1
|
Aierken D, Joseph JA. Accelerated Simulations Reveal Physicochemical Factors Governing Stability and Composition of RNA Clusters. J Chem Theory Comput 2024; 20:10209-10222. [PMID: 39505326 PMCID: PMC11603615 DOI: 10.1021/acs.jctc.4c00803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/21/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Under certain conditions, RNA repeat sequences phase separate, yielding protein-free biomolecular condensates. Importantly, RNA repeat sequences have also been implicated in neurological disorders, such as Huntington's disease. Thus, mapping repeat sequences to their phase behavior, functions, and dysfunctions is an active area of research. However, despite several advances, it remains challenging to characterize the RNA phase behavior at a submolecular resolution. Here, we have implemented a residue-resolution coarse-grained model in LAMMPS─that incorporates both the RNA sequence and structure─to study the clustering propensities of protein-free RNA systems. Importantly, we achieve a multifold speedup in the simulation time compared to previous work. Leveraging this efficiency, we study the clustering propensity of all 20 nonredundant trinucleotide repeat sequences. Our results align with findings from experiments, emphasizing that canonical base-pairing and G-U wobble pairs play dominant roles in regulating cluster formation of RNA repeat sequences. Strikingly, we find strong entropic contributions to the stability and composition of RNA clusters, which is demonstrated for single-component RNA systems as well as binary mixtures of trinucleotide repeats. Additionally, we investigate the clustering behaviors of trinucleotide (odd) repeats and their quadranucleotide (even) counterparts. We observe that odd repeats exhibit stronger clustering tendencies, attributed to the presence of consecutive base pairs in their sequences that are disrupted in even repeat sequences. Altogether, our work extends the set of computational tools for probing RNA cluster formation at submolecular resolution and uncovers physicochemical principles that govern the stability and composition of the resulting clusters.
Collapse
Affiliation(s)
- Dilimulati Aierken
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| | - Jerelle A. Joseph
- Department
of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn−Darling
Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Nasr L, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Favard C, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. Cell 2024:S0092-8674(24)01271-6. [PMID: 39591966 DOI: 10.1016/j.cell.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/11/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
Condensed droplets of protein regulate many cellular functions, yet the physiological conditions regulating their formation remain largely unexplored. Increasing our understanding of these mechanisms is paramount, as failure to control condensate formation and dynamics can lead to many diseases. Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo. We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol concentrations, but not glucose concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacological and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer-a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions.
Collapse
Affiliation(s)
- Stephanie Torrino
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| | - William M Oldham
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andrés R Tejedor
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Ignacio S Burgos
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Lara Nasr
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Nesrine Rachedi
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Kéren Fraissard
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Caroline Chauvet
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Chaima Sbai
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Brendan P O'Hara
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Sophie Abélanet
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Frederic Brau
- Université Côte d'Azur, CNRS, INSERM, IPMC, Valbonne, France
| | - Cyril Favard
- Institut de Recherche en Infectiologie de Montpellier, CNRS UMR 9004, University of Montpellier, Montpellier, France
| | - Stephan Clavel
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK; Department of Genetics, University of Cambridge, Downing Site, Cambridge CB2 3EH, UK
| | - Jorge R Espinosa
- Department of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, 28040 Madrid, Spain; Cavendish Laboratory, Department of Physics, Maxwell Centre, University of Cambridge, J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Thomas Bertero
- Université Côte d'Azur, CNRS, INSERM, IPMC, IHU RespirERA, Valbonne, France.
| |
Collapse
|
3
|
Wadsworth GM, Srinivasan S, Lai LB, Datta M, Gopalan V, Banerjee PR. RNA-driven phase transitions in biomolecular condensates. Mol Cell 2024; 84:3692-3705. [PMID: 39366355 PMCID: PMC11604179 DOI: 10.1016/j.molcel.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/27/2024] [Accepted: 09/05/2024] [Indexed: 10/06/2024]
Abstract
RNAs and RNA-binding proteins can undergo spontaneous or active condensation into phase-separated liquid-like droplets. These condensates are cellular hubs for various physiological processes, and their dysregulation leads to diseases. Although RNAs are core components of many cellular condensates, the underlying molecular determinants for the formation, regulation, and function of ribonucleoprotein condensates have largely been studied from a protein-centric perspective. Here, we highlight recent developments in ribonucleoprotein condensate biology with a particular emphasis on RNA-driven phase transitions. We also present emerging future directions that might shed light on the role of RNA condensates in spatiotemporal regulation of cellular processes and inspire bioengineering of RNA-based therapeutics.
Collapse
Affiliation(s)
- Gable M Wadsworth
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Sukanya Srinivasan
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Lien B Lai
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Moulisubhro Datta
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Priya R Banerjee
- Department of Physics, The State University of New York at Buffalo, Buffalo, NY, USA.
| |
Collapse
|
4
|
Driver MD, Postema J, Onck PR. The Effect of Dipeptide Repeat Proteins on FUS/TDP43-RNA Condensation in C9orf72 ALS/FTD. J Phys Chem B 2024; 128:9405-9417. [PMID: 39311028 PMCID: PMC11457143 DOI: 10.1021/acs.jpcb.4c04663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
Condensation of RNA binding proteins (RBPs) with RNA is essential for cellular function. The most common familial cause of the diseases ALS and FTD is C9orf72 repeat expansion disorders that produce dipeptide repeat proteins (DPRs). We explore the hypothesis that DPRs disrupt the native condensation behavior of RBPs and RNA through molecular interactions resulting in toxicity. FUS and TDP43 are two RBPs known to be affected in ALS/FTD. We use our previously developed 1-bead-per-amino acid and a newly developed 3-bead-per-nucleotide molecular dynamics model to explore ternary phase diagrams of FUS/TDP43-RNA-DPR systems. We show that the most toxic arginine containing DPRs (R-DPRs) can disrupt the RBP condensates through cation-π interactions and can strongly sequester RNA through electrostatic interactions. The native droplet morphologies are already modified at small additions of R-DPRs leading to non-native FUS/TDP43-encapsulated condensates with a marbled RNA/DPR core.
Collapse
Affiliation(s)
- Mark D. Driver
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Jasper Postema
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| | - Patrick R. Onck
- Zernike Institute
for Advanced
Materials, University of Groningen, Groningen 9747AG, the Netherlands
| |
Collapse
|
5
|
Zhou HX, Kota D, Qin S, Prasad R. Fundamental Aspects of Phase-Separated Biomolecular Condensates. Chem Rev 2024; 124:8550-8595. [PMID: 38885177 PMCID: PMC11260227 DOI: 10.1021/acs.chemrev.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Biomolecular condensates, formed through phase separation, are upending our understanding in much of molecular, cell, and developmental biology. There is an urgent need to elucidate the physicochemical foundations of the behaviors and properties of biomolecular condensates. Here we aim to fill this need by writing a comprehensive, critical, and accessible review on the fundamental aspects of phase-separated biomolecular condensates. We introduce the relevant theoretical background, present the theoretical basis for the computation and experimental measurement of condensate properties, and give mechanistic interpretations of condensate behaviors and properties in terms of interactions at the molecular and residue levels.
Collapse
Affiliation(s)
- Huan-Xiang Zhou
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
- Department of Physics, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Divya Kota
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Sanbo Qin
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| | - Ramesh Prasad
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, USA
| |
Collapse
|
6
|
Morelli C, Faltova L, Capasso Palmiero U, Makasewicz K, Papp M, Jacquat RPB, Pinotsi D, Arosio P. RNA modulates hnRNPA1A amyloid formation mediated by biomolecular condensates. Nat Chem 2024; 16:1052-1061. [PMID: 38472406 PMCID: PMC11230912 DOI: 10.1038/s41557-024-01467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024]
Abstract
Several RNA binding proteins involved in membraneless organelles can form pathological amyloids associated with neurodegenerative diseases, but the mechanisms of how this aggregation is modulated remain elusive. Here we investigate how heterotypic protein-RNA interactions modulate the condensation and the liquid to amyloid transition of hnRNPA1A, a protein involved in amyothropic lateral sclerosis. In the absence of RNA, formation of condensates promotes hnRNPA1A aggregation and fibrils are localized at the interface of the condensates. Addition of RNA modulates the soluble to amyloid transition of hnRNPA1A according to different pathways depending on RNA/protein stoichiometry. At low RNA concentrations, RNA promotes both condensation and amyloid formation, and the catalytic effect of RNA adds to the role of the interface between the dense and dilute phases. At higher RNA concentrations, condensation is suppressed according to re-entrant phase behaviour but formation of hnRNPA1A amyloids is observed over longer incubation times. Our findings show how heterotypic nucleic acid-protein interactions affect the kinetics and molecular pathways of amyloid formation.
Collapse
Affiliation(s)
- Chiara Morelli
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Umberto Capasso Palmiero
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Katarzyna Makasewicz
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Marcell Papp
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Raphaël P B Jacquat
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland
| | - Dorothea Pinotsi
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, Zürich, Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zürich, Switzerland.
| |
Collapse
|
7
|
Mukherjee S, Poudyal M, Dave K, Kadu P, Maji SK. Protein misfolding and amyloid nucleation through liquid-liquid phase separation. Chem Soc Rev 2024; 53:4976-5013. [PMID: 38597222 DOI: 10.1039/d3cs01065a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging phenomenon in cell physiology and diseases. The weak multivalent interaction prerequisite for LLPS is believed to be facilitated through intrinsically disordered regions, which are prevalent in neurodegenerative disease-associated proteins. These aggregation-prone proteins also exhibit an inherent property for phase separation, resulting in protein-rich liquid-like droplets. The very high local protein concentration in the water-deficient confined microenvironment not only drives the viscoelastic transition from the liquid to solid-like state but also most often nucleate amyloid fibril formation. Indeed, protein misfolding, oligomerization, and amyloid aggregation are observed to be initiated from the LLPS of various neurodegeneration-related proteins. Moreover, in these cases, neurodegeneration-promoting genetic and environmental factors play a direct role in amyloid aggregation preceded by the phase separation. These cumulative recent observations ignite the possibility of LLPS being a prominent nucleation mechanism associated with aberrant protein aggregation. The present review elaborates on the nucleation mechanism of the amyloid aggregation pathway and the possible early molecular events associated with amyloid-related protein phase separation. It also summarizes the recent advancement in understanding the aberrant phase transition of major proteins contributing to neurodegeneration focusing on the common disease-associated factors. Overall, this review proposes a generic LLPS-mediated multistep nucleation mechanism for amyloid aggregation and its implication in neurodegeneration.
Collapse
Affiliation(s)
- Semanti Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Manisha Poudyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Kritika Dave
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Samir K Maji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
- Sunita Sanghi Centre of Aging and Neurodegenerative Diseases, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
8
|
Lerra L, Panatta M, Bär D, Zanini I, Tan JY, Pisano A, Mungo C, Baroux C, Panse VG, Marques AC, Santoro R. An RNA-dependent and phase-separated active subnuclear compartment safeguards repressive chromatin domains. Mol Cell 2024; 84:1667-1683.e10. [PMID: 38599210 PMCID: PMC11065421 DOI: 10.1016/j.molcel.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/19/2023] [Accepted: 03/16/2024] [Indexed: 04/12/2024]
Abstract
The nucleus is composed of functionally distinct membraneless compartments that undergo phase separation (PS). However, whether different subnuclear compartments are connected remains elusive. We identified a type of nuclear body with PS features composed of BAZ2A that associates with active chromatin. BAZ2A bodies depend on RNA transcription and BAZ2A non-disordered RNA-binding TAM domain. Although BAZ2A and H3K27me3 occupancies anticorrelate in the linear genome, in the nuclear space, BAZ2A bodies contact H3K27me3 bodies. BAZ2A-body disruption promotes BAZ2A invasion into H3K27me3 domains, causing H3K27me3-body loss and gene upregulation. Weak BAZ2A-RNA interactions, such as with nascent transcripts, promote BAZ2A bodies, whereas the strong binder long non-coding RNA (lncRNA) Malat1 impairs them while mediating BAZ2A association to chromatin at nuclear speckles. In addition to unraveling a direct connection between nuclear active and repressive compartments through PS mechanisms, the results also showed that the strength of RNA-protein interactions regulates this process, contributing to nuclear organization and the regulation of chromatin and gene expression.
Collapse
Affiliation(s)
- Luigi Lerra
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Dominik Bär
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland
| | - Isabella Zanini
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland
| | - Jennifer Yihong Tan
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Agnese Pisano
- Institute of Medical Microbiology, University of Zurich, Zurich 8057, Switzerland
| | - Chiara Mungo
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland; Molecular Life Science Program, Life Science Zurich Graduate School, University of Zurich, Zurich 8057, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zurich 8057, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich 8057, Switzerland
| | - Ana C Marques
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease (DMMD), University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
9
|
Chou HY, Aksimentiev A. RNA regulates cohesiveness and porosity of a biological condensate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574811. [PMID: 38260307 PMCID: PMC10802450 DOI: 10.1101/2024.01.09.574811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Biological condensates have emerged as key elements of a biological cell function, concentrating disparate biomolecules to accomplish specific biological tasks. RNA was identified as a key ingredient of such condensates, however, its effect on the physical properties of the condensate was found to depend on the condensate's composition while its effect on the microstructure has remained elusive. Here, we characterize the physical properties and the microstructure of a protein-RNA condensate by means of large-scale coarse-grained (CG) molecular dynamics simulations. By developing a custom CG model of RNA compatible with a popular CG model of proteins, we systematically investigate the structural, thermodynamic, and kinetic properties of condensate droplets containing thousands of individual protein and RNA molecules over a range of temperatures. While we find RNA to increase the condensate's cohesiveness, its effect on the condensate's fluidity is more nuanced with longer molecules compacting the condensate and making it less fluid. We show that a biological condensate has a sponge-like morphology of interconnected channels of size that increases with temperature and decreases in the presence of RNA. Our results suggest that longer RNA form a dynamic scaffold within a condensate, regulating not only its fluidity but also permeability to intruder molecules.
Collapse
|
10
|
Ranganathan S, Liu J, Shakhnovich E. Enzymatic metabolons dramatically enhance metabolic fluxes of low-efficiency biochemical reactions. Biophys J 2023; 122:4555-4566. [PMID: 37915170 PMCID: PMC10719048 DOI: 10.1016/j.bpj.2023.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023] Open
Abstract
In this work, we investigate how spatial proximity of enzymes belonging to the same pathway (metabolon) affects metabolic flux. Using off-lattice Langevin dynamics simulations in tandem with a stochastic reaction-diffusion protocol and a semi-analytical reaction-diffusion model, we systematically explored how strength of protein-protein interactions, catalytic efficiency, and protein-ligand interactions affect metabolic flux through the metabolon. Formation of a metabolon leads to a greater speedup for longer pathways and especially for reaction-limited enzymes, whereas, for fully optimized diffusion-limited enzymes, the effect is negligible. Notably, specific cluster architectures are not a prerequisite for enhancing reaction flux. Simulations uncover the crucial role of optimal nonspecific protein-ligand interactions in enhancing catalytic efficiency of a metabolon. Our theory implies, and bioinformatics analysis confirms, that longer catalytic pathways are enriched in less optimal enzymes, whereas most diffusion-limited enzymes populate shorter pathways. Our findings point toward a plausible evolutionary strategy where enzymes compensate for less-than-optimal efficiency by increasing their local concentration in the clustered state.
Collapse
Affiliation(s)
- Srivastav Ranganathan
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Junlang Liu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts.
| |
Collapse
|
11
|
Ke H, Liu K, Jiao B, Zhao L. Implications of TDP-43 in non-neuronal systems. Cell Commun Signal 2023; 21:338. [PMID: 37996849 PMCID: PMC10666381 DOI: 10.1186/s12964-023-01336-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/26/2023] [Indexed: 11/25/2023] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is a versatile RNA/DNA-binding protein with multifaceted processes. While TDP-43 has been extensively studied in the context of degenerative diseases, recent evidence has also highlighted its crucial involvement in diverse life processes beyond neurodegeneration. Here, we mainly reviewed the function of TDP-43 in non-neurodegenerative physiological and pathological processes, including spermatogenesis, embryonic development, mammary gland development, tumor formation, and viral infection, highlighting its importance as a key regulatory factor for the maintenance of normal functions throughout life. TDP-43 exhibits diverse and sometimes opposite functionality across different cell types through various mechanisms, and its roles can shift at distinct stages within the same biological system. Consequently, TDP-43 operates in both a context-dependent and a stage-specific manner in response to a variety of internal and external stimuli. Video Abstract.
Collapse
Affiliation(s)
- Hao Ke
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Kang Liu
- Ganzhou People's Hospital, Ganzhou, 341000, China
| | - Baowei Jiao
- National Key Laboratory of Genetic Evolution & Animal Models, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Limin Zhao
- Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| |
Collapse
|
12
|
Blazquez S, Sanchez‐Burgos I, Ramirez J, Higginbotham T, Conde MM, Collepardo‐Guevara R, Tejedor AR, Espinosa JR. Location and Concentration of Aromatic-Rich Segments Dictates the Percolating Inter-Molecular Network and Viscoelastic Properties of Ageing Condensates. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207742. [PMID: 37386790 PMCID: PMC10477902 DOI: 10.1002/advs.202207742] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/03/2023] [Indexed: 07/01/2023]
Abstract
Maturation of functional liquid-like biomolecular condensates into solid-like aggregates has been linked to the onset of several neurodegenerative disorders. Low-complexity aromatic-rich kinked segments (LARKS) contained in numerous RNA-binding proteins can promote aggregation by forming inter-protein β-sheet fibrils that accumulate over time and ultimately drive the liquid-to-solid transition of the condensates. Here, atomistic molecular dynamics simulations are combined with sequence-dependent coarse-grained models of various resolutions to investigate the role of LARKS abundance and position within the amino acid sequence in the maturation of condensates. Remarkably, proteins with tail-located LARKS display much higher viscosity over time than those in which the LARKS are placed toward the center. Yet, at very long timescales, proteins with a single LARKS-independently of its location-can still relax and form high viscous liquid condensates. However, phase-separated condensates of proteins containing two or more LARKS become kinetically trapped due to the formation of percolated β-sheet networks that display gel-like behavior. Furthermore, as a work case example, they demonstrate how shifting the location of the LARKS-containing low-complexity domain of FUS protein toward its center effectively precludes the accumulation of β-sheet fibrils in FUS-RNA condensates, maintaining functional liquid-like behavior without ageing.
Collapse
Affiliation(s)
- Samuel Blazquez
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Ignacio Sanchez‐Burgos
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Jorge Ramirez
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Tim Higginbotham
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| | - Maria M. Conde
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Rosana Collepardo‐Guevara
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department of GeneticsUniversity of CambridgeCambridgeCB2 3EH, UK
| | - Andres R. Tejedor
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
- Department of Chemical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Jorge R. Espinosa
- Department of Physical‐ChemistryUniversidad Complutense de MadridAv. Complutense s/nMadrid28040Spain
- Maxwell Centre, Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AvenueCambridgeCB3 0HEUK
| |
Collapse
|
13
|
Alston JJ, Soranno A. Condensation Goes Viral: A Polymer Physics Perspective. J Mol Biol 2023; 435:167988. [PMID: 36709795 PMCID: PMC10368797 DOI: 10.1016/j.jmb.2023.167988] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023]
Abstract
The past decade has seen a revolution in our understanding of how the cellular environment is organized, where an incredible body of work has provided new insights into the role played by membraneless organelles. These rapid advancements have been made possible by an increasing awareness of the peculiar physical properties that give rise to such bodies and the complex biology that enables their function. Viral infections are not extraneous to this. Indeed, in host cells, viruses can harness existing membraneless compartments or, even, induce the formation of new ones. By hijacking the cellular machinery, these intracellular bodies can assist in the replication, assembly, and packaging of the viral genome as well as in the escape of the cellular immune response. Here, we provide a perspective on the fundamental polymer physics concepts that may help connect and interpret the different observed phenomena, ranging from the condensation of viral genomes to the phase separation of multicomponent solutions. We complement the discussion of the physical basis with a description of biophysical methods that can provide quantitative insights for testing and developing theoretical and computational models.
Collapse
Affiliation(s)
- Jhullian J Alston
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, 660 St Euclid Ave, 63110 Saint Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St Louis, 1 Brookings Drive, 63130 Saint Louis, MO, USA.
| |
Collapse
|
14
|
Szała-Mendyk B, Phan TM, Mohanty P, Mittal J. Challenges in studying the liquid-to-solid phase transitions of proteins using computer simulations. Curr Opin Chem Biol 2023; 75:102333. [PMID: 37267850 PMCID: PMC10527940 DOI: 10.1016/j.cbpa.2023.102333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 06/04/2023]
Abstract
"Membraneless organelles," also referred to as biomolecular condensates, perform a variety of cellular functions and their dysregulation is implicated in cancer and neurodegeneration. In the last two decades, liquid-liquid phase separation (LLPS) of intrinsically disordered and multidomain proteins has emerged as a plausible mechanism underlying the formation of various biomolecular condensates. Further, the occurrence of liquid-to-solid transitions within liquid-like condensates may give rise to amyloid structures, implying a biophysical link between phase separation and protein aggregation. Despite significant advances, uncovering the microscopic details of liquid-to-solid phase transitions using experiments remains a considerable challenge and presents an exciting opportunity for the development of computational models which provide valuable, complementary insights into the underlying phenomenon. In this review, we first highlight recent biophysical studies which provide new insights into the molecular mechanisms underlying liquid-to-solid (fibril) phase transitions of folded, disordered and multi-domain proteins. Next, we summarize the range of computational models used to study protein aggregation and phase separation. Finally, we discuss recent computational approaches which attempt to capture the underlying physics of liquid-to-solid transitions along with their merits and shortcomings.
Collapse
Affiliation(s)
- Beata Szała-Mendyk
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States.
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, TAMU 3127, College Station, 77843, Texas, United States; Department of Chemistry, Texas A&M University, TAMU 3255, College Station, 77843, Texas, United States; Interdisciplinary Graduate Program in Genetics and Genomics, Texas A&M University, TAMU 3255, College Station, 77843, Texas, United States.
| |
Collapse
|
15
|
Sanchez-Burgos I, Herriott L, Collepardo-Guevara R, Espinosa JR. Surfactants or scaffolds? RNAs of varying lengths control the thermodynamic stability of condensates differently. Biophys J 2023; 122:2973-2987. [PMID: 36883003 PMCID: PMC10398262 DOI: 10.1016/j.bpj.2023.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Biomolecular condensates, thought to form via liquid-liquid phase separation of intracellular mixtures, are multicomponent systems that can include diverse types of proteins and RNAs. RNA is a critical modulator of RNA-protein condensate stability, as it induces an RNA concentration-dependent reentrant phase transition-increasing stability at low RNA concentrations and decreasing it at high concentrations. Beyond concentration, RNAs inside condensates can be heterogeneous in length, sequence, and structure. Here, we use multiscale simulations to understand how different RNA parameters interact with one another to modulate the properties of RNA-protein condensates. To do so, we perform residue/nucleotide resolution coarse-grained molecular dynamics simulations of multicomponent RNA-protein condensates containing RNAs of different lengths and concentrations, and either FUS or PR25 proteins. Our simulations reveal that RNA length regulates the reentrant phase behavior of RNA-protein condensates: increasing RNA length sensitively rises the maximum value that the critical temperature of the mixture reaches, and the maximum concentration of RNA that the condensate can incorporate before beginning to become unstable. Strikingly, RNAs of different lengths are organized heterogeneously inside condensates, which allows them to enhance condensate stability via two distinct mechanisms: shorter RNA chains accumulate at the condensate's surface acting as natural biomolecular surfactants, while longer RNA chains concentrate inside the core to saturate their bonds and enhance the density of molecular connections in the condensate. Using a patchy particle model, we additionally demonstrate that the combined impact of RNA length and concentration on condensate properties is dictated by the valency, binding affinity, and polymer length of the various biomolecules involved. Our results postulate that diversity on RNA parameters within condensates allows RNAs to increase condensate stability by fulfilling two different criteria: maximizing enthalpic gain and minimizing interfacial free energy; hence, RNA diversity should be considered when assessing the impact of RNA on biomolecular condensates regulation.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Lara Herriott
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, United Kingdom; Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom; Departament of Chemical Physics, Faculty of Chemical Sciences, Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
16
|
Torrino S, Oldham WM, Tejedor AR, Burgos IS, Rachedi N, Fraissard K, Chauvet C, Sbai C, O'Hara BP, Abélanet S, Brau F, Clavel S, Collepardo-Guevara R, Espinosa JR, Ben-Sahra I, Bertero T. Mechano-dependent sorbitol accumulation supports biomolecular condensate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550444. [PMID: 37546967 PMCID: PMC10402034 DOI: 10.1101/2023.07.24.550444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Biomolecular condensates regulate a wide range of cellular functions from signaling to RNA metabolism 1, 2 , yet, the physiologic conditions regulating their formation remain largely unexplored. Biomolecular condensate assembly is tightly regulated by the intracellular environment. Changes in the chemical or physical conditions inside cells can stimulate or inhibit condensate formation 3-5 . However, whether and how the external environment of cells can also regulate biomolecular condensation remain poorly understood. Increasing our understanding of these mechanisms is paramount as failure to control condensate formation and dynamics can lead to many diseases 6, 7 . Here, we provide evidence that matrix stiffening promotes biomolecular condensation in vivo . We demonstrate that the extracellular matrix links mechanical cues with the control of glucose metabolism to sorbitol. In turn, sorbitol acts as a natural crowding agent to promote biomolecular condensation. Using in silico simulations and in vitro assays, we establish that variations in the physiological range of sorbitol, but not glucose, concentrations, are sufficient to regulate biomolecular condensates. Accordingly, pharmacologic and genetic manipulation of intracellular sorbitol concentration modulates biomolecular condensates in breast cancer - a mechano-dependent disease. We propose that sorbitol is a mechanosensitive metabolite enabling protein condensation to control mechano-regulated cellular functions. Altogether, we uncover molecular driving forces underlying protein phase transition and provide critical insights to understand the biological function and dysfunction of protein phase separation.
Collapse
|
17
|
Dekker M, Van der Giessen E, Onck PR. Phase separation of intrinsically disordered FG-Nups is driven by highly dynamic FG motifs. Proc Natl Acad Sci U S A 2023; 120:e2221804120. [PMID: 37307457 PMCID: PMC10288634 DOI: 10.1073/pnas.2221804120] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/09/2023] [Indexed: 06/14/2023] Open
Abstract
The intrinsically disordered FG-Nups in the central channel of the nuclear pore complex (NPC) form a selective permeability barrier, allowing small molecules to traverse by passive diffusion, while large molecules can only translocate with the help of nuclear transport receptors. The exact phase state of the permeability barrier remains elusive. In vitro experiments have shown that some FG-Nups can undergo phase separation into condensates that display NPC-like permeability barrier properties. Here, we use molecular dynamics simulations at amino acid resolution to study the phase separation characteristics of each of the disordered FG-Nups of the yeast NPC. We find that GLFG-Nups undergo phase separation and reveal that the FG motifs act as highly dynamic hydrophobic stickers that are essential for the formation of FG-Nup condensates featuring droplet-spanning percolated networks. Additionally, we study phase separation in an FG-Nup mixture that resembles the NPC stoichiometry and observe that an NPC condensate is formed containing multiple GLFG-Nups. We find that the phase separation of this NPC condensate is also driven by FG-FG interactions, similar to the homotypic FG-Nup condensates. Based on the observed phase separation behavior, the different FG-Nups of the yeast NPC can be divided into two classes: The FG-Nups (mostly GLFG-type) located in the central channel of the NPC form a highly dynamic percolated network formed by many short-lived FG-FG interactions, while the peripheral FG-Nups (mostly FxFG-type) at the entry and exit of the NPC channel likely form an entropic brush.
Collapse
Affiliation(s)
- Maurice Dekker
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Erik Van der Giessen
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
18
|
Le Vay KK, Salibi E, Ghosh B, Tang TYD, Mutschler H. Ribozyme activity modulates the physical properties of RNA-peptide coacervates. eLife 2023; 12:e83543. [PMID: 37326308 DOI: 10.7554/elife.83543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Condensed coacervate phases are now understood to be important features of modern cell biology, as well as valuable protocellular models in origin-of-life studies and synthetic biology. In each of these fields, the development of model systems with varied and tuneable material properties is of great importance for replicating properties of life. Here, we develop a ligase ribozyme system capable of concatenating short RNA fragments into long chains. Our results show that the formation of coacervate microdroplets with the ligase ribozyme and poly(L-lysine) enhances ribozyme rate and yield, which in turn increases the length of the anionic polymer component of the system and imparts specific physical properties to the droplets. Droplets containing active ribozyme sequences resist growth, do not wet or spread on unpassivated surfaces, and exhibit reduced transfer of RNA between droplets when compared to controls containing inactive sequences. These altered behaviours, which stem from RNA sequence and catalytic activity, constitute a specific phenotype and potential fitness advantage, opening the door to selection and evolution experiments based on a genotype-phenotype linkage.
Collapse
Affiliation(s)
- Kristian Kyle Le Vay
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Elia Salibi
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Basusree Ghosh
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - T Y Dora Tang
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Hannes Mutschler
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
19
|
Valdes-Garcia G, Gamage K, Smith C, Martirosova K, Feig M, Lapidus LJ. The effect of polymer length in liquid-liquid phase separation. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101415. [PMID: 37325682 PMCID: PMC10270681 DOI: 10.1016/j.xcrp.2023.101415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Understanding the thermodynamics that drive liquid-liquid phase separation (LLPS) is quite important given the number of diverse biomolecular systems undergoing this phenomenon. Many studies have focused on condensates of long polymers, but very few systems of short-polymer condensates have been observed and studied. Here, we study a short-polymer system of various lengths of poly-adenine RNA and peptides formed by the RGRGG sequence repeats to understand the underlying thermodynamics of LLPS. Using the recently developed COCOMO coarse-grained (CG) model, we predicted condensates for lengths as short as 5-10 residues, which was then confirmed by experiment, making this one of the smallest LLPS systems yet observed. A free-energy model reveals that the length dependence of condensation is driven primarily by entropy of confinement. The simplicity of this system will provide the basis for understanding more biologically realistic systems.
Collapse
Affiliation(s)
- Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally
| | - Kasun Gamage
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- These authors contributed equally
| | - Casey Smith
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Karina Martirosova
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
- Lead contact
| |
Collapse
|
20
|
Joshi A, Mukhopadhyay S. Biophysics of biomolecular condensates. Biophys J 2023; 122:737-740. [PMID: 36791720 PMCID: PMC10027443 DOI: 10.1016/j.bpj.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/28/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
The formation of biomolecular condensates has emerged as a new biophysical principle for subcellular compartmentalization within cells to facilitate the spatiotemporal regulation of a multitude of complex biomolecular reactions. In this Research Highlight, we summarize the findings that were published in Biophysical Journal during the past two years (2021 and 2022). These papers provided biophysical insights into the formation of biomolecular condensates via phase separation of proteins with or without nucleic acids.
Collapse
Affiliation(s)
- Ashish Joshi
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India; Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
| |
Collapse
|
21
|
Li L, Paloni M, Finney AR, Barducci A, Salvalaglio M. Nucleation of Biomolecular Condensates from Finite-Sized Simulations. J Phys Chem Lett 2023; 14:1748-1755. [PMID: 36758221 PMCID: PMC9940850 DOI: 10.1021/acs.jpclett.2c03512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The nucleation of protein condensates is a concentration-driven process of assembly. When modeled in the canonical ensemble, condensation is affected by finite-size effects. Here, we present a general and efficient route for obtaining ensemble properties of protein condensates in the macroscopic limit from finite-sized nucleation simulations. The approach is based on a theoretical description of droplet nucleation in the canonical ensemble and enables estimation of thermodynamic and kinetic parameters, such as the macroscopic equilibrium density of the dilute protein phase, the surface tension of the condensates, and nucleation free energy barriers. We apply the method to coarse-grained simulations of NDDX4 and FUS-LC, two phase-separating disordered proteins with different physicochemical characteristics. Our results show that NDDX4 condensate droplets, characterized by lower surface tension, higher solubility, and faster monomer exchange dynamics compared to those of FUS-LC, form with negligible nucleation barriers. In contrast, FUS-LC condensates form via an activated process over a wide range of concentrations.
Collapse
Affiliation(s)
- Lunna Li
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Matteo Paloni
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Aaron R. Finney
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| | - Alessandro Barducci
- Université
de Montpellier, Centre de Biologie Structurale
(CBS), CNRS, INSERM, 34090 Montpellier, France
| | - Matteo Salvalaglio
- Thomas
Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.
| |
Collapse
|
22
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.2] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 08/31/2023]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
23
|
Tesei G, Lindorff-Larsen K. Improved predictions of phase behaviour of intrinsically disordered proteins by tuning the interaction range. OPEN RESEARCH EUROPE 2023; 2:94. [PMID: 37645312 PMCID: PMC10450847 DOI: 10.12688/openreseurope.14967.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 02/13/2024]
Abstract
The formation and viscoelastic properties of condensates of intrinsically disordered proteins (IDPs) is dictated by amino acid sequence and solution conditions. Because of the involvement of biomolecular condensates in cell physiology and disease, advancing our understanding of the relationship between protein sequence and phase separation (PS) may have important implications in the formulation of new therapeutic hypotheses. Here, we present CALVADOS 2, a coarse-grained model of IDPs that accurately predicts conformational properties and propensities to undergo PS for diverse sequences and solution conditions. In particular, we systematically study the effect of varying the range of the nonionic interactions and use our findings to improve the temperature scale of the model. We further optimize the residue-specific model parameters against experimental data on the conformational properties of 55 proteins, while also leveraging 70 hydrophobicity scales from the literature to avoid overfitting the training data. Extensive testing shows that the model accurately predicts chain compaction and PS propensity for sequences of diverse length and charge patterning, as well as at different temperatures and salt concentrations.
Collapse
Affiliation(s)
- Giulio Tesei
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Valdes-Garcia G, Heo L, Lapidus LJ, Feig M. Modeling Concentration-dependent Phase Separation Processes Involving Peptides and RNA via Residue-Based Coarse-Graining. J Chem Theory Comput 2023; 19:10.1021/acs.jctc.2c00856. [PMID: 36607820 PMCID: PMC10323037 DOI: 10.1021/acs.jctc.2c00856] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Biomolecular condensation, especially liquid-liquid phase separation, is an important physical process with relevance for a number of different aspects of biological functions. Key questions of what drives such condensation, especially in terms of molecular composition, can be addressed via computer simulations, but the development of computationally efficient yet physically realistic models has been challenging. Here, the coarse-grained model COCOMO is introduced that balances the polymer behavior of peptides and RNA chains with their propensity to phase separate as a function of composition and concentration. COCOMO is a residue-based model that combines bonded terms with short- and long-range terms, including a Debye-Hückel solvation term. The model is highly predictive of experimental data on phase-separating model systems. It is also computationally efficient and can reach the spatial and temporal scales on which biomolecular condensation is observed with moderate computational resources.
Collapse
Affiliation(s)
- Gilberto Valdes-Garcia
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lim Heo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lisa J. Lapidus
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA
| | - Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
25
|
Different states and the associated fates of biomolecular condensates. Essays Biochem 2022; 66:849-862. [PMID: 36350032 DOI: 10.1042/ebc20220054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/20/2022] [Accepted: 10/07/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Biomolecular condensates are functional assemblies, which can enrich intrinsically disordered proteins (IDPs) and/or RNAs at concentrations that are orders of magnitude higher than the bulk. In their native functional state, these structures can exist in multiple physical states including liquid-droplet phase, hydrogels, and solid assemblies. On the other hand, an aberrant transition between these physical states can result in loss-of-function or a gain-of-toxic-function. A prime example of such an aberrant transition is droplet aging—a phenomenon where some condensates may progressively transition into less dynamic material states at biologically relevant timescales. In this essay, we review structural and viscoelastic roots of aberrant liquid–solid transitions. Also, we highlight the different checkpoints and experimentally tunable handles, both active (ATP-dependent enzymes, post-translational modifications) and passive (colocalization of RNA molecules), that could alter the material state of assemblies.
Collapse
|
26
|
Tejedor AR, Sanchez-Burgos I, Estevez-Espinosa M, Garaizar A, Collepardo-Guevara R, Ramirez J, Espinosa JR. Protein structural transitions critically transform the network connectivity and viscoelasticity of RNA-binding protein condensates but RNA can prevent it. Nat Commun 2022; 13:5717. [PMID: 36175408 PMCID: PMC9522849 DOI: 10.1038/s41467-022-32874-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Biomolecular condensates, some of which are liquid-like during health, can age over time becoming gel-like pathological systems. One potential source of loss of liquid-like properties during ageing of RNA-binding protein condensates is the progressive formation of inter-protein β-sheets. To bridge microscopic understanding between accumulation of inter-protein β-sheets over time and the modulation of FUS and hnRNPA1 condensate viscoelasticity, we develop a multiscale simulation approach. Our method integrates atomistic simulations with sequence-dependent coarse-grained modelling of condensates that exhibit accumulation of inter-protein β-sheets over time. We reveal that inter-protein β-sheets notably increase condensate viscosity but does not transform the phase diagrams. Strikingly, the network of molecular connections within condensates is drastically altered, culminating in gelation when the network of strong β-sheets fully percolates. However, high concentrations of RNA decelerate the emergence of inter-protein β-sheets. Our study uncovers molecular and kinetic factors explaining how the accumulation of inter-protein β-sheets can trigger liquid-to-solid transitions in condensates, and suggests a potential mechanism to slow such transitions down. In this work the authors propose a multiscale computational approach, integrating atomistic and coarse-grained models simulations, to study the thermodynamic and kinetic factors playing a major role in the liquid-to-solid transition of biomolecular condensates. It is revealed how the gradual accumulation of inter-protein β-sheets increases the viscosity of functional liquid-like condensates, transforming them into gel-like pathological aggregates, and it is also shown how high concentrations of RNA can decelerate such transition.
Collapse
Affiliation(s)
- Andres R Tejedor
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.,Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Maria Estevez-Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Biochemistry, University College London, Gower Street, London, WC1E 6BT, UK
| | - Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.,Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.,Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Jorge Ramirez
- Department of Chemical Engineering, Universidad Politécnica de Madrid, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
| |
Collapse
|
27
|
Garabedian MV, Su Z, Dabdoub J, Tong M, Deiters A, Hammer DA, Good MC. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences. Biochemistry 2022; 61:2470-2481. [PMID: 35918061 DOI: 10.1021/acs.biochem.2c00250] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many proteins harboring low complexity or intrinsically disordered sequences (IDRs) are capable of undergoing liquid-liquid phase separation to form mesoscale condensates that function as biochemical niches with the ability to concentrate or sequester macromolecules and regulate cellular activity. Engineered disordered proteins have been used to generate programmable synthetic membraneless organelles in cells. Phase separation is governed by the strength of interactions among polypeptides with multivalency enhancing phase separation at lower concentrations. Previously, we and others demonstrated enzymatic control of IDR valency from multivalent precursors to dissolve condensed phases. Here, we develop noncovalent strategies to multimerize an individual IDR, the RGG domain of LAF-1, using protein interaction domains to regulate condensate formation in vitro and in living cells. First, we characterize modular dimerization of RGG domains at either terminus using cognate high-affinity coiled-coil pairs to form stable condensates in vitro. Second, we demonstrate temporal control over phase separation of RGG domains fused to FRB and FKBP in the presence of dimerizer. Further, using a photocaged dimerizer, we achieve optically induced condensation both in cell-sized emulsions and within live cells. Collectively, these modular tools allow multiple strategies to promote phase separation of a common core IDR for tunable control of condensate assembly.
Collapse
Affiliation(s)
- Mikael V Garabedian
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhihui Su
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jorge Dabdoub
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Michelle Tong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Philadelphia, Pennsylvania 15260, United States
| | - Daniel A Hammer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Matthew C Good
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
28
|
Garaizar A, Espinosa JR, Joseph JA, Collepardo-Guevara R. Kinetic interplay between droplet maturation and coalescence modulates shape of aged protein condensates. Sci Rep 2022; 12:4390. [PMID: 35293386 PMCID: PMC8924231 DOI: 10.1038/s41598-022-08130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/07/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed by the process of liquid-liquid phase separation (LLPS) play diverse roles inside cells, from spatiotemporal compartmentalisation to speeding up chemical reactions. Upon maturation, the liquid-like properties of condensates, which underpin their functions, are gradually lost, eventually giving rise to solid-like states with potential pathological implications. Enhancement of inter-protein interactions is one of the main mechanisms suggested to trigger the formation of solid-like condensates. To gain a molecular-level understanding of how the accumulation of stronger interactions among proteins inside condensates affect the kinetic and thermodynamic properties of biomolecular condensates, and their shapes over time, we develop a tailored coarse-grained model of proteins that transition from establishing weak to stronger inter-protein interactions inside condensates. Our simulations reveal that the fast accumulation of strongly binding proteins during the nucleation and growth stages of condensate formation results in aspherical solid-like condensates. In contrast, when strong inter-protein interactions appear only after the equilibrium condensate has been formed, or when they accumulate slowly over time with respect to the time needed for droplets to fuse and grow, spherical solid-like droplets emerge. By conducting atomistic potential-of-mean-force simulations of NUP-98 peptides-prone to forming inter-protein [Formula: see text]-sheets-we observe that formation of inter-peptide [Formula: see text]-sheets increases the strength of the interactions consistently with the loss of liquid-like condensate properties we observe at the coarse-grained level. Overall, our work aids in elucidating fundamental molecular, kinetic, and thermodynamic mechanisms linking the rate of change in protein interaction strength to condensate shape and maturation during ageing.
Collapse
Affiliation(s)
- Adiran Garaizar
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jorge R Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jerelle A Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK.
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, CB2 3EH, UK.
| |
Collapse
|
29
|
Sanchez-Burgos I, Espinosa JR, Joseph JA, Collepardo-Guevara R. RNA length has a non-trivial effect in the stability of biomolecular condensates formed by RNA-binding proteins. PLoS Comput Biol 2022; 18:e1009810. [PMID: 35108264 PMCID: PMC8896709 DOI: 10.1371/journal.pcbi.1009810] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/04/2022] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
Biomolecular condensates formed via liquid-liquid phase separation (LLPS) play a crucial role in the spatiotemporal organization of the cell material. Nucleic acids can act as critical modulators in the stability of these protein condensates. To unveil the role of RNA length in regulating the stability of RNA binding protein (RBP) condensates, we present a multiscale computational strategy that exploits the advantages of a sequence-dependent coarse-grained representation of proteins and a minimal coarse-grained model wherein proteins are described as patchy colloids. We find that for a constant nucleotide/protein ratio, the protein fused in sarcoma (FUS), which can phase separate on its own-i.e., via homotypic interactions-only exhibits a mild dependency on the RNA strand length. In contrast, the 25-repeat proline-arginine peptide (PR25), which does not undergo LLPS on its own at physiological conditions but instead exhibits complex coacervation with RNA-i.e., via heterotypic interactions-shows a strong dependence on the length of the RNA strands. Our minimal patchy particle simulations suggest that the strikingly different effect of RNA length on homotypic LLPS versus RBP-RNA complex coacervation is general. Phase separation is RNA-length dependent whenever the relative contribution of heterotypic interactions sustaining LLPS is comparable or higher than those stemming from protein homotypic interactions. Taken together, our results contribute to illuminate the intricate physicochemical mechanisms that influence the stability of RBP condensates through RNA inclusion.
Collapse
Affiliation(s)
- Ignacio Sanchez-Burgos
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jorge R. Espinosa
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
| | - Jerelle A. Joseph
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| | - Rosana Collepardo-Guevara
- Maxwell Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge, United Kingdom
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Site, Cambridge, United Kingdom
| |
Collapse
|
30
|
Welsh TJ, Krainer G, Espinosa JR, Joseph JA, Sridhar A, Jahnel M, Arter WE, Saar KL, Alberti S, Collepardo-Guevara R, Knowles TPJ. Surface Electrostatics Govern the Emulsion Stability of Biomolecular Condensates. NANO LETTERS 2022; 22:612-621. [PMID: 35001622 DOI: 10.1021/acs.nanolett.1c03138] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Liquid-liquid phase separation underlies the formation of biological condensates. Physically, such systems are microemulsions that in general have a propensity to fuse and coalesce; however, many condensates persist as independent droplets in the test tube and inside cells. This stability is crucial for their function, but the physicochemical mechanisms that control the emulsion stability of condensates remain poorly understood. Here, by combining single-condensate zeta potential measurements, optical microscopy, tweezer experiments, and multiscale molecular modeling, we investigate how the nanoscale forces that sustain condensates impact their stability against fusion. By comparing peptide-RNA (PR25:PolyU) and proteinaceous (FUS) condensates, we show that a higher condensate surface charge correlates with a lower fusion propensity. Moreover, measurements of single condensate zeta potentials reveal that such systems can constitute classically stable emulsions. Taken together, these results highlight the role of passive stabilization mechanisms in protecting biomolecular condensates against coalescence.
Collapse
Affiliation(s)
- Timothy J Welsh
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Georg Krainer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Jorge R Espinosa
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Jerelle A Joseph
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Akshay Sridhar
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
- Cluster of Excellence "Physics of Life", TU Dresden, Dresden 01307, Germany
| | - William E Arter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kadi L Saar
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Simon Alberti
- Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Rosana Collepardo-Guevara
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
- Department of Genetics, University of Cambridge, Cambridge CB2 3EH, U.K
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K
| |
Collapse
|