1
|
Paola Muntoni A, De Martino A. Optimal metabolic strategies for microbial growth in stationary random environments. Phys Biol 2023; 20. [PMID: 36878007 DOI: 10.1088/1478-3975/acc1bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 03/06/2023] [Indexed: 03/08/2023]
Abstract
In order to grow in any given environment, bacteria need to collect information about the medium composition and implement suitable growth strategies by adjusting their regulatory and metabolic degrees of freedom. In the standard sense, optimal strategy selection is achieved when bacteria grow at the fastest rate possible in that medium. While this view of optimality is well suited for cells that have perfect knowledge about their surroundings (e.g. nutrient levels), things are more involved in uncertain or fluctuating conditions, especially when changes occur over timescales comparable to (or faster than) those required to organize a response. Information theory however provides recipes for how cells can choose the optimal growth strategy under uncertainty about the stress levels they will face. Here we analyse the theoretically optimal scenarios for a coarse-grained, experiment-inspired model of bacterial metabolism for growth in a medium described by the (static) probability density of a single variable (the 'stress level'). We show that heterogeneity in growth rates consistently emerges as the optimal response when the environment is sufficiently complex and/or when perfect adjustment of metabolic degrees of freedom is not possible (e.g. due to limited resources). In addition, outcomes close to those achievable with unlimited resources are often attained effectively with a modest amount of fine tuning. In other terms, heterogeneous population structures in complex media may be rather robust with respect to the resources available to probe the environment and adjust reaction rates.
Collapse
Affiliation(s)
- Anna Paola Muntoni
- Politecnico di Torino, Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| | - Andrea De Martino
- Politecnico di Torino, Turin, Italy
- Italian Institute for Genomic Medicine, Turin, Italy
| |
Collapse
|
2
|
Xu Y, Liu B, Zheng L, Zhou Y, Essawy H, Chen X, Zhou X, Zhang J. Facile Fabrication of High-Performance Composite Films Comprising Polyvinyl Alcohol as Matrix and Phenolic Tree Extracts. Polymers (Basel) 2023; 15:polym15061424. [PMID: 36987205 PMCID: PMC10055852 DOI: 10.3390/polym15061424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/16/2023] Open
Abstract
Given that tree extracts such as tannin and lignin can be efficiently used as modifying materials, this helps to verify the global trend of energy saving and environment protection. Thus, bio-based biodegradable composite film incorporating tannin and lignin as additives, together with polyvinyl alcohol (PVOH) as a matrix (denoted TLP), was prepared. Its easy preparation process endows it with high industrial value in comparison to some bio-based films with complex preparation process such as cellulose-based films. Furthermore, imaging with scanning electron microscopy (SEM) shows that the surface of tannin- and lignin-modified polyvinyl alcohol film was smooth, free of pores or cracks. Moreover, the addition of lignin and tannin improved the tensile strength of the film, which reached 31.3 MPa as indicated by mechanical characterization. This was accounted for by using Fourier transform infrared (FTIR) and electrospray ionization mass (ESI-MS) spectroscopy, which showed that the physical blending of lignin and tannin with PVOH was accompanied by chemical interactions that gave rise to weakening of the prevailing hydrogen bonding in PVOH film. In consequence, the addition of tannin and lignin acquired the composite film good resistance against the light in the ultraviolet and visible range (UV-VL). Furthermore, the film exhibited biodegradability with a mass loss about 4.22% when contaminated with Penicillium sp. for 12 days.
Collapse
Affiliation(s)
- Ying Xu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Bowen Liu
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Lulu Zheng
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Yunxia Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
| | - Hisham Essawy
- Department of Polymers and Pigments, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Xinyi Chen
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Correspondence: (X.C.); (X.Z.); (J.Z.); Tel.: +86-151-1630-5716 (X.C.); +86-187-2527-6030 (X.Z.); +86-182-1343-5542 (J.Z.)
| | - Xiaojian Zhou
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Correspondence: (X.C.); (X.Z.); (J.Z.); Tel.: +86-151-1630-5716 (X.C.); +86-187-2527-6030 (X.Z.); +86-182-1343-5542 (J.Z.)
| | - Jun Zhang
- Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, China
- Correspondence: (X.C.); (X.Z.); (J.Z.); Tel.: +86-151-1630-5716 (X.C.); +86-187-2527-6030 (X.Z.); +86-182-1343-5542 (J.Z.)
| |
Collapse
|
3
|
Onesto V, Forciniti S, Alemanno F, Narayanankutty K, Chandra A, Prasad S, Azzariti A, Gigli G, Barra A, De Martino A, De Martino D, del Mercato LL. Probing Single-Cell Fermentation Fluxes and Exchange Networks via pH-Sensing Hybrid Nanofibers. ACS NANO 2023; 17:3313-3323. [PMID: 36573897 PMCID: PMC9979640 DOI: 10.1021/acsnano.2c06114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 12/19/2022] [Indexed: 05/31/2023]
Abstract
The homeostatic control of their environment is an essential task of living cells. It has been hypothesized that, when microenvironmental pH inhomogeneities are induced by high cellular metabolic activity, diffusing protons act as signaling molecules, driving the establishment of exchange networks sustained by the cell-to-cell shuttling of overflow products such as lactate. Despite their fundamental role, the extent and dynamics of such networks is largely unknown due to the lack of methods in single-cell flux analysis. In this study, we provide direct experimental characterization of such exchange networks. We devise a method to quantify single-cell fermentation fluxes over time by integrating high-resolution pH microenvironment sensing via ratiometric nanofibers with constraint-based inverse modeling. We apply our method to cell cultures with mixed populations of cancer cells and fibroblasts. We find that the proton trafficking underlying bulk acidification is strongly heterogeneous, with maximal single-cell fluxes exceeding typical values by up to 3 orders of magnitude. In addition, a crossover in time from a networked phase sustained by densely connected "hubs" (corresponding to cells with high activity) to a sparse phase dominated by isolated dipolar motifs (i.e., by pairwise cell-to-cell exchanges) is uncovered, which parallels the time course of bulk acidification. Our method addresses issues ranging from the homeostatic function of proton exchange to the metabolic coupling of cells with different energetic demands, allowing for real-time noninvasive single-cell metabolic flux analysis.
Collapse
Affiliation(s)
- Valentina Onesto
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Stefania Forciniti
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Francesco Alemanno
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Sezione di Lecce, 73100Lecce, Italy
| | | | - Anil Chandra
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Saumya Prasad
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| | - Amalia Azzariti
- IRCCS
Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124Bari, Italy
| | - Giuseppe Gigli
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
| | - Adriano Barra
- Dipartimento
di Matematica e Fisica E. De Giorgi, University
of Salento, 73100Lecce, Italy
- Istituto
Nazionale di Fisica Nucleare (INFN), Sezione di Lecce, 73100Lecce, Italy
| | - Andrea De Martino
- Politecnico
di Torino, Corso Duca degli Abruzzi, 24, I-10129Torino, Italy
- Italian Institute
for Genomic Medicine, IRCCS Candiolo, SP-142, I-10060Candiolo, Italy
| | - Daniele De Martino
- Biofisika
Institutua (UPV/EHU, CSIC) and Fundación Biofísica Bizkaia, LeioaE-48940, Spain
- Ikerbasque
Foundation, Bilbao48013, Spain
| | - Loretta L. del Mercato
- Institute
of Nanotechnology, National Research Council
(CNR-NANOTEC), c/o Campus Ecotekne, via Monteroni, 73100Lecce, Italy
| |
Collapse
|
4
|
Zhang J, Liu B, Zhou Y, Essawy H, Zhao C, Wu Z, Zhou X, Hou D, Du G. Gelatinized starch-furanic hybrid as a biodegradable thermosetting resin for fabrication of foams for building materials. Carbohydr Polym 2022; 298:120157. [DOI: 10.1016/j.carbpol.2022.120157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022]
|
5
|
Facile Synthesis of Formaldehyde-Free Bio-Based Thermoset Resins for Fabrication of Highly Efficient Foams. Polymers (Basel) 2022; 14:polym14235140. [PMID: 36501538 PMCID: PMC9737291 DOI: 10.3390/polym14235140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Bio-based biodegradable foams were formulated from a crosslinkable network structure combining starch, furfuryl alcohol, glyoxal, and condensed tannin in the presence of p-toluenesulfonic acid (pTSA) and azodicarbonamide (AC) as a foaming agent. More importantly, the reinforcement of gelatinized starch-furanic foam using tannin, originating from forestry, resulted in an excellent compressive strength and lower pulverization ratio. Moreover, the addition of tannin guaranteed a low thermal conductivity and moderate flame retardancy. Fourier transform infrared (FTIR) spectroscopy approved the successful polycondensation of these condensing agents under the employed acidic conditions. Moreover, the catalytic effect of pTSA on the foaming agent induced liberation of gases, which are necessary for foam formation during crosslinking. Scanning electron microscopy (SEM) showed foam formation comprising closed cells with uniform cell distribution and appropriate apparent density. Meanwhile, the novel foam exhibited biodegradation under the action of Penicillium sp., as identified by the damage of cell walls of this foam over a period of 30 days.
Collapse
|