
Galaz‐Davison P, Ferreiro DU, Ramírez‐Sarmiento CA. Coevolution-derived native and non-native contacts determine the emergence of a novel fold in a universally conserved family of transcription factors. Protein Sci 2022; 31:e4337. [PMID: 35634768 PMCID: PMC9123645 DOI: 10.1002/pro.4337] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/18/2022] [Accepted: 05/03/2022] [Indexed: 11/07/2022]
Abstract
The NusG protein family is structurally and functionally conserved in all domains of life. Its members directly bind RNA polymerases and regulate transcription processivity and termination. RfaH, a divergent sub-family in its evolutionary history, is known for displaying distinct features than those in NusG proteins, which allows them to regulate the expression of virulence factors in enterobacteria in a DNA sequence-dependent manner. A striking feature is its structural interconversion between an active fold, which is the canonical NusG three-dimensional structure, and an autoinhibited fold, which is distinctively novel. How this novel fold is encoded within RfaH sequence to encode a metamorphic protein remains elusive. In this work, we used publicly available genomic RfaH protein sequences to construct a complete multiple sequence alignment, which was further augmented with metagenomic sequences and curated by predicting their secondary structure propensities using JPred. Coevolving pairs of residues were calculated from these sequences using plmDCA and GREMLIN, which allowed us to detect the enrichment of key metamorphic contacts after sequence filtering. Finally, we combined our coevolutionary predictions with molecular dynamics to demonstrate that these interactions are sufficient to predict the structures of both native folds, where coevolutionary-derived non-native contacts may play a key role in achieving the compact RfaH novel fold. All in all, emergent coevolutionary signals found within RfaH sequences encode the autoinhibited and active folds of this protein, shedding light on the key interactions responsible for the action of this metamorphic protein.
Collapse
Affiliation(s)
- Pablo Galaz‐Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| | - Diego U. Ferreiro
- Protein Physiology Lab, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales (IQUIBICEN‐CONICET)Universidad de Buenos AiresBuenos AiresArgentina
| | - César A. Ramírez‐Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
- ANID—Millennium Science Initiative Program—Millennium Institute for Integrative Biology (iBio)SantiagoChile
| |
Collapse
|
14
|
Wang Y, Zhao L, Zhou X, Zhang J, Jiang J, Dong H. Global Fold Switching of the RafH Protein: Diverse Structures with a Conserved Pathway. J Phys Chem B 2022; 126:2979-2989. [PMID: 35438983 DOI: 10.1021/acs.jpcb.1c10965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
It is generally believed that a protein's sequence uniquely determines its structure, the basis for a protein to perform biological functions. However, as a representative metamorphic protein, RfaH can be encoded by a single amino acid sequence into two distinct native state structures. Its C-terminal domain (CTD) either takes an all-α-helical configuration to pack tightly with its N-terminal domain (NTD), or the CTD disassociates from the NTD, transforms into an all-β-barrel fold, and further attaches to the ribosome, leaving the NTD exposed to bind RNA polymerases. Therefore, the RfaH protein couples transcription and translation processes. Although previous studies have provided a preliminary understanding of its function, the full course of the conformational change of RfaH-CTD at the atomic level is elusive. We used teDA2, a feature space-based enhanced sampling protocol, to explore the transformation of RfaH-CTD. We found that it undergoes a large-scale structural rearrangement, with characteristic spectra as the fingerprint, and a global unfolding transition with a tighter and energetically moderate molten globule-like nucleus formed in between. The formation of this nucleus limits the possible intermediate conformations, facilitates the formation of secondary and tertiary structures, and thus ensures the efficiency of transformation. The key features along the transition path disclosed from this work are likely associated with the evolution of RfaH, such that encoding a single sequence into multiple folds with distinct biological functions is energetically unhindered.
Collapse
Affiliation(s)
- Yiqiao Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Luyuan Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Xuejie Zhou
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China
| | - Jian Zhang
- School of Physics, National Laboratory of Solid State Microstructure, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China
| | - Jun Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.,Institute for Brain Sciences, Nanjing University, Nanjing 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, China.,Engineering Research Center of Protein and Peptide Medicine of Ministry of Education, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Dimer dissociation is a key energetic event in the fold-switch pathway of KaiB. Biophys J 2022; 121:943-955. [PMID: 35151633 PMCID: PMC8943816 DOI: 10.1016/j.bpj.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/14/2021] [Accepted: 02/09/2022] [Indexed: 11/21/2022] Open
Abstract
Cyanobacteria possesses the simplest circadian clock, composed of three proteins that act as a phosphorylation oscillator: KaiA, KaiB, and KaiC. The timing of this oscillator is determined by the fold-switch of KaiB, a structural rearrangement of its C-terminal half that is accompanied by a change in the oligomerization state. During the day, KaiB forms a stable tetramer (gsKaiB), whereas it adopts a monomeric thioredoxin-like fold during the night (fsKaiB). Although the structures and functions of both native states are well studied, little is known about the sequence and structure determinants that control their structural interconversion. Here, we used confinement molecular dynamics (CCR-MD) and folding simulations using structure-based models to show that the dissociation of the gsKaiB dimer is a key energetic event for the fold-switch. Hydrogen-deuterium exchange mass spectrometry (HDXMS) recapitulates the local stability of protein regions reported by CCR-MD, with both approaches consistently indicating that the energy and backbone flexibility changes are solely associated with the region that fold-switches between gsKaiB and fsKaiB and that the localized regions that differentially stabilize gsKaiB also involve regions outside the dimer interface. Moreover, two mutants (R23C and R75C) previously reported to be relevant for altering the rhythmicity of the Kai clock were also studied by HDXMS. Particularly, R75C populates dimeric and monomeric states with a deuterium incorporation profile comparable to the one observed for fsKaiB, emphasizing the importance of the oligomerization state of KaiB for the fold-switch. These findings suggest that the information necessary to control the rhythmicity of the cyanobacterial biological clock is, to a great extent, encoded within the KaiB sequence.
Collapse
|
16
|
Das M, Chen N, LiWang A, Wang LP. Identification and characterization of metamorphic proteins: Current and future perspectives. Biopolymers 2021; 112:e23473. [PMID: 34528703 DOI: 10.1002/bip.23473] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
Proteins that can reversibly alternate between distinctly different folds under native conditions are described as being metamorphic. The "metamorphome" is the collection of all metamorphic proteins in the proteome, but it remains unknown the extent to which the proteome is populated by this class of proteins. We propose that uncovering the metamorphome will require a synergy of computational screening of protein sequences to identify potential metamorphic behavior and validation through experimental techniques. This perspective discusses computational and experimental approaches that are currently used to predict and characterize metamorphic proteins as well as the need for developing improved methodologies. Since metamorphic proteins act as molecular switches, understanding their properties and behavior could lead to novel applications of these proteins as sensors in biological or environmental contexts.
Collapse
Affiliation(s)
- Madhurima Das
- School of Natural Sciences, University of California, Merced, California, USA
| | - Nanhao Chen
- Department of Chemistry, University of California, Davis, California, USA
| | - Andy LiWang
- School of Natural Sciences, University of California, Merced, California, USA.,Department of Chemistry and Biochemistry, University of California, Merced, California, USA.,Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA.,Health Sciences Research Institute, University of California, Merced, California, USA.,Center for Circadian Biology, University of California, San Diego, California, USA
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California, USA
| |
Collapse
|
17
|
Galaz-Davison P, Román EA, Ramírez-Sarmiento CA. The N-terminal domain of RfaH plays an active role in protein fold-switching. PLoS Comput Biol 2021; 17:e1008882. [PMID: 34478435 PMCID: PMC8454952 DOI: 10.1371/journal.pcbi.1008882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/21/2021] [Accepted: 08/07/2021] [Indexed: 11/19/2022] Open
Abstract
The bacterial elongation factor RfaH promotes the expression of virulence factors by specifically binding to RNA polymerases (RNAP) paused at a DNA signal. This behavior is unlike that of its paralog NusG, the major representative of the protein family to which RfaH belongs. Both proteins have an N-terminal domain (NTD) bearing an RNAP binding site, yet NusG C-terminal domain (CTD) is folded as a β-barrel while RfaH CTD is forming an α-hairpin blocking such site. Upon recognition of the specific DNA exposed by RNAP, RfaH is activated via interdomain dissociation and complete CTD structural rearrangement into a β-barrel structurally identical to NusG CTD. Although RfaH transformation has been extensively characterized computationally, little attention has been given to the role of the NTD in the fold-switching process, as its structure remains unchanged. Here, we used Associative Water-mediated Structure and Energy Model (AWSEM) molecular dynamics to characterize the transformation of RfaH, spotlighting the sequence-dependent effects of NTD on CTD fold stabilization. Umbrella sampling simulations guided by native contacts recapitulate the thermodynamic equilibrium experimentally observed for RfaH and its isolated CTD. Temperature refolding simulations of full-length RfaH show a high success towards α-folded CTD, whereas the NTD interferes with βCTD folding, becoming trapped in a β-barrel intermediate. Meanwhile, NusG CTD refolding is unaffected by the presence of RfaH NTD, showing that these NTD-CTD interactions are encoded in RfaH sequence. Altogether, these results suggest that the NTD of RfaH favors the α-folded RfaH by specifically orienting the αCTD upon interdomain binding and by favoring β-barrel rupture into an intermediate from which fold-switching proceeds. Proteins commonly adopt a single three-dimensional structure that is required for biological function. Nevertheless, proteins are not isolated in the cell, and the presence of binding partners can give rise to alternate structural configurations. Metamorphic proteins represent an extreme case of the latter, by folding into at least two well-defined configurations that are both structurally and functionally different. For RfaH, a virulence factor in enterobacteria, two distinct folds are found: an autoinhibited state in which its two protein domains strongly interact, and an active state in which these domains dissociate due to a specific DNA signal on RNA polymerases. This activation is accompanied by the refolding of the C-terminal domain (CTD) from an α-helical structure to a β-barrel. Our work employs computational simulations to explore the role of the N-terminal domain (NTD) in regulating the metamorphic behavior of RfaH, determining that this domain has a major part in orienting and binding to the CTD in its α-helical fold, and in stabilizing an intermediate state instead of the fully folded β-barrel. These results suggest that the NTD not only participates in stabilizing the autoinhibited state, but also aids in fold-switching back to it after active RfaH is released from RNA polymerase.
Collapse
Affiliation(s)
- Pablo Galaz-Davison
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
| | - Ernesto A. Román
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - César A. Ramírez-Sarmiento
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- ANID–Millennium Science Initiative Program–Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- * E-mail:
| |
Collapse
|
18
|
Kawale AA, Burmann BM. Inherent backbone dynamics fine-tune the functional plasticity of Tudor domains. Structure 2021; 29:1253-1265.e4. [PMID: 34197736 DOI: 10.1016/j.str.2021.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 04/19/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
Tudor domains are crucial for mediating a diversity of protein-protein or protein-DNA interactions involved in nucleic acid metabolism. Using solution NMR spectroscopy, we assess the comprehensive understanding of the dynamical properties of the respective Tudor domains from four different bacterial (Escherichia coli) proteins UvrD, Mfd, RfaH, and NusG involved in different aspects of bacterial transcription regulation and associated processes. These proteins are benchmarked to the canonical Tudor domain fold from the human SMN protein. The detailed analysis of protein backbone dynamics and subsequent analysis by the Lipari-Szabo model-free approach revealed subtle differences in motions of the amide-bond vector on both pico- to nanosecond and micro- to millisecond timescales. On these timescales, our comparative approach reveals the usefulness of discrete amplitudes of dynamics to discern the different functionalities for Tudor domains exhibiting promiscuous binding, including the metamorphic Tudor domain included in the study.
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Chemistry and Molecular Biology, University of Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
19
|
Seifi B, Wallin S. The C-terminal domain of transcription factor RfaH: Folding, fold switching and energy landscape. Biopolymers 2021; 112:e23420. [PMID: 33521926 DOI: 10.1002/bip.23420] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
We simulate the folding and fold switching of the C-terminal domain (CTD) of the transcription factor RfaH using an all-atom physics-based model augmented with a dual-basin structure-based potential energy term. We show that this hybrid model captures the essential thermodynamic behavior of this metamorphic domain, that is, a change in the global free energy minimum from an α-helical hairpin to a 5-stranded β-barrel upon the dissociation of the CTD from the rest of the protein. Using Monte Carlo sampling techniques, we then analyze the energy landscape of the CTD in terms of progress variables for folding toward the two folds. We find that, below the folding transition, the energy landscape is characterized by a single, dominant funnel to the native β-barrel structure. The absence of a deep funnel to the α-helical hairpin state reflects a negligible population of this fold for the isolated CTD. We observe, however, a higher α-helix structure content in the unfolded state compared to results from a similar but fold switch-incompetent version of our model. Moreover, in folding simulations started from an extended chain conformation we find transiently formed α-helical structure, occurring early in the process and disappearing as the chain progresses toward the thermally stable β-barrel state.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Canada
| |
Collapse
|
20
|
Wang B, Artsimovitch I. NusG, an Ancient Yet Rapidly Evolving Transcription Factor. Front Microbiol 2021; 11:619618. [PMID: 33488562 PMCID: PMC7819879 DOI: 10.3389/fmicb.2020.619618] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022] Open
Abstract
Timely and accurate RNA synthesis depends on accessory proteins that instruct RNA polymerase (RNAP) where and when to start and stop transcription. Among thousands of transcription factors, NusG/Spt5 stand out as the only universally conserved family of regulators. These proteins interact with RNAP to promote uninterrupted RNA synthesis and with diverse cellular partners to couple transcription to RNA processing, modification or translation, or to trigger premature termination of aberrant transcription. NusG homologs are present in all cells that utilize bacterial-type RNAP, from endosymbionts to plants, underscoring their ancient and essential function. Yet, in stark contrast to other core RNAP components, NusG family is actively evolving: horizontal gene transfer and sub-functionalization drive emergence of NusG paralogs, such as bacterial LoaP, RfaH, and UpxY. These specialized regulators activate a few (or just one) operons required for expression of antibiotics, capsules, secretion systems, toxins, and other niche-specific macromolecules. Despite their common origin and binding site on the RNAP, NusG homologs differ in their target selection, interacting partners and effects on RNA synthesis. Even among housekeeping NusGs from diverse bacteria, some factors promote pause-free transcription while others slow the RNAP down. Here, we discuss structure, function, and evolution of NusG proteins, focusing on unique mechanisms that determine their effects on gene expression and enable bacterial adaptation to diverse ecological niches.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Irina Artsimovitch
- Department of Microbiology and the Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Seifi B, Aina A, Wallin S. Structural fluctuations and mechanical stabilities of the metamorphic protein RfaH. Proteins 2020; 89:289-300. [PMID: 32996201 DOI: 10.1002/prot.26014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/17/2020] [Accepted: 08/31/2020] [Indexed: 01/08/2023]
Abstract
RfaH is a compact two-domain bacterial transcription factor that functions both as a regulator of transcription and an enhancer of translation. Underpinning the dual functional roles of RfaH is a partial but dramatic fold switch, which completely transforms the ~50-amino acid C-terminal domain (CTD) from an all-α state to an all-β state. The fold switch of the CTD occurs when RfaH binds to RNA polymerase (RNAP), however, the details of how this structural transformation is triggered is not well understood. Here we use all-atom Monte Carlo simulations to characterize structural fluctuations and mechanical stability properties of the full-length RfaH and the CTD as an isolated fragment. In agreement with experiments, we find that interdomain contacts are crucial for maintaining a stable, all-α CTD in free RfaH. To probe mechanical properties, we use pulling simulations to measure the work required to inflict local deformations at different positions along the chain. The resulting mechanical stability profile reveals that free RfaH can be divided into a "rigid" part and a "soft" part, with a boundary that nearly coincides with the boundary between the two domains. We discuss the potential role of this feature for how fold switching may be triggered by interaction with RNAP.
Collapse
Affiliation(s)
- Bahman Seifi
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Adekunle Aina
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| | - Stefan Wallin
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St Johns, Newfoundland, Canada
| |
Collapse
|