1
|
Peleg S, Meron S, Shenberger Y, Hofmann L, Gevorkyan-Airapetov L, Ruthstein S. Exploring the Gating Mechanism of the Human Copper Transporter, hCtr1, Using EPR Spectroscopy. Biomolecules 2025; 15:127. [PMID: 39858521 PMCID: PMC11763644 DOI: 10.3390/biom15010127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Ctr1 is a membrane-spanning homotrimer that facilitates copper uptake in eukaryotic cells with high affinity. While structural details of the transmembrane domain of human Ctr1 have been elucidated using X-ray crystallography and cryo-EM, the transfer mechanisms of copper and the conformational changes that control the gating mechanism remain poorly understood. The role of the extracellular N-terminal domains is particularly unclear due to the absence of a high-resolution structure of the full-length hCtr1 protein and limited biochemical and biophysical characterization of the transporter in solution and in cell. In this study, we employed distance electron paramagnetic resonance to investigate the conformational changes of the extracellular N-terminal domain of full-length hCtr1, both in vitro and in cells, as a function of Cu(I) binding. Our results demonstrate that at specific Cu(I) concentrations, the extracellular chains move closer to the lumen to facilitate copper transfer. Additionally, while at these concentrations the intracellular part is penetrating the lumen, suggesting a ball-and-chain gating mechanism. Moreover, this phenomenon was observed for both reconstituted protein in micelles and in native cell membranes. However, the measured distance values were slightly different, suggesting that the membrane's characteristics and therefore its lipid composition also impact and even regulate the gating mechanism of hCtr1.
Collapse
Affiliation(s)
| | | | | | | | | | - Sharon Ruthstein
- Department of Chemistry and Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; (S.P.); (S.M.); (Y.S.); (L.H.); (L.G.-A.)
| |
Collapse
|
2
|
Meron S, Peleg S, Shenberger Y, Hofmann L, Gevorkyan-Airapetov L, Ruthstein S. Tracking Disordered Extracellular Domains of Membrane Proteins in the Cell with Cu(II)-Based Spin Labels. J Phys Chem B 2024; 128:8908-8914. [PMID: 39231533 PMCID: PMC11421077 DOI: 10.1021/acs.jpcb.4c03676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
In-cell electron paramagnetic resonance (EPR) spectroscopy experiments provide high-resolution data about conformational changes of proteins within the cell. However, one of the limitations of EPR is the requisite of stable paramagnetic centers in a reducing environment. We recently showed that histidine-rich sites in proteins hold a high affinity to Cu(II) ions complexed with a chelator. Using a chelator prevents the reduction of Cu(II) ions. Moreover, this spin-labeling methodology can be performed within the native cellular environment on any overexpressed protein without protein purification and delivery to the cell. Herein, we use this novel methodology to gain spatial information on the extracellular domain of the human copper transporter, hCtr1. Limited structural information on the transmembrane domain of the human Ctr1 (hCtr1) was obtained using X-ray crystallography and cryo-EM. However, these structures are missing information on the disordered extracellular domains of hCtr1. Extracellular domains are sensing or interacting with the environment outside of the cell and therefore play an essential role in any transmembrane protein. Especially in hCtr1, the extracellular domain functions as a gating mechanism for copper ions. Here, we performed EPR experiments revealing structural information about the extracellular N-terminal domain of the full-length hCtr1 in vitro and in situ in insect cells and cell membrane fragments. The comparison revealed that the extracellular domains of the in situ and native membrane hCtr1 are further apart than the structure of the purified protein. These method-related differences highlight the significance of studying membrane proteins in their native environment.
Collapse
Affiliation(s)
- Shelly Meron
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Shahaf Peleg
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Yulia Shenberger
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lukas Hofmann
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Lada Gevorkyan-Airapetov
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan 529002, Israel
| |
Collapse
|
3
|
Pierro A, Bonucci A, Magalon A, Belle V, Mileo E. Impact of Cellular Crowding on Protein Structural Dynamics Investigated by EPR Spectroscopy. Chem Rev 2024; 124:9873-9898. [PMID: 39213496 DOI: 10.1021/acs.chemrev.3c00951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The study of how the intracellular medium influences protein structural dynamics and protein-protein interactions is a captivating area of research for scientists aiming to comprehend biomolecules in their native environment. As the cellular environment can hardly be reproduced in vitro, direct investigation of biomolecules within cells has attracted growing interest in the past two decades. Among magnetic resonances, site-directed spin labeling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) has emerged as a powerful tool for studying the structural properties of biomolecules directly in cells. Since the first in-cell EPR experiment was reported in 2010, substantial progress has been made, and this Review provides a detailed overview of the developments and applications of this spectroscopic technique. The strategies available for preparing a cellular sample and the EPR methods that can be applied to cells will be discussed. The array of spin labels available, along with their strengths and weaknesses in cellular contexts, will also be described. Several examples will illustrate how in-cell EPR can be applied to different biological systems and how the cellular environment affects the structural and dynamic properties of different proteins. Lastly, the Review will focus on the future developments expected to expand the capabilities of this promising technique.
Collapse
Affiliation(s)
- Annalisa Pierro
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Alessio Bonucci
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Axel Magalon
- Aix Marseille University, CNRS, Laboratoire de Chimie Bactérienne (LCB), IMM, IM2B, Marseille, France
| | - Valérie Belle
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| | - Elisabetta Mileo
- Aix Marseille University, CNRS, Bioénergétique et Ingénierie des Protéines (BIP), IMM, IM2B, Marseille, France
| |
Collapse
|
4
|
Yang T, Zou Y, Ng HL, Kumar A, Newton SM, Klebba PE. Specificity and mechanism of TonB-dependent ferric catecholate uptake by Fiu. Front Microbiol 2024; 15:1355253. [PMID: 38601941 PMCID: PMC11005823 DOI: 10.3389/fmicb.2024.1355253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/23/2024] [Indexed: 04/12/2024] Open
Abstract
We studied the Escherichia coli outer membrane protein Fiu, a presumed transporter of monomeric ferric catecholates, by introducing Cys residues in its surface loops and modifying them with fluorescein maleimide (FM). Fiu-FM bound iron complexes of the tricatecholate siderophore enterobactin (FeEnt) and glucosylated enterobactin (FeGEnt), their dicatecholate degradation product Fe(DHBS)2 (FeEnt*), the monocatecholates dihydroxybenzoic acid (FeDHBA) and dihydroxybenzoyl serine (FeDHBS), and the siderophore antibiotics cefiderocol (FDC) and MB-1. Unlike high-affinity ligand-gated porins (LGPs), Fiu-FM had only micromolar affinity for iron complexes. Its apparent KD values for FeDHBS, FeDHBA, FeEnt*, FeEnt, FeGEnt, FeFDC, and FeMB-1 were 0.1, 0.7, 0.7, 1.0, 0.3, 0.4, and 4 μM, respectively. Despite its broad binding abilities, the transport repertoires of E. coli Fiu, as well as those of Cir and FepA, were less broad. Fiu only transported FeEnt*. Cir transported FeEnt* and FeDHBS (weakly); FepA transported FeEnt, FeEnt*, and FeDHBA. Both Cir and FepA bound FeGEnt, albeit with lower affinity. Related transporters of Acinetobacter baumannii (PiuA, PirA, BauA) had similarly moderate affinity and broad specificity for di- or monomeric ferric catecholates. Both microbiological and radioisotopic experiments showed Fiu's exclusive transport of FeEnt*, rather than ferric monocatecholate compounds. Molecular docking and molecular dynamics simulations predicted three binding sites for FeEnt*in the external vestibule of Fiu, and a fourth site deeper in its interior. Alanine scanning mutagenesis in the outermost sites (1a, 1b, and 2) decreased FeEnt* binding affinity as much as 20-fold and reduced or eliminated FeEnt* uptake. Finally, the molecular dynamics simulations suggested a pathway of FeEnt* movement through Fiu that may generally describe the process of metal transport by TonB-dependent receptors.
Collapse
Affiliation(s)
| | | | | | | | | | - Phillip E. Klebba
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
5
|
Cina NP, Klug CS. Conformational investigation of the asymmetric periplasmic domains of E. coli LptB 2FGC using SDSL CW EPR spectroscopy. APPLIED MAGNETIC RESONANCE 2024; 55:141-158. [PMID: 38645307 PMCID: PMC11025719 DOI: 10.1007/s00723-023-01590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 04/23/2024]
Abstract
The majority of pathogenic Gram-negative bacteria benefit from intrinsic antibiotic resistance, attributed primarily to the lipopolysaccharide (LPS) coating of the bacterial envelope. To effectively coat the bacterial cell envelope, LPS is transported from the inner membrane by the LPS transport (Lpt) system, which comprises seven distinct Lpt proteins, LptA-G, that form a stable protein bridge spanning the periplasm to connect the inner and outer membranes. The driving force of this process, LptB2FG, is an asymmetric ATP binding cassette (ABC) transporter with a novel architecture and function that ejects LPS from the inner membrane and facilitates transfer to the periplasmic bridge. Here, we utilize site-directed spin labeling (SDSL) electron paramagnetic resonance (EPR) spectroscopy to probe conformational differences between the periplasmic domains of LptF and LptG. We show that LptC solely interacts with the edge β-strand of LptF and does not directly interact with LptG. We also quantify the interaction of periplasmic LptC with LptF. Additionally, we show that LPS cannot enter the protein complex externally, supporting the unidirectional LPS transport model. Furthermore, we present our findings that the presence of LPS within the LptB2FGC binding cavity and the membrane reconstitution environment affect the structural orientation of the periplasmic domains of LptF and LptG, but overall are relatively fixed with respect to one another. This study will provide insight into the structural asymmetry associated with the newly defined type VI ABC transporter class.
Collapse
Affiliation(s)
- Nicholas P. Cina
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - Candice S. Klug
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
6
|
Abstract
TonB-dependent transporters (TBDTs) are present in all gram-negative bacteria and mediate energy-dependent uptake of molecules that are too scarce or large to be taken up efficiently by outer membrane (OM) diffusion channels. This process requires energy that is derived from the proton motive force and delivered to TBDTs by the TonB-ExbBD motor complex in the inner membrane. Together with the need to preserve the OM permeability barrier, this has led to an extremely complex and fascinating transport mechanism for which the fundamentals, despite decades of research, are still unclear. In this review, we describe our current understanding of the transport mechanism of TBDTs, their potential role in the delivery of novel antibiotics, and the important contributions made by TBDT-associated (lipo)proteins.
Collapse
Affiliation(s)
- Augustinas Silale
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| | - Bert van den Berg
- Biosciences Institute, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom; ,
| |
Collapse
|
7
|
Wimalasiri VW, Jurczak KA, Wieliniec MK, Nilaweera TD, Nakamoto RK, Cafiso DS. A disulfide chaperone knockout facilitates spin labeling and pulse EPR spectroscopy of outer membrane transporters. Protein Sci 2023; 32:e4704. [PMID: 37312651 PMCID: PMC10288552 DOI: 10.1002/pro.4704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/18/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
Pulse EPR measurements provide information on distances and distance distributions in proteins but require the incorporation of pairs of spin labels that are usually attached to engineered cysteine residues. In previous work, we demonstrated that efficient in vivo labeling of the Escherichia coli outer membrane vitamin B12 transporter, BtuB, could only be achieved using strains defective in the periplasmic disulfide bond formation (Dsb) system. Here, we extend these in vivo measurements to FecA, the E. coli ferric citrate transporter. As seen for BtuB, pairs of cysteines cannot be labeled when the protein is present in a standard expression strain. However, incorporating plasmids that permit an arabinose induced expression of FecA into a strain defective in the thiol disulfide oxidoreductase, DsbA, enables efficient spin-labeling and pulse EPR of FecA in cells. A comparison of the measurements made on FecA in cells with measurements made in reconstituted phospholipid bilayers suggests that the cellular environment alters the behavior of the extracellular loops of FecA. In addition to these in situ EPR measurements, the use of a DsbA minus strain for the expression of BtuB improves the EPR signals and pulse EPR data obtained in vitro from BtuB that is labeled, purified, and reconstituted into phospholipid bilayers. The in vitro data also indicate the presence of intermolecular BtuB-BtuB interactions, which had not previously been observed in a reconstituted bilayer system. This result suggests that in vitro EPR measurements on other outer membrane proteins would benefit from protein expression in a DsbA minus strain.
Collapse
Affiliation(s)
- Viranga W. Wimalasiri
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Kinga A. Jurczak
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Monika K. Wieliniec
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Thushani D. Nilaweera
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
- Present address:
Genetics and Biochemistry BranchNational Institute of Diabetes and Digestive and Kidney DiseasesBethesdaMarylandUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - David S. Cafiso
- Department of Chemistry and Center for Membrane BiologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
8
|
Lin X, Zmyslowski AM, Gagnon IA, Nakamoto RK, Sosnick TR. Development of in vivo HDX-MS with applications to a TonB-dependent transporter and other proteins. Protein Sci 2022; 31:e4402. [PMID: 36040258 PMCID: PMC9382693 DOI: 10.1002/pro.4402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022]
Abstract
Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful tool that monitors protein dynamics in solution. However, the reversible nature of HDX labels has largely limited the application to in vitro systems. Here, we describe a protocol for measuring HDX-MS in living Escherichia coli cells applied to BtuB, a TonB-dependent transporter found in outer membranes (OMs). BtuB is a convenient and biologically interesting system for testing in vivo HDX-MS due to its controllable HDX behavior and large structural rearrangements that occur during the B12 transport cycle. Our previous HDX-MS study in native OMs provided evidence for B12 binding and breaking of a salt bridge termed the Ionic Lock, an event that leads to the unfolding of the amino terminus. Although purified OMs provide a more native-like environment than reconstituted systems, disruption of the cell envelope during lysis perturbs the linkage between BtuB and the TonB complex that drives B12 transport. The in vivo HDX response of BtuB's plug domain (BtuBp) to B12 binding corroborates our previous in vitro findings that B12 alone is sufficient to break the Ionic Lock. In addition, we still find no evidence of B12 binding-induced unfolding in other regions of BtuBp that could enable B12 passage. Our protocol was successful in reporting on the HDX of several endogenous E. coli proteins measured in the same measurement. Our success in performing HDX in live cells opens the possibility for future HDX-MS studies in a native cellular environment. IMPORTANCE: We present a protocol for performing in vivo HDX-MS, focusing on BtuB, a protein whose native membrane environment is believed to be mechanistically important for B12 transport. The in vivo HDX-MS data corroborate the conclusions from our previous in vitro HDX-MS study of the allostery initiated by B12 binding. Our success with BtuB and other proteins opens the possibility for performing additional HDX-MS studies in a native cellular environment.
Collapse
Affiliation(s)
- Xiaoxuan Lin
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Adam M. Zmyslowski
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
- Present address:
Evozyne LLCChicagoIllinoisUSA
| | - Isabelle A. Gagnon
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
| | - Robert K. Nakamoto
- Department of Molecular Physiology and Biological PhysicsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular BiologyThe University of ChicagoChicagoIllinoisUSA
- Prizker School for Molecular EngineeringThe University of ChicagoChicagoIllinoisUSA
- Institute for Biophysical DynamicsThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
9
|
Zmyslowski AM, Baxa MC, Gagnon IA, Sosnick TR. HDX-MS performed on BtuB in E. coli outer membranes delineates the luminal domain's allostery and unfolding upon B12 and TonB binding. Proc Natl Acad Sci U S A 2022; 119:e2119436119. [PMID: 35549554 PMCID: PMC9171809 DOI: 10.1073/pnas.2119436119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 04/09/2022] [Indexed: 11/18/2022] Open
Abstract
To import large metabolites across the outer membrane of gram-negative bacteria, TonB-dependent transporters (TBDTs) undergo significant conformational change. After substrate binding in BtuB, the Escherichia coli vitamin B12 TBDT, TonB binds and couples BtuB to the inner-membrane proton motive force that powers transport [N. Noinaj, M. Guillier, T. J. Barnard, S. K. Buchanan, Annu. Rev. Microbiol. 64, 43–60 (2010)]. However, the role of TonB in rearranging the plug domain of BtuB to form a putative pore remains enigmatic. Some studies focus on force-mediated unfolding [S. J. Hickman, R. E. M. Cooper, L. Bellucci, E. Paci, D. J. Brockwell, Nat. Commun. 8, 14804 (2017)], while others propose force-independent pore formation by TonB binding [T. D. Nilaweera, D. A. Nyenhuis, D. S. Cafiso, eLife 10, e68548 (2021)], leading to breakage of a salt bridge termed the “Ionic Lock.” Our hydrogen–deuterium exchange/mass spectrometry (HDX-MS) measurements in E. coli outer membranes find that the region surrounding the Ionic Lock, far from the B12 site, is fully destabilized upon substrate binding. A comparison of the exchange between the B12-bound and the B12+TonB–bound complexes indicates that B12 binding is sufficient to unfold the Ionic Lock region, with the subsequent binding of a TonB fragment having much weaker effects. TonB binding accelerates exchange in the third substrate-binding loop, but pore formation does not obviously occur in this or any region. This study provides a detailed structural and energetic description of the early stages of B12 passage that provides support both for and against current models of the transport process.
Collapse
Affiliation(s)
- Adam M. Zmyslowski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Michael C. Baxa
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Isabelle A. Gagnon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
| | - Tobin R. Sosnick
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637
- Prizker School for Molecular Engineering, The University of Chicago, Chicago, IL 60637
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
10
|
Electron paramagnetic resonance spectroscopy on G-protein-coupled receptors: Adopting strategies from related model systems. Curr Opin Struct Biol 2021; 69:177-186. [PMID: 34304006 DOI: 10.1016/j.sbi.2021.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/27/2021] [Accepted: 06/06/2021] [Indexed: 11/23/2022]
Abstract
Membrane proteins, including ion channels, transporters and G-protein-coupled receptors (GPCRs), play a significant role in various physiological processes. Many of these proteins are difficult to express in large quantities, imposing crucial experimental restrictions. Nevertheless, there is now a wide variety of studies available utilizing electron paramagnetic resonance (EPR) spectroscopic techniques that expand experimental accessibility by using relatively small quantities of protein. Here, we give an overview starting from basic strategies in EPR on membrane proteins with a focus on GPCRs, while emphasizing several applications from recent years. We highlight how the arsenal of EPR-based techniques may provide significant further contributions to understanding the complex molecular machinery and energetic phenomena responsible for seamless workflow in essential biological processes.
Collapse
|
11
|
Nilaweera TD, Nyenhuis DA, Cafiso DS. Structural intermediates observed only in intact Escherichia coli indicate a mechanism for TonB-dependent transport. eLife 2021; 10:68548. [PMID: 34251336 PMCID: PMC8341980 DOI: 10.7554/elife.68548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/11/2021] [Indexed: 12/17/2022] Open
Abstract
Outer membrane TonB-dependent transporters facilitate the uptake of trace nutrients and carbohydrates in Gram-negative bacteria and are essential for pathogenic bacteria and the health of the microbiome. Despite this, their mechanism of transport is still unknown. Here, pulse electron paramagnetic resonance (EPR) measurements were made in intact cells on the Escherichia coli vitamin B12 transporter, BtuB. Substrate binding was found to alter the C-terminal region of the core and shift an extracellular substrate binding loop 2 nm toward the periplasm; moreover, this structural transition is regulated by an ionic lock that is broken upon binding of the inner membrane protein TonB. Significantly, this structural transition is not observed when BtuB is reconstituted into phospholipid bilayers. These measurements suggest an alternative to existing models of transport, and they demonstrate the importance of studying outer membrane proteins in their native environment.
Collapse
Affiliation(s)
- Thushani D Nilaweera
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - David A Nyenhuis
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| | - David S Cafiso
- Department of Chemistry and Center for Membrane Biology, University of Virginia, Charlottesville, United States
| |
Collapse
|
12
|
Probing Structural Dynamics of Membrane Proteins Using Electron Paramagnetic Resonance Spectroscopic Techniques. BIOPHYSICA 2021. [DOI: 10.3390/biophysica1020009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Membrane proteins are essential for the survival of living organisms. They are involved in important biological functions including transportation of ions and molecules across the cell membrane and triggering the signaling pathways. They are targets of more than half of the modern medical drugs. Despite their biological significance, information about the structural dynamics of membrane proteins is lagging when compared to that of globular proteins. The major challenges with these systems are low expression yields and lack of appropriate solubilizing medium required for biophysical techniques. Electron paramagnetic resonance (EPR) spectroscopy coupled with site directed spin labeling (SDSL) is a rapidly growing powerful biophysical technique that can be used to obtain pertinent structural and dynamic information on membrane proteins. In this brief review, we will focus on the overview of the widely used EPR approaches and their emerging applications to answer structural and conformational dynamics related questions on important membrane protein systems.
Collapse
|
13
|
Sahu ID. Conformational Dynamics of the Extracellular Loop of BtuB in Whole Cells. Biophys J 2020; 119:1470-1471. [PMID: 33031737 DOI: 10.1016/j.bpj.2020.09.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/15/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Indra D Sahu
- Natural Science Division, Campbellsville University, Campbellsville, Kentucky.
| |
Collapse
|