1
|
Cornell CE, Chorlay A, Krishnamurthy D, Martin NR, Baldauf L, Fletcher DA. Target cell tension regulates macrophage trogocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626490. [PMID: 39677802 PMCID: PMC11642796 DOI: 10.1101/2024.12.02.626490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Macrophages are known to engulf small membrane fragments, or trogocytose, target cells and pathogens, rather than fully phagocytose them. However, little is known about what causes macrophages to choose trogocytosis versus phagocytosis. Here, we report that cortical tension of target cells is a key regulator of macrophage trogocytosis. At low tension, macrophages will preferentially trogocytose antibody-opsonized cells, while at high tension they tend towards phagocytosis. Using model vesicles, we demonstrate that macrophages will rapidly switch from trogocytosis to phagocytosis when membrane tension is increased. Stiffening the cortex of target cells also biases macrophages to phagocytose them, a trend that can be countered by increasing antibody surface density and is captured in a mechanical model of trogocytosis. This work suggests that a distinct molecular pathway for trogocytosis is not required to explain differences in trogocytosis among target cell types and points to a mechanism for target cells to modulate trogocytosis.
Collapse
|
2
|
Rinaldin M, Ten Haaf SLD, Vegter EJ, van der Wel C, Fonda P, Giomi L, Kraft DJ. Lipid membranes supported by polydimethylsiloxane substrates with designed geometry. SOFT MATTER 2024; 20:7379-7386. [PMID: 39046306 DOI: 10.1039/d4sm00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The membrane curvature of cells and intracellular compartments continuously adapts to enable cells to perform vital functions, from cell division to signal trafficking. Understanding how membrane geometry affects these processes in vivo is challenging because of the biochemical and geometrical complexity as well as the short time and small length scales involved in cellular processes. By contrast, in vitro model membranes with engineered curvature would provide a versatile platform for this investigation and applications to biosensing and biocomputing. Here, we present a strategy that allows fabrication of lipid membranes with designed shape by combining 3D micro-printing and replica-molding lithography with polydimethylsiloxane to create curved micrometer-sized scaffolds with virtually any geometry. The resulting supported lipid membranes are homogeneous and fluid. We demonstrate the versatility of the system by fabricating structures of interesting combinations of mean and Gaussian curvature. We study the lateral phase separation and how local curvature influences the effective diffusion coefficient. Overall, we offer a bio-compatible platform for understanding curvature-dependent cellular processes and developing programmable bio-interfaces for living cells and nanostructures.
Collapse
Affiliation(s)
- Melissa Rinaldin
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | | | - Ernst J Vegter
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Casper van der Wel
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| | - Piermarco Fonda
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Luca Giomi
- Instituut-Lorentz, Universiteit Leiden, Leiden, 2300 RA, The Netherlands
| | - Daniela J Kraft
- Leiden Institute of Physics, University of Leiden, 2300 RA Leiden, The Netherlands.
| |
Collapse
|
3
|
Hakami N, Burgstaller A, Gao N, Rutz A, Mann S, Staufer O. Functional Integration of Synthetic Cells into 3D Microfluidic Devices for Artificial Organ-On-Chip Technologies. Adv Healthc Mater 2024; 13:e2303334. [PMID: 38794823 DOI: 10.1002/adhm.202303334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Microfluidics plays a pivotal role in organ-on-chip technologies and in the study of synthetic cells, especially in the development and analysis of artificial cell models. However, approaches that use synthetic cells as integral functional components for microfluidic systems to shape the microenvironment of natural living cells cultured on-chip are not explored. Here, colloidosome-based synthetic cells are integrated into 3D microfluidic devices, pioneering the concept of synthetic cell-based microenvironments for organs-on-chip. Methods are devised to create dense and stable networks of silica colloidosomes, enveloped by supported lipid bilayers, within microfluidic channels. These networks promote receptor-ligand interactions with on-chip cultured cells. Furthermore, a technique is introduced for the controlled release of growth factors from the synthetic cells into the channels, using a calcium alginate-based hydrogel formation within the colloidosomes. To demonstrate the potential of the technology, a modular plug-and-play lymph-node-on-a-chip prototype that guides the expansion of primary human T cells by stimulating receptor ligands on the T cells and modulating their cytokine environment is presented. This integration of synthetic cells into microfluidic systems offers a new direction for organ-on-chip technologies and suggests further avenues for exploration in potential therapeutic applications.
Collapse
Affiliation(s)
- Niki Hakami
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Ning Gao
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Angela Rutz
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Max Planck Bristol Centre for Minimal Biology, School of Chemistry, Bristol, BS8 1TS, UK
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
| |
Collapse
|
4
|
Burgstaller A, Piernitzki N, Küchler N, Koch M, Kister T, Eichler H, Kraus T, Schwarz EC, Dustin ML, Lautenschläger F, Staufer O. Soft Synthetic Cells with Mobile Membrane Ligands for Ex Vivo Expansion of Therapy-Relevant T Cell Phenotypes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401844. [PMID: 38751204 DOI: 10.1002/smll.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nils Piernitzki
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
5
|
Schneider F, Cespedes PF, Karedla N, Dustin ML, Fritzsche M. Quantifying biomolecular organisation in membranes with brightness-transit statistics. Nat Commun 2024; 15:7082. [PMID: 39152104 PMCID: PMC11329664 DOI: 10.1038/s41467-024-51435-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Cells crucially rely on the interactions of biomolecules at their plasma membrane to maintain homeostasis. Yet, a methodology to systematically quantify biomolecular organisation, measuring diffusion dynamics and oligomerisation, represents an unmet need. Here, we introduce the brightness-transit statistics (BTS) method based on fluorescence fluctuation spectroscopy and combine information from brightness and transit times to elucidate biomolecular diffusion and oligomerisation in both cell-free in vitro and in vitro systems incorporating living cells. We validate our approach in silico with computer simulations and experimentally using oligomerisation of EGFP tethered to supported lipid bilayers. We apply our pipeline to study the oligomerisation of CD40 ectodomain in vitro and endogenous CD40 on primary B cells. While we find a potential for CD40 to oligomerize in a concentration or ligand depended manner, we do not observe mobile oligomers on B cells. The BTS method combines sensitive analysis, quantification, and intuitive visualisation of dynamic biomolecular organisation.
Collapse
Affiliation(s)
- Falk Schneider
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Translational Imaging Center, University of Southern California, Los Angeles, California, 90089, United States of America.
| | - Pablo F Cespedes
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Narain Karedla
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom
| | - Michael L Dustin
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, Roosevelt Drive, University of Oxford, Oxford, OX3 7LF, United Kingdom.
- Rosalind Franklin Institute, Harwell Campus, Didcot, OX11 0FA, United Kingdom.
| |
Collapse
|
6
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
7
|
Ghagre A, Delarue A, Srivastava LK, Koushki N, Ehrlicher A. Nuclear curvature determines Yes-associated protein localization and differentiation of mesenchymal stem cells. Biophys J 2024; 123:1222-1239. [PMID: 38605521 PMCID: PMC11140468 DOI: 10.1016/j.bpj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024] Open
Abstract
Controlling mesenchymal stem cell (MSC) differentiation remains a critical challenge in MSCs' therapeutic application. Numerous biophysical and mechanical stimuli influence stem cell fate; however, their relative efficacy and specificity in mechanically directed differentiation remain unclear. Yes-associated protein (YAP) is one key mechanosensitive protein that controls MSC differentiation. Previous studies have related nuclear mechanics with YAP activity, but we still lack an understanding of what nuclear deformation specifically regulates YAP and its relationship with mechanical stimuli. Here, we report that maximum nuclear curvature is the most precise biophysical determinant for YAP mechanotransduction-mediated MSC differentiation and is a relevant parameter for stem cell-based therapies. We employed traction force microscopy and confocal microscopy to characterize the causal relationships between contractility and nuclear deformation in regulating YAP activity in MSCs. We observed that an increase in contractility compresses nuclei anisotropically, whereby the degree of asymmetric compression increased the bending curvature of the nuclear membrane. We then examined membrane curvature and tension using thin micropatterned adhesive substrate lines and an FRET-based tension sensor, revealing the direct role of curvature in YAP activity driven by both active and passive nuclear import. Finally, we employed micropatterned lines to control nuclear curvature and precisely direct MSC differentiation. This work illustrates that nuclear curvature subsumes other biophysical aspects to control YAP-mediated differentiation in MSCs and may provide a deterministic solution to some of the challenges in mesenchymal stem cell therapies.
Collapse
Affiliation(s)
- Ajinkya Ghagre
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Alice Delarue
- Department of Bioengineering, McGill University, Montreal, Canada
| | | | - Newsha Koushki
- Department of Bioengineering, McGill University, Montreal, Canada
| | - Allen Ehrlicher
- Department of Bioengineering, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada; Department of Biomedical Engineering, McGill University, Montreal, Canada; Department of Mechanical Engineering, McGill University, Montreal, Canada; Rosalind and Morris Goodman Cancer Research Institute, McGill University, Montreal, Canada; Centre for Structural Biology, McGill University, Montreal, Canada.
| |
Collapse
|
8
|
Ayyanar C, Rakshit S, Sarkar K, Pramanik S. Unprecedented Approach of Fabrication and Analysis of a Bioactive PDMS/Hydroxyapatite/Graphene Nanocomposite Scaffold with a Vascular Channel to Combat Carcinogenesis. ACS APPLIED BIO MATERIALS 2024; 7:3388-3402. [PMID: 38660938 DOI: 10.1021/acsabm.4c00299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
In the present investigation, natural bone-derived hydroxyapatite (HA, 2 wt %) and/or exfoliated graphene (Gr, 0.1 wt %)-embedded polydimethylsiloxane (PDMS) elastomeric films were prepared using a vascular method. The morphology, mechanical properties, crystallinity, and chemical structure of the composite films were evaluated. The in vitro biodegradation kinetics of the films indicates their adequate physiological stability. Most of the results favored PDMS/HA/Gr as a best composite scaffold having more than 703% elongation. A simulation study of the microfluidic vascular channel of the PDMS/HA/Gr scaffold suggests that the pressure drop at the outlet became greater (from 1.19 to 0.067 Pa) unlike velocity output (from 0.071 to 0.089 m/s), suggesting a turbulence-free laminar flow. Our bioactive scaffold material, PDMS/HA/Gr, showed highest cytotoxicity toward the lung cancer and breast cancer cells through Runx3 protein-mediated cytotoxic T lymphocyte (CTL) generation. Our data and predicted mechanism also suggested that the PDMS/HA/Gr-supported peripheral blood mononuclear cells (PBMCs) not only increased the generation of CTL but also upregulated the expression of RUNX3. Since the PDMS/HA/Gr scaffold-supported Runx3 induced CTL generation caused maximum cell cytotoxicity of breast cancer (MCF-7) and lung cancer (A549) cells, PDMS/HA/Gr can be treated as an excellent potential candidate for CTL-mediated cancer therapy.
Collapse
Affiliation(s)
- Chellaiah Ayyanar
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Sudeshna Rakshit
- Cancer Immunology and Gene Editing Technology Lab, Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Koustav Sarkar
- Cancer Immunology and Gene Editing Technology Lab, Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Sumit Pramanik
- Functional and Biomaterials Engineering Lab, Department of Mechanical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
9
|
Goodchild J, Walsh DL, Laurent H, Connell SD. PDMS as a Substrate for Lipid Bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10843-10854. [PMID: 37494418 PMCID: PMC10413950 DOI: 10.1021/acs.langmuir.3c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/13/2023] [Indexed: 07/28/2023]
Abstract
PDMS (polydimethylsiloxane) is a cheap, optically clear polymer that is elastic and can be easily and quickly fabricated into a wide array of microscale and nanoscale architectures, making it a versatile substrate for biophysical experiments on cell membranes. It is easy to imagine many new experiments will be devised that require a bilayer to be placed upon a substrate that is flexible or easily cast into a desired geometry, such as in lab-on-a-chip, organ-on-chip, and microfluidic applications, or for building accurate membrane models that replicate the surface structure and elasticity of the cytoskeleton. However, PDMS has its limitations, and the extent to which the behavior of membranes is affected on PDMS has not been fully explored. We use AFM and fluorescence optical microscopy to investigate the use of PDMS as a substrate for the formation and study of supported lipid bilayers (SLBs). Lipid bilayers form on plasma-treated PDMS and show free diffusion and normal phase transitions, confirming its suitability as a model bilayer substrate. However, lipid-phase separation on PDMS is severely restricted due to the pinning of domains to surface roughness, resulting in the cessation of lateral hydrodynamic flow. We show the high-resolution porous structure of PDMS and the extreme smoothing effect of oxygen plasma treatment used to hydrophilize the surface, but this is not flat enough to allow domain formation. We also observe bilayer degradation over hour timescales, which correlates with the known hydrophobic recovery of PDMS, and establish a critical water contact angle of 30°, above which bilayers degrade or not form at all. Care must be taken as incomplete surface oxidation and hydrophobic recovery result in optically invisible membrane disruption, which will also be transparent to fluorescence microscopy and lipid diffusion measurements in the early stages.
Collapse
Affiliation(s)
- James
A. Goodchild
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Danielle L. Walsh
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Harrison Laurent
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Simon D. Connell
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
- Bragg
Centre for Materials Research, William Henry Bragg Building, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
10
|
Jenkins E, Körbel M, O'Brien-Ball C, McColl J, Chen KY, Kotowski M, Humphrey J, Lippert AH, Brouwer H, Santos AM, Lee SF, Davis SJ, Klenerman D. Antigen discrimination by T cells relies on size-constrained microvillar contact. Nat Commun 2023; 14:1611. [PMID: 36959206 PMCID: PMC10036606 DOI: 10.1038/s41467-023-36855-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 02/21/2023] [Indexed: 03/25/2023] Open
Abstract
T cells use finger-like protrusions called 'microvilli' to interrogate their targets, but why they do so is unknown. To form contacts, T cells must overcome the highly charged, barrier-like layer of large molecules forming a target cell's glycocalyx. Here, T cells are observed to use microvilli to breach a model glycocalyx barrier, forming numerous small (<0.5 μm diameter) contacts each of which is stabilized by the small adhesive protein CD2 expressed by the T cell, and excludes large proteins including CD45, allowing sensitive, antigen dependent TCR signaling. In the absence of the glycocalyx or when microvillar contact-size is increased by enhancing CD2 expression, strong signaling occurs that is no longer antigen dependent. Our observations suggest that, modulated by the opposing effects of the target cell glycocalyx and small adhesive proteins, the use of microvilli equips T cells with the ability to effect discriminatory receptor signaling.
Collapse
Affiliation(s)
- Edward Jenkins
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Markus Körbel
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Caitlin O'Brien-Ball
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - James McColl
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Kevin Y Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mateusz Kotowski
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Jane Humphrey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Anna H Lippert
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Heather Brouwer
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ana Mafalda Santos
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Steven F Lee
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Simon J Davis
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- Medical Research Council Human Immunology Unit, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
| | - David Klenerman
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
11
|
Wang C, Chen X, Su Y, Wang H, Li D. Precise Regulating T Cell Activation Signaling with Spatial Controllable Positioning of Receptors on DNA Origami. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Ma VPY, Hu Y, Kellner AV, Brockman JM, Velusamy A, Blanchard AT, Evavold BD, Alon R, Salaita K. The magnitude of LFA-1/ICAM-1 forces fine-tune TCR-triggered T cell activation. SCIENCE ADVANCES 2022; 8:eabg4485. [PMID: 35213231 PMCID: PMC8880789 DOI: 10.1126/sciadv.abg4485] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 12/15/2021] [Indexed: 05/15/2023]
Abstract
T cells defend against cancer and viral infections by rapidly scanning the surface of target cells seeking specific peptide antigens. This key process in adaptive immunity is sparked upon T cell receptor (TCR) binding of antigens within cell-cell junctions stabilized by integrin (LFA-1)/intercellular adhesion molecule-1 (ICAM-1) complexes. A long-standing question in this area is whether the forces transmitted through the LFA-1/ICAM-1 complex tune T cell signaling. Here, we use spectrally encoded DNA tension probes to reveal the first maps of LFA-1 and TCR forces generated by the T cell cytoskeleton upon antigen recognition. DNA probes that control the magnitude of LFA-1 force show that F>12 pN potentiates antigen-dependent T cell activation by enhancing T cell-substrate engagement. LFA-1/ICAM-1 mechanical events with F>12 pN also enhance the discriminatory power of the TCR when presented with near cognate antigens. Overall, our results show that T cells integrate multiple channels of mechanical information through different ligand-receptor pairs to tune function.
Collapse
Affiliation(s)
| | - Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Anna V. Kellner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Joshua M. Brockman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Arventh Velusamy
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | - Aaron T. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
| | - Brian D. Evavold
- Division of Microbiology and Immunology, Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ronen Alon
- Department of Immunology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory University, Atlanta, GA 30332, USA
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Al-Aghbar MA, Jainarayanan AK, Dustin ML, Roffler SR. The interplay between membrane topology and mechanical forces in regulating T cell receptor activity. Commun Biol 2022; 5:40. [PMID: 35017678 PMCID: PMC8752658 DOI: 10.1038/s42003-021-02995-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/21/2021] [Indexed: 12/20/2022] Open
Abstract
T cells are critically important for host defense against infections. T cell activation is specific because signal initiation requires T cell receptor (TCR) recognition of foreign antigen peptides presented by major histocompatibility complexes (pMHC) on antigen presenting cells (APCs). Recent advances reveal that the TCR acts as a mechanoreceptor, but it remains unclear how pMHC/TCR engagement generates mechanical forces that are converted to intracellular signals. Here we propose a TCR Bending Mechanosignal (TBM) model, in which local bending of the T cell membrane on the nanometer scale allows sustained contact of relatively small pMHC/TCR complexes interspersed among large surface receptors and adhesion molecules on the opposing surfaces of T cells and APCs. Localized T cell membrane bending is suggested to increase accessibility of TCR signaling domains to phosphorylation, facilitate selective recognition of agonists that form catch bonds, and reduce noise signals associated with slip bonds.
Collapse
Affiliation(s)
- Mohammad Ameen Al-Aghbar
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Translational Medicine, Sidra Medicine, Doha, Qatar
| | - Ashwin K Jainarayanan
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK.
| | - Steve R Roffler
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
14
|
Peng Z, Shimba K, Miyamoto Y, Yagi T. A Study of the Effects of Plasma Surface Treatment on Lipid Bilayers Self-Spreading on a Polydimethylsiloxane Substrate under Different Treatment Times. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10732-10740. [PMID: 34464138 DOI: 10.1021/acs.langmuir.1c01319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plasma-treated poly(dimethylsiloxane) (PDMS)-supported lipid bilayers are used as functional tools for studying cell membrane properties and as platforms for biotechnology applications. Self-spreading is a versatile method for forming lipid bilayers. However, few studies have focused on the effect of plasma treatment on self-spreading lipid bilayer formation. In this paper, we performed lipid bilayer self-spreading on a PDMS surface with different treatment times. Surface characterization of PDMS treated with different treatment times is evaluated by AFM and SEM, and the effects of plasma treatment of the PDMS surface on lipid bilayer self-spreading behavior is investigated by confocal microscopy. The front-edge velocity of lipid bilayers increases with the plasma treatment time. By theoretical analyses with the extended-DLVO modeling, we find that the most likely cause of the velocity change is the hydration repulsion energy between the PDMS surface and lipid bilayers. Moreover, the growth behavior of membrane lobes on the underlying self-spreading lipid bilayer was affected by topography changes in the PDMS surface resulting from plasma treatment. Our findings suggest that the growth of self-spreading lipid bilayers can be controlled by changing the plasma treatment time.
Collapse
Affiliation(s)
- Zugui Peng
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| | - Kenta Shimba
- School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yoshitaka Miyamoto
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
- Department of Reproductive Biology, National Center for Child Health and Development, 2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan
| | - Tohru Yagi
- School of Engineering, Tokyo Institute of Technology, 403, Ishikawadai Bldg. 3, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550 Japan
| |
Collapse
|