1
|
Jain P, Kathuria H, Ramakrishna S, Parab S, Pandey MM, Dubey N. In Situ Bioprinting: Process, Bioinks, and Applications. ACS APPLIED BIO MATERIALS 2024; 7:7987-8007. [PMID: 38598256 DOI: 10.1021/acsabm.3c01303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Traditional tissue engineering methods face challenges, such as fabrication, implantation of irregularly shaped scaffolds, and limited accessibility for immediate healthcare providers. In situ bioprinting, an alternate strategy, involves direct deposition of biomaterials, cells, and bioactive factors at the site, facilitating on-site fabrication of intricate tissue, which can offer a patient-specific personalized approach and align with the principles of precision medicine. It can be applied using a handled device and robotic arms to various tissues, including skin, bone, cartilage, muscle, and composite tissues. Bioinks, the critical components of bioprinting that support cell viability and tissue development, play a crucial role in the success of in situ bioprinting. This review discusses in situ bioprinting techniques, the materials used for bioinks, and their critical properties for successful applications. Finally, we discuss the challenges and future trends in accelerating in situ printing to translate this technology in a clinical settings for personalized regenerative medicine.
Collapse
Affiliation(s)
- Pooja Jain
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
| | - Himanshu Kathuria
- Nusmetics Pte Ltd, E-Centre@Redhill, 3791 Jalan Bukit Merah, Singapore 159471, Singapore
| | - Seeram Ramakrishna
- Department of Mechanical Engineering, Center for Nanotechnology and Sustainability, National University of Singapore, Singapore 117581, Singapore
| | - Shraddha Parab
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Murali M Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan India, 333031
| | - Nileshkumar Dubey
- Faculty of Dentistry, National University of Singapore, Singapore 119805, Singapore
- ORCHIDS: Oral Care Health Innovations and Designs Singapore, National University of Singapore, Singapore 119805, Singapore
| |
Collapse
|
2
|
Shashikumar U, Saraswat A, Deshmukh K, Hussain CM, Chandra P, Tsai PC, Huang PC, Chen YH, Ke LY, Lin YC, Chawla S, Ponnusamy VK. Innovative technologies for the fabrication of 3D/4D smart hydrogels and its biomedical applications - A comprehensive review. Adv Colloid Interface Sci 2024; 328:103163. [PMID: 38749384 DOI: 10.1016/j.cis.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/18/2024] [Accepted: 04/21/2024] [Indexed: 05/26/2024]
Abstract
Repairing and regenerating damaged tissues or organs, and restoring their functioning has been the ultimate aim of medical innovations. 'Reviving healthcare' blends tissue engineering with alternative techniques such as hydrogels, which have emerged as vital tools in modern medicine. Additive manufacturing (AM) is a practical manufacturing revolution that uses building strategies like molding as a viable solution for precise hydrogel manufacturing. Recent advances in this technology have led to the successful manufacturing of hydrogels with enhanced reproducibility, accuracy, precision, and ease of fabrication. Hydrogels continue to metamorphose as the vital compatible bio-ink matrix for AM. AM hydrogels have paved the way for complex 3D/4D hydrogels that can be loaded with drugs or cells. Bio-mimicking 3D cell cultures designed via hydrogel-based AM is a groundbreaking in-vivo assessment tool in biomedical trials. This brief review focuses on preparations and applications of additively manufactured hydrogels in the biomedical spectrum, such as targeted drug delivery, 3D-cell culture, numerous regenerative strategies, biosensing, bioprinting, and cancer therapies. Prevalent AM techniques like extrusion, inkjet, digital light processing, and stereo-lithography have been explored with their setup and methodology to yield functional hydrogels. The perspectives, limitations, and the possible prospects of AM hydrogels have been critically examined in this study.
Collapse
Affiliation(s)
- Uday Shashikumar
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Aditya Saraswat
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India
| | - Kalim Deshmukh
- New Technologies - Research Centre University of West Bohemia Univerzitní 2732/8, 30100, Plzeň, Czech Republic
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli County 35053, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| | - Liang-Yin Ke
- Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - Shashi Chawla
- Department of Chemistry, Amity Institute of Applied Sciences, Amity University, Noida, UP, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Laboratory Science and Biotechnology, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| |
Collapse
|
3
|
van Daal M, de Kanter AFJ, Bredenoord AL, de Graeff N. Personalized 3D printed scaffolds: The ethical aspects. N Biotechnol 2023; 78:116-122. [PMID: 37848162 DOI: 10.1016/j.nbt.2023.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/27/2023] [Accepted: 10/14/2023] [Indexed: 10/19/2023]
Abstract
Personalized 3D printed scaffolds are a new generation of implants for tissue engineering and regenerative medicine purposes. Scaffolds support cell growth, providing an artificial extracellular matrix for tissue repair and regeneration and can biodegrade once cells have assumed their physiological and structural roles. The ethical challenges and opportunities of these implants should be mapped in parallel with the life cycle of the scaffold to assist their development and implementation in a responsible, safe, and ethically sound manner. This article provides an overview of these relevant ethical aspects. We identified nine themes which were linked to three stages of the life cycle of the scaffold: the development process, clinical testing, and the implementation process. The described ethical issues are related to good research and clinical practices, such as privacy issues concerning digitalization, first-in-human trials, responsibility and commercialization. At the same time, this article also creates awareness for underexplored ethical issues, such as irreversibility, embodiment and the ontological status of these scaffolds. Moreover, it exemplifies how to include gender in the ethical assessment of new technologies. These issues are important for responsible development and implementation of personalized 3D printed scaffolds and in need of more attention within the additive manufacturing and tissue engineering field. Moreover, the insights of this review reveal unresolved qualitative empirical and normative questions that could further deepen the understanding and co-creation of the ethical implications of this new generation of implants.
Collapse
Affiliation(s)
- Manon van Daal
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Anne-Floor J de Kanter
- Department of Bioethics and Health Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Annelien L Bredenoord
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, the Netherlands
| | - Nienke de Graeff
- Department of Medical Ethics and Health Law, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| |
Collapse
|
4
|
Sörgel CA, Cai A, Schmid R, Horch RE. Perspectives on the Current State of Bioprinted Skin Substitutes for Wound Healing. Biomedicines 2023; 11:2678. [PMID: 37893053 PMCID: PMC10604151 DOI: 10.3390/biomedicines11102678] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
Human skin is particularly vulnerable to external damaging influences such as irradiation, extreme temperatures, chemical trauma, and certain systemic diseases, which reduce the skin's capacity for regeneration and restoration and can possibly lead to large-scale skin defects. To restore skin continuity in severe cases, surgical interventions such as the transplantation of autologous tissue are needed. Nevertheless, the coverage of larger skin defects caused by severe third-grade burns or extensive irradiation therapy is limited due to the depletion of uninjured autologous tissue. In such cases, many of the patient's epidermal cells can become available using biofabricated skin grafts, thereby restoring the skin's vital functions. Given the limited availability of autologous skin grafts for restoring integrity in large-scale defects, using bioprinted constructs as skin graft substitutes could offer an encouraging therapeutic alternative to conventional therapies for large-scale wounds, such as the transplantation of autologous tissue. Using layer-by-layer aggregation or volumetric bioprinting, inkjet bioprinting, laser-assisted bioprinting, or extrusion-based bioprinting, skin cells are deposited in a desired pattern. The resulting constructs may be used as skin graft substitutes to accelerate wound healing and reconstitute the physiological functions of the skin. In this review, we aimed to elucidate the current state of bioprinting within the context of skin tissue engineering and introduce and discuss different bioprinting techniques, possible approaches and materials, commonly used cell types, and strategies for graft vascularization for the production of bioprinted constructs for use as skin graft substitutes.
Collapse
|
5
|
Ricci G, Gibelli F, Sirignano A. Three-Dimensional Bioprinting of Human Organs and Tissues: Bioethical and Medico-Legal Implications Examined through a Scoping Review. Bioengineering (Basel) 2023; 10:1052. [PMID: 37760154 PMCID: PMC10525297 DOI: 10.3390/bioengineering10091052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Three-dimensional bioprinting is a rapidly evolving technology that holds the promise of addressing the increasing demand for organs, tissues, and personalized medicine. By employing computer-aided design and manufacturing processes, 3D bioprinting allows for the precise deposition of living cells, biomaterials, and biochemicals to create functional human tissues and organs. The potential applications of this technology are vast, including drug testing and development, disease modeling, regenerative medicine, and ultimately, organ transplantation. However, as with any groundbreaking technology, 3D bioprinting presents several ethical, legal, and regulatory concerns that warrant careful consideration. As the technology progresses towards clinical applications, it is essential to address these challenges and establish appropriate frameworks to guide the responsible development of 3D bioprinting. This article, utilizing the Arksey and O'Malley scoping review model, is designed to scrutinize the bioethical implications, legal and regulatory challenges, and medico-legal issues that are intertwined with this rapidly evolving technology.
Collapse
Affiliation(s)
| | - Filippo Gibelli
- Section of Legal Medicine, School of Law, University of Camerino, IT-62032 Macerata, Italy; (G.R.); (A.S.)
| | | |
Collapse
|
6
|
de Kanter AFJ, Jongsma KR, Verhaar MC, Bredenoord AL. The Ethical Implications of Tissue Engineering for Regenerative Purposes: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:167-187. [PMID: 36112697 PMCID: PMC10122262 DOI: 10.1089/ten.teb.2022.0033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
Tissue Engineering (TE) is a branch of Regenerative Medicine (RM) that combines stem cells and biomaterial scaffolds to create living tissue constructs to restore patients' organs after injury or disease. Over the last decade, emerging technologies such as 3D bioprinting, biofabrication, supramolecular materials, induced pluripotent stem cells, and organoids have entered the field. While this rapidly evolving field is expected to have great therapeutic potential, its development from bench to bedside presents several ethical and societal challenges. To make sure TE will reach its ultimate goal of improving patient welfare, these challenges should be mapped out and evaluated. Therefore, we performed a systematic review of the ethical implications of the development and application of TE for regenerative purposes, as mentioned in the academic literature. A search query in PubMed, Embase, Scopus, and PhilPapers yielded 2451 unique articles. After systematic screening, 237 relevant ethical and biomedical articles published between 2008 and 2021 were included in our review. We identified a broad range of ethical implications that could be categorized under 10 themes. Seven themes trace the development from bench to bedside: (1) animal experimentation, (2) handling human tissue, (3) informed consent, (4) therapeutic potential, (5) risk and safety, (6) clinical translation, and (7) societal impact. Three themes represent ethical safeguards relevant to all developmental phases: (8) scientific integrity, (9) regulation, and (10) patient and public involvement. This review reveals that since 2008 a significant body of literature has emerged on how to design clinical trials for TE in a responsible manner. However, several topics remain in need of more attention. These include the acceptability of alternative translational pathways outside clinical trials, soft impacts on society and questions of ownership over engineered tissues. Overall, this overview of the ethical and societal implications of the field will help promote responsible development of new interventions in TE and RM. It can also serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. Impact statement To our knowledge, this is the first time that the ethical implications of Tissue Engineering (TE) have been reviewed systematically. By gathering existing scholarly work and identifying knowledge gaps, this review facilitates further research into the ethical and societal implications of TE and Regenerative Medicine (RM) and other emerging biomedical technologies. Moreover, it will serve as a valuable resource and educational tool for scientists, engineers, and clinicians in the field by providing an overview of the ethical considerations relevant to their work. As such, our review may promote successful and responsible development of new strategies in TE and RM.
Collapse
Affiliation(s)
- Anne-Floor J. de Kanter
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin R. Jongsma
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Marianne C. Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annelien L. Bredenoord
- Department of Medical Humanities, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Erasmus School of Philosophy, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Harding A, Pramanik A, Basak A, Prakash C, Shankar S. Application of additive manufacturing in the biomedical field- A review. ANNALS OF 3D PRINTED MEDICINE 2023. [DOI: 10.1016/j.stlm.2023.100110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
|
8
|
Introduction to three-dimensional printing in medicine. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
9
|
Social and ethical considerations of bioprinted organs. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
10
|
Ethical challenges with 3D bioprinted tissues and organs. Trends Biotechnol 2023; 41:6-9. [PMID: 36117024 DOI: 10.1016/j.tibtech.2022.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/10/2022] [Accepted: 08/26/2022] [Indexed: 12/27/2022]
Abstract
3D Bioprinting is fast advancing to offer capabilities to process living cells into geometrically and functionally complex tissue and organ substitutes. As bioprinted constructs are making their way into clinic, the bioprinting community needs to consider the responsible innovation and translation of the bioprinted tissues and organs.
Collapse
|
11
|
Daly A. Medical 3D printing, intellectual property, and regulation. 3D Print Med 2023. [DOI: 10.1016/b978-0-323-89831-7.00014-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
12
|
Sabri AM, Ramli MA, Abdul Rahman NN, Hamdan MN. Three-Dimensional (3D) Printing of Organs according to the Perspective of Islamic Law. Asian Bioeth Rev 2023; 15:69-80. [PMID: 36618954 PMCID: PMC9816357 DOI: 10.1007/s41649-022-00210-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023] Open
Abstract
The outburst of the fourth Industrial Revolution had a significant impact on many aspects of life. The discovery of new technologies in medicine has resulted in innovations: organ transplants. The introduction of three-dimensional (3D) organ printing technology promises improvements to the field. Organs such as the liver, kidneys, heart and others are printed to meet the needs of the actual organs. However, the production of prototype organs to replace the original organs is associated with the issue of changing the creation of Allah. Accordingly, this study will analyse the issue of changing the creation of God in three-dimensional (3D) organ printing technology according to the perspective of Islamic law. Several appropriate methodologies in Islamic law (usul fiqh) are used such as legal reasoning through maqasid shariah perspective and analogical reasoning. The result shows that three-dimensional (3D) organ printing technology falls under the permissible category of changing the creation of Allah because it can save human lives. The production of organs through 3D printing involving changes included in the category of necessity (daruri) and need (hajiy) is permissible, but the category of desirable (tahsini) requires further specifications.
Collapse
Affiliation(s)
- Anir Mursyida Sabri
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohd Anuar Ramli
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Noor Naemah Abdul Rahman
- Department of Fiqh and Usul, Academy of Islamic Studies, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammad Naqib Hamdan
- Academy of Islamic Civilisation, Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia, Johor Bahru, Johor Darul Takzim Malaysia
| |
Collapse
|
13
|
de Jongh D, Massey EK, Cronin AJ, Schermer MHN, Bunnik EM. Early-Phase Clinical Trials of Bio-Artificial Organ Technology: A Systematic Review of Ethical Issues. Transpl Int 2022; 35:10751. [PMID: 36388425 PMCID: PMC9659568 DOI: 10.3389/ti.2022.10751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/07/2022] [Indexed: 01/25/2023]
Abstract
Regenerative medicine has emerged as a novel alternative solution to organ failure which circumvents the issue of organ shortage. In preclinical research settings bio-artificial organs are being developed. It is anticipated that eventually it will be possible to launch first-in-human transplantation trials to test safety and efficacy in human recipients. In early-phase transplantation trials, however, research participants could be exposed to serious risks, such as toxicity, infections and tumorigenesis. So far, there is no ethical guidance for the safe and responsible design and conduct of early-phase clinical trials of bio-artificial organs. Therefore, research ethics review committees will need to look to related adjacent fields of research, including for example cell-based therapy, for guidance. In this systematic review, we examined the literature on early-phase clinical trials in these adjacent fields and undertook a thematic analysis of relevant ethical points to consider for early-phase clinical trials of transplantable bio-artificial organs. Six themes were identified: cell source, risk-benefit assessment, patient selection, trial design, informed consent, and oversight and accountability. Further empirical research is needed to provide insight in patient perspectives, as this may serve as valuable input in determining the conditions for ethically responsible and acceptable early clinical development of bio-artificial organs.
Collapse
Affiliation(s)
- Dide de Jongh
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands,*Correspondence: Dide de Jongh,
| | - Emma K. Massey
- Department of Nephrology and Transplantation, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Antonia J. Cronin
- Guy’s and St. Thomas’ NHS Foundation Trust, London, United Kingdom,King’s College, London, United Kingdom
| | - Maartje H. N. Schermer
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | - Eline M. Bunnik
- Department of Medical Ethics, Philosophy and History of Medicine, Erasmus MC, University Medical Centre Rotterdam, Rotterdam, Netherlands
| | | |
Collapse
|
14
|
Nurmunirah Ramli, Hamdan MN, Ramli MA, Abd Razak SI, Abdullah Thaidi H‘A, Md Ariffin MF, Muhamad Zain N. A Need of Shariah Compliant Model of 3D Bioprinting. JOURNAL OF ISLAMIC THOUGHT AND CIVILIZATION 2022; 12:103-115. [DOI: 10.32350/jitc.122.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
One of the credible inventions is 3D Bioprinting or organ printing which uses layer by layer fabrication manner and is an emerging and developing technology offered by the research industry and can help the humanity in certain areas of life e.g., health, food, etc. The technology has been found beneficial in wide spectrum within the medical industry in fighting the shortage of organ and tissues donations. It is also helpful for the pharmaceuticals for determining effectiveness of new drugs and the food industry players to develop new type of edible meat for humans’ consumption. However, behind all these benefits, there are unresolved issues that need be discussed critically and addressed properly within the ethics, law and orders of Islamic worldview. This study aims to indentify the Sharī‘ah related issues raised consequent upon the invention of 3D bioprinting. The study uses data collection from scholars’ writings, academic journals, and Islamic fatwa related to bioethics. The data are analysed thematically. The results show that there is a loophole in bioethics research on Sharī‘ah compliant guidelines for the Muslims users with regards to bioprinting usage. It is suggested for the experts to do thorough research on Sharī‘ah compliant guidelines of bioprinting to be the benchmark guideline for authorities such as JAKIM in Malaysia and other authorities such as the Ministry of Health in treating the Muslim patients.
Keywords:3D Bioprinting, Ethical and Legal Issues, Organ Printing, Sharī ‘ah Compliance.
Collapse
|
15
|
Qin J, Zhao J, Wu Y, Li L, Li D, Deng H, Liu J, Zhang L. Chitosan/collagen layer-by-layer deposition for improving the esophageal regeneration ability of nanofibrous mats. Carbohydr Polym 2022; 286:119269. [DOI: 10.1016/j.carbpol.2022.119269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 11/02/2022]
|
16
|
Jin Z, He C, Fu J, Han Q, He Y. Balancing the customization and standardization: exploration and layout surrounding the regulation of the growing field of 3D-printed medical devices in China. Biodes Manuf 2022; 5:580-606. [PMID: 35194519 PMCID: PMC8853031 DOI: 10.1007/s42242-022-00187-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 01/17/2022] [Indexed: 12/23/2022]
Abstract
Medical devices are instruments and other tools that act on the human body to aid clinical diagnosis and disease treatment, playing an indispensable role in modern medicine. Nowadays, the increasing demand for personalized medical devices poses a significant challenge to traditional manufacturing methods. The emerging manufacturing technology of three-dimensional (3D) printing as an alternative has shown exciting applications in the medical field and is an ideal method for manufacturing such personalized medical devices with complex structures. However, the application of this new technology has also brought new risks to medical devices, making 3D-printed devices face severe challenges due to insufficient regulation and the lack of standards to provide guidance to the industry. This review aims to summarize the current regulatory landscape and existing research on the standardization of 3D-printed medical devices in China, and provide ideas to address these challenges. We focus on the aspects concerned by the regulatory authorities in 3D-printed medical devices, highlighting the quality system of such devices, and discuss the guidelines that manufacturers should follow, as well as the current limitations and the feasible path of regulation and standardization work based on this perspective. The key points of the whole process quality control, performance evaluation methods and the concept of whole life cycle management of 3D-printed medical devices are emphasized. Furthermore, the significance of regulation and standardization is pointed out. Finally, aspects worthy of attention and future perspectives in this field are discussed.
Collapse
Affiliation(s)
- Zhongboyu Jin
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Chaofan He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Jianzhong Fu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing, 102629 China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027 China
- Key Laboratory of Materials Processing and Mold, Zhengzhou University, Zhengzhou, 450002 China
- Cancer Center, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
17
|
Olejnik A, Semba JA, Kulpa A, Dańczak-Pazdrowska A, Rybka JD, Gornowicz-Porowska J. 3D Bioprinting in Skin Related Research: Recent Achievements and Application Perspectives. ACS Synth Biol 2022; 11:26-38. [PMID: 34967598 PMCID: PMC8787816 DOI: 10.1021/acssynbio.1c00547] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
In recent years,
significant progress has been observed in the
field of skin bioprinting, which has a huge potential to revolutionize
the way of treatment in injury and surgery. Furthermore, it may be
considered as an appropriate platform to perform the assessment and
screening of cosmetic and pharmaceutical formulations. Therefore,
the objective of this paper was to review the latest advances in 3D
bioprinting dedicated to skin applications. In order to explain the
boundaries of this technology, the architecture and functions of the
native skin were briefly described. The principles of bioprinting
methods were outlined along with a detailed description of key elements
that are required to fabricate the skin equivalents. Next, the overview
of recent progress in 3D bioprinting studies was presented. The article
also highlighted the potential applications of bioengineered skin
substituents in various fields including regenerative medicine, modeling
of diseases, and cosmetics/drugs testing. The advantages, limitations,
and future directions of this technology were also discussed.
Collapse
Affiliation(s)
- Anna Olejnik
- Faculty of Chemistry, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Julia Anna Semba
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Adam Kulpa
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
- Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | | | - Jakub Dalibor Rybka
- Center for Advanced Technology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Justyna Gornowicz-Porowska
- Department and Division of Practical Cosmetology and Skin Diseases Prophylaxis, Poznan University of Medicinal Sciences, Mazowiecka 33, 60-623 Poznań, Poland
| |
Collapse
|
18
|
Zarepour A, Hooshmand S, Gökmen A, Zarrabi A, Mostafavi E. Spinal Cord Injury Management through the Combination of Stem Cells and Implantable 3D Bioprinted Platforms. Cells 2021; 10:cells10113189. [PMID: 34831412 PMCID: PMC8620694 DOI: 10.3390/cells10113189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) has a major impact on affected patients due to its pathological consequences and absence of capacity for self-repair. Currently available therapies are unable to restore lost neural functions. Thus, there is a pressing need to develop novel treatments that will promote functional repair after SCI. Several experimental approaches have been explored to tackle SCI, including the combination of stem cells and 3D bioprinting. Implanted multipotent stem cells with self-renewing capacity and the ability to differentiate to a diversity of cell types are promising candidates for replacing dead cells in injured sites and restoring disrupted neural circuits. However, implanted stem cells need protection from the inflammatory agents in the injured area and support to guide them to appropriate differentiation. Not only are 3D bioprinted scaffolds able to protect stem cells, but they can also promote their differentiation and functional integration at the site of injury. In this review, we showcase some recent advances in the use of stem cells for the treatment of SCI, different types of 3D bioprinting methods, and the combined application of stem cells and 3D bioprinting technique for effective repair of SCI.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
| | - Sara Hooshmand
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Aylin Gökmen
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural Sciences, Bahcesehir University, Istanbul 34353, Turkey;
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey;
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: (A.Z.); or (E.M.); Tel.: +90-537-731-0182 (A.Z.); +1-617-5130314 (E.M.)
| |
Collapse
|
19
|
Jiang W, Mei H, Zhao S. Applications of 3D Bio-Printing in Tissue Engineering and Biomedicine. J Biomed Nanotechnol 2021; 17:989-1006. [PMID: 34167615 DOI: 10.1166/jbn.2021.3078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, 3D bio-printing technology has developed rapidly and become an advanced bio-manufacturing technology. At present, 3D bio-printing technology has been explored in the fields of tissue engineering, drug testing and screening, regenerative medicine and clinical disease research and has achieved many research results. Among them, the application of 3D bio-printing technology in tissue engineering has been widely concerned by researchers, and it contributing many breakthroughs in the preparation of tissue engineering scaffolds. In the future, it is possible to print fully functional tissues or organs by using 3D bio-printing technology which exhibiting great potential development prospects in th applications of organ transplantation and human body implants. It is expected to solve thebiomedical problems of organ shortage and repair of damaged tissues and organs. Besides,3Dbio-printing technology will benefit human beings in more fields. Therefore, this paper reviews the current applications, research progresses and limitations of 3D bio-printing technology in biomedical and life sciences, and discusses the main printing strategies of 3D bio-printing technology. And, the research emphases, possible development trends and suggestions of the application of 3D bio-printing are summarized to provide references for the application research of 3D bio-printing.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Haiying Mei
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| | - Shuyan Zhao
- College of Chemical Engineering, Huaqiao University, 668 Jimei Blvd., Xiamen, Fujian, 361021, China
| |
Collapse
|
20
|
Segers S. The path toward ectogenesis: looking beyond the technical challenges. BMC Med Ethics 2021; 22:59. [PMID: 33985480 PMCID: PMC8120724 DOI: 10.1186/s12910-021-00630-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 05/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Breakthroughs in animal studies make the topic of human application of ectogenesis for medical and non-medical purposes more relevant than ever before. While current data do not yet demonstrate a reasonable expectation of clinical benefit soon, several groups are investigating the feasibility of artificial uteri for extracorporeal human gestation. MAIN TEXT This paper offers the first comprehensive and up to date discussion of the most important pros and cons of human ectogenesis in light of clinical application, along with an examination of crucial ethical (and legal) issues that continued research into, and the clinical translation of, ectogenesis gives rise to. The expected benefits include advancing prenatal medicine, improving neonatal intensive care, and providing a novel pathway towards biological parenthood. This comes with important future challenges. Prior to human application, important questions have to be considered concerning translational research, experimental use of human fetuses and appropriate safety testing. Key questions are identified regarding risks to ectogenesis' subjects, and the physical impact on the pregnant person when transfer from the uterus to the artificial womb is required. Critical issues concerning proportionality have to be considered, also in terms of equity of access, relative to the envisaged application of ectogenesis. The advent of ectogenesis also comes with crucial issues surrounding abortion, extended fetal viability and moral status of the fetus. CONCLUSIONS The development of human ectogenesis will have numerous implications for clinical practice. Prior to human testing, close consideration should be given to whether (and how) ectogenesis can be introduced as a continuation of existing neonatal care, with due attention to both safety risks to the fetus and pressures on pregnant persons to undergo experimental and/or invasive procedures. Equally important is the societal debate about the acceptable applications of ectogenesis and how access to these usages should be prioritized. It should be anticipated that clinical availability of ectogenesis, possibly first as a way to save extremely premature fetuses, may spark demand for non-medical purposes, like avoiding physical and social burdens of pregnancy.
Collapse
Affiliation(s)
- Seppe Segers
- Department of Philosophy and Moral Sciences, Bioethics Institute Ghent, Ghent University, Blandijnberg 2, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Jamieson C, Keenan P, Kirkwood D, Oji S, Webster C, Russell KA, Koch TG. A Review of Recent Advances in 3D Bioprinting With an Eye on Future Regenerative Therapies in Veterinary Medicine. Front Vet Sci 2021; 7:584193. [PMID: 33665213 PMCID: PMC7921312 DOI: 10.3389/fvets.2020.584193] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/21/2020] [Indexed: 01/04/2023] Open
Abstract
3D bioprinting is a rapidly evolving industry that has been utilized for a variety of biomedical applications. It differs from traditional 3D printing in that it utilizes bioinks comprised of cells and other biomaterials to allow for the generation of complex functional tissues. Bioprinting involves computational modeling, bioink preparation, bioink deposition, and subsequent maturation of printed products; it is an intricate process where bioink composition, bioprinting approach, and bioprinter type must be considered during construct development. This technology has already found success in human studies, where a variety of functional tissues have been generated for both in vitro and in vivo applications. Although the main driving force behind innovation in 3D bioprinting has been utility in human medicine, recent efforts investigating its veterinary application have begun to emerge. To date, 3D bioprinting has been utilized to create bone, cardiovascular, cartilage, corneal and neural constructs in animal species. Furthermore, the use of animal-derived cells and various animal models in human research have provided additional information regarding its capacity for veterinary translation. While these studies have produced some promising results, technological limitations as well as ethical and regulatory challenges have impeded clinical acceptance. This article reviews the current understanding of 3D bioprinting technology and its recent advancements with a focus on recent successes and future translation in veterinary medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas G. Koch
- Reproductive Health and Biotechnology Lab, Department of Biomedical Science, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
22
|
Fonseca AC, Melchels FPW, Ferreira MJS, Moxon SR, Potjewyd G, Dargaville TR, Kimber SJ, Domingos M. Emulating Human Tissues and Organs: A Bioprinting Perspective Toward Personalized Medicine. Chem Rev 2020; 120:11128-11174. [PMID: 32937071 PMCID: PMC7645917 DOI: 10.1021/acs.chemrev.0c00342] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 02/06/2023]
Abstract
The lack of in vitro tissue and organ models capable of mimicking human physiology severely hinders the development and clinical translation of therapies and drugs with higher in vivo efficacy. Bioprinting allow us to fill this gap and generate 3D tissue analogues with complex functional and structural organization through the precise spatial positioning of multiple materials and cells. In this review, we report the latest developments in terms of bioprinting technologies for the manufacturing of cellular constructs with particular emphasis on material extrusion, jetting, and vat photopolymerization. We then describe the different base polymers employed in the formulation of bioinks for bioprinting and examine the strategies used to tailor their properties according to both processability and tissue maturation requirements. By relating function to organization in human development, we examine the potential of pluripotent stem cells in the context of bioprinting toward a new generation of tissue models for personalized medicine. We also highlight the most relevant attempts to engineer artificial models for the study of human organogenesis, disease, and drug screening. Finally, we discuss the most pressing challenges, opportunities, and future prospects in the field of bioprinting for tissue engineering (TE) and regenerative medicine (RM).
Collapse
Affiliation(s)
- Ana Clotilde Fonseca
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra, Rua Sílvio Lima-Polo II, 3030-790 Coimbra, Portugal
| | - Ferry P. W. Melchels
- Institute
of Biological Chemistry, Biophysics and Bioengineering, School of
Engineering and Physical Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, U.K.
| | - Miguel J. S. Ferreira
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| | - Samuel R. Moxon
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Geoffrey Potjewyd
- Division
of Neuroscience and Experimental Psychology, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Tim R. Dargaville
- Institute
of Health and Biomedical Innovation, Science and Engineering Faculty, Queensland University of Technology, Queensland 4001, Australia
| | - Susan J. Kimber
- Division
of Cell Matrix Biology and Regenerative Medicine, School of Biological
Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, U.K.
| | - Marco Domingos
- Department
of Mechanical, Aerospace and Civil Engineering, School of Engineering,
Faculty of Science and Engineering, The
University of Manchester, Manchester M13 9PL, U.K.
| |
Collapse
|
23
|
Horst A, McDonald F. Uncertain But Not Unregulated: Medical Product Regulation in the Light of Three-Dimensional Printed Medical Products. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:248-257. [PMID: 36654918 PMCID: PMC9586235 DOI: 10.1089/3dp.2020.0076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
As applications of three-dimensional (3D) printed medical products are being translated into clinical practice, stakeholders are increasingly concerned about whether current regulatory frameworks are able to regulate such products. With more additive manufacturing (AM) and 3D printed medical products being brought into clinical use and the assumption that usage will be more widespread in the future, a (perceived) lack of or inadequacy of regulation by some stakeholders is often depicted as a hindrance to the comprehensive translation of AM and 3D printed medical products into clinical use. This article addresses this uncertainty by analyzing existing medical product regulations and their applicability to AM and 3D printed medical products to assess the degree of regulatory oversight they administer. It concludes that there are specific legal questions that need to be clarified, but the products are not expected to "disrupt" existing legal frameworks.
Collapse
Affiliation(s)
- Antonia Horst
- Faculty of Law, Australian Centre for Health Law Research, Queensland University of Technology, Brisbane, Australia
- ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
- Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
- Address correspondence to: Antonia Horst, Faculty of Law, Australian Centre for Health Law Research, Queensland University of Technology, 2 George Street, Gardens Point Campus, Brisbane 4000, Australia
| | - Fiona McDonald
- Faculty of Law, Australian Centre for Health Law Research, Queensland University of Technology, Brisbane, Australia
- ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Australia
| |
Collapse
|
24
|
Affiliation(s)
- Matthew L. Bedell
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Adam M. Navara
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| | - Yingying Du
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, People’s Republic of China
- Institute of Regulatory Science for Medical Devices, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, 6500 South Main Street, Houston, Texas 77030, United States
| |
Collapse
|
25
|
Vijayavenkataraman S. Nerve guide conduits for peripheral nerve injury repair: A review on design, materials and fabrication methods. Acta Biomater 2020; 106:54-69. [PMID: 32044456 DOI: 10.1016/j.actbio.2020.02.003] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022]
Abstract
Peripheral nerves can sustain injuries due to loss of structure and/or function of peripheral nerves because of accident, trauma and other causes, which leads to partial or complete loss of sensory, motor, and autonomic functions and neuropathic pain. Even with the extensive knowledge on the pathophysiology and regeneration mechanisms of peripheral nerve injuries (PNI), reliable treatment methods that ensure full functional recovery are scant. Nerve autografting is the current gold standard for treatment of PNI. Given the limitations of autografts including donor site morbidity and limited supply, alternate treatment methods are being pursued by the researchers. Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts. The anatomy of peripheral nerves, classification of PNI, and current treatment methods are briefly yet succinctly reviewed. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods adopted is presented in this work. Much progress had been made in all the aspects of making an NGC, including the design, materials and fabrication techniques. The advent of advanced technologies such as additive manufacturing and 3D bioprinting could be beneficial in easing the production of patient-specific NGCs. NGCs with supporting cells or stem cells, NGCs loaded with neurotropic factors and drugs, and 4D printed NGCs are some of the futuristic areas of interest. STATEMENT OF SIGNIFICANCE: Neural guide conduits (NGCs) are increasingly being considered as a potential alternative to nerve autografts in the treatment of peripheral nerve injuries. A detailed review on the various designs of NGCs, the different materials used for making the NGCs, and the fabrication methods (including Additive Manufacturing) adopted is presented in this work.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Division of Engineering, New York University Abu Dhabi, UAE; Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, NY, USA.
| |
Collapse
|
26
|
Singh S, Choudhury D, Yu F, Mironov V, Naing MW. In situ bioprinting - Bioprinting from benchside to bedside? Acta Biomater 2020; 101:14-25. [PMID: 31476384 DOI: 10.1016/j.actbio.2019.08.045] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/14/2019] [Accepted: 08/28/2019] [Indexed: 01/17/2023]
Abstract
Bioprinting technologies have been advancing at the convergence of automation, digitalization, and new tissue engineering (TE) approaches. In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when de novo tissues are to be printed directly on the intended anatomical location in the living body. To date, few attempts have been made to fabricate in situ tissues, which can be safely arrested and immobilized while printing in preclinical living models. In this review, we have explained the need and utility for in situ bioprinting with regard to the conventional bioprinting approach. The two main in situ bioprinting approaches, namely, robotic arm and handheld approaches, have been defined and differentiated. The various studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. Finally, we have also discussed the advantages, challenges, and the prospects in the field of in situ bioprinting modalities in line with parallel technological advancements. STATEMENT OF SIGNIFICANCE: In situ bioprinting may be favored during certain situations when compared with the conventional in vitro bioprinting when tissues are to be fabricated or repaired directly on the intended anatomical location in the living body, using the body as a bioreactor. However, the technology requires a lot more improvement to fabricate complex tissues in situ, which could eventually be possible through the multi-disciplinary innovations in tissue engineering. This review explains the need and utility and current approaches by handheld and robotic modes for in situ bioprinting. The latest studies involving in situ fabrication of skin, bone, and cartilage tissues have been elucidated. The review also covers the background studies, advantages, technical and ethical challenges, and possible suggestions for future improvements.
Collapse
|
27
|
Abstract
3D bioprinting involves engineering live cells into a 3D structure, using a 3D printer to print cells, often together with a compatible 3D scaffold. 3D-printed cells and tissues may be used for a range of purposes including medical research, in vitro drug testing, and in vivo transplantation. The inclusion of living cells and biomaterials in the 3D printing process raises ethical, policy, and regulatory issues at each stage of the bioprinting process that include the source of cells and materials, stability and biocompatibility of cells and materials, disposal of 3D-printed materials, intended use, and long-term effects. This chapter focuses on the ethical issues that arise from 3D bioprinting in the lab-from consideration of the source of cells and materials, ensuring their quality and safety, through to testing of bioprinted materials in animal and human trials. It also provides guidance on where to seek information concerning appropriate regulatory frameworks and guidelines, including on classification and patenting of 3D-bioprinted materials, and identifies regulatory gaps that deserve attention.
Collapse
Affiliation(s)
- Eliza Goddard
- ARC Centre of Excellence for Electromaterials Science, Humanities and Social Sciences, La Trobe University, Melbourne, VIC, Australia.
| | - Susan Dodds
- ARC Centre of Excellence for Electromaterials Science, Office of the Deputy Vice-Chancellor (Research and Industry Engagement), La Trobe University, Melbourne, VIC, Australia.
| |
Collapse
|
28
|
Jones DG. Three-dimensional Printing in Anatomy Education: Assessing Potential Ethical Dimensions. ANATOMICAL SCIENCES EDUCATION 2019; 12:435-443. [PMID: 30554454 DOI: 10.1002/ase.1851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/05/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
New technological developments have frequently had major consequences for anatomy education, and have raised ethical queries for anatomy educators. The advent of three-dimensional (3D) printing of human material is showing considerable promise as an educational tool that fits alongside cadaveric dissection, plastination, computer simulation, and anatomical models and images. At first glance its ethical implications appear minimal, and yet the more extensive ethical implications around clinical bioprinting suggest that a cautious approach to 3D printing in the dissecting room is in order. Following an overview of early groundbreaking studies into 3D printing of prosections, organs, and archived fetal material, it has become clear that their origin, using donated bodies or 3D files available on the Internet, has ethical overtones. The dynamic presented by digital technology raises questions about the nature of the consent provided by the body donor, reasons for 3D printing, the extent to which it will be commercialized, and its comparative advantages over other available teaching resources. In exploring questions like these, the place of 3D printing within a hierarchical sequence of value is outlined. Discussion centers on the significance of local usage of prints, the challenges created by regarding 3D prints as disposable property, the importance of retaining the human side to anatomy, and the unacceptability of obtaining 3D-printed material from unclaimed bodies. It is concluded that the scientific tenor of 3D processes represents a move away from the human person, so that efforts are required to prevent them accentuating depersonalization and commodification.
Collapse
|
29
|
Horst A, McDonald F, Hutmacher DW. A clarion call for understanding regulatory processes for additive manufacturing in the health sector. Expert Rev Med Devices 2019; 16:405-412. [PMID: 31037978 DOI: 10.1080/17434440.2019.1609353] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
INTRODUCTION As Additive Manufacturing (AM) in the health sector evolves to the point where products can be translated into the clinic, these manufactured goods need to be assessed by regulators in order for such products to be manufactured, sold, and used in accordance with the law. In this article, the authors argue that if AM products in the health sector are to be regulated in the near future, stakeholders involved in translational research need to understand the challenges faced by both regulators and industry. We portray different points of possible dissonance for AM medical products with existing regulatory frameworks. Hence, we advocate for stakeholders to proactively provide solutions for regulatory processes for products emerging from AM in the health sector. AREAS COVERED The publication discusses the need for clear definitions and standards to enable translation of AM research into the health sector. Key literature around legal and regulatory challenges applicable to this topic was synthesized. EXPERT OPINION We argue that stakeholders need to develop regulatory-rooted risk profiles of the respective AM medical products. The terminology must be defined clearly and used consistently. Standards need to be designed for the purpose of advancing regulatory processes.
Collapse
Affiliation(s)
- Antonia Horst
- a Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation , Queensland University of Technology , Kelvin Grove , Australia.,b ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation (IHBI) , Queensland University of Technology , Kelvin Grove , Australia.,c Australian Centre for Health Law Research, Faculty of Law , Queensland University of Technology , Brisbane , Australia
| | - Fiona McDonald
- b ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation (IHBI) , Queensland University of Technology , Kelvin Grove , Australia.,c Australian Centre for Health Law Research, Faculty of Law , Queensland University of Technology , Brisbane , Australia
| | - Dietmar W Hutmacher
- a Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation , Queensland University of Technology , Kelvin Grove , Australia.,b ARC ITTC in Additive Biomanufacturing, Institute of Health and Biomedical Innovation (IHBI) , Queensland University of Technology , Kelvin Grove , Australia.,d Centre for Behavioural Economics , Society and Technology, Queensland University of Technology, Kelvin Grove , Australia
| |
Collapse
|
30
|
Wu B, Li S, Shi J, Vijayavenkataraman S, Lu WF, Trau D, Fuh JYH. Homogeneous cell printing on porous PCL/F127 tissue engineering scaffolds. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.bprint.2018.e00030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Guerra-Bretaña RM, Flórez-Rendón AL. Impact of regulations on innovation in the field of medical devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1590/2446-4740.180054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Zhang S, Vijayavenkataraman S, Lu WF, Fuh JYH. A review on the use of computational methods to characterize, design, and optimize tissue engineering scaffolds, with a potential in 3D printing fabrication. J Biomed Mater Res B Appl Biomater 2018; 107:1329-1351. [DOI: 10.1002/jbm.b.34226] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/26/2018] [Accepted: 08/12/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Shuo Zhang
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Sanjairaj Vijayavenkataraman
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Wen Feng Lu
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| | - Jerry Y H Fuh
- Department of Mechanical EngineeringNational University of Singapore, 9 Engineering Drive 1 Singapore 117576 Singapore
| |
Collapse
|
33
|
Wu B, Takeshita N, Wu Y, Vijayavenkataraman S, Ho KY, Lu WF, Fuh JYH. Pluronic F127 blended polycaprolactone scaffolds via e-jetting for esophageal tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:140. [PMID: 30120625 DOI: 10.1007/s10856-018-6148-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Several attempts have been made to fabricate esophageal tissue engineering scaffolds. However, most of these scaffolds possess randomly oriented fibres and uncontrollable pore sizes. In order to mimic the native esophageal tissue structure, electro-hydrodynamic jetting (e-jetting) was used in this study to fabricate scaffolds with aligned fibres and controlled pore size. A hydrophilic additive, Pluronic F127 (F127), was blended with polycaprolactone (PCL) to improve the wettability of the scaffolds and hence the cell adhesion. PCL/F127 composite scaffolds with different weight ratios (0-12%) were fabricated. The wettability, phase composition, and the mechanical properties of the fabricated scaffolds were investigated. The results show that the e-jetted scaffolds have controllable fibres orientated in two perpendicular directions, which are similar to the human esophagus structure and suitable pore size for cell infiltration. In addition, the scaffolds with 8% F127 exhibited better wettability (contact angle of 14°) and an ultimate tensile strength (1.2 MPa) that mimics the native esophageal tissue. Furthermore, primary human esophageal fibroblasts were seeded on the e-jetted scaffolds. PCL/F127 scaffolds showed enhanced cell proliferation and expression of the vascular endothelial growth factor (VEGF) compared to pristine PCL scaffolds (1.5- and 25.8- fold increase, respectively; P < 0.001). An in vitro wound model made using the PCL/F127 scaffolds showed better cell migration than the PCL scaffolds. In summary, the PCL/F127 e-jetted scaffolds offer a promising strategy for the esophagus tissue repair.
Collapse
Affiliation(s)
- Bin Wu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Nobuyoshi Takeshita
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, 119228, Singapore
| | - Yang Wu
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | | | - Khek Yu Ho
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
- Division of Gastroenterology and Hepatology, National University Health System, Singapore, 119228, Singapore
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore.
- National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
34
|
Vijayavenkataraman S, Zhang L, Zhang S, Hsi Fuh JY, Lu WF. Triply Periodic Minimal Surfaces Sheet Scaffolds for Tissue Engineering Applications: An Optimization Approach toward Biomimetic Scaffold Design. ACS APPLIED BIO MATERIALS 2018; 1:259-269. [DOI: 10.1021/acsabm.8b00052] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Lei Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Shuo Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575
| |
Collapse
|
35
|
Vijayavenkataraman S, Zhang S, Thaharah S, Sriram G, Lu WF, Fuh JYH. Electrohydrodynamic Jet 3D Printed Nerve Guide Conduits (NGCs) for Peripheral Nerve Injury Repair. Polymers (Basel) 2018; 10:E753. [PMID: 30960678 PMCID: PMC6403768 DOI: 10.3390/polym10070753] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 07/05/2018] [Accepted: 07/06/2018] [Indexed: 12/31/2022] Open
Abstract
The prevalence of peripheral nerve injuries resulting in loss of motor function, sensory function, or both, is on the rise. Artificial Nerve Guide Conduits (NGCs) are considered an effective alternative treatment for autologous nerve grafts, which is the current gold-standard for treating peripheral nerve injuries. In this study, Polycaprolactone-based three-dimensional porous NGCs are fabricated using Electrohydrodynamic jet 3D printing (EHD-jetting) for the first time. The main advantage of this technique is that all the scaffold properties, namely fibre diameter, pore size, porosity, and fibre alignment, can be controlled by tuning the process parameters. In addition, EHD-jetting has the advantages of customizability, repeatability, and scalability. Scaffolds with five different pore sizes (125 to 550 μm) and porosities (65 to 88%) are fabricated and the effect of pore size on the mechanical properties is evaluated. In vitro degradation studies are carried out to investigate the degradation profile of the scaffolds and determine the influence of pore size on the degradation rate and mechanical properties at various degradation time points. Scaffolds with a pore size of 125 ± 15 μm meet the requirements of an optimal NGC structure with a porosity greater than 60%, mechanical properties closer to those of the native peripheral nerves, and an optimal degradation rate matching the nerve regeneration rate post-injury. The in vitro neural differentiation studies also corroborate the same results. Cell proliferation was highest in the scaffolds with a pore size of 125 ± 15 μm assessed by the PrestoBlue assay. The Reverse Transcription-Polymerase Chain Reaction (RT-PCR) results involving the three most important genes concerning neural differentiation, namely β3-tubulin, NF-H, and GAP-43, confirm that the scaffolds with a pore size of 125 ± 15 μm have the highest gene expression of all the other pore sizes and also outperform the electrospun Polycaprolactone (PCL) scaffold. The immunocytochemistry results, expressing the two important nerve proteins β3-tubulin and NF200, showed directional alignment of the neurite growth along the fibre direction in EHD-jet 3D printed scaffolds.
Collapse
Affiliation(s)
| | - Shuo Zhang
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Siti Thaharah
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Gopu Sriram
- Faculty of Dentistry, National University of Singapore, Singapore 119083, Singapore.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117575, Singapore.
- NUS Research Institute, Suzhou Industry Park, Suzhou 215123, China.
| |
Collapse
|
36
|
Vijayavenkataraman S, Yan WC, Lu WF, Wang CH, Fuh JYH. 3D bioprinting of tissues and organs for regenerative medicine. Adv Drug Deliv Rev 2018; 132:296-332. [PMID: 29990578 DOI: 10.1016/j.addr.2018.07.004] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 05/27/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
3D bioprinting is a pioneering technology that enables fabrication of biomimetic, multiscale, multi-cellular tissues with highly complex tissue microenvironment, intricate cytoarchitecture, structure-function hierarchy, and tissue-specific compositional and mechanical heterogeneity. Given the huge demand for organ transplantation, coupled with limited organ donors, bioprinting is a potential technology that could solve this crisis of organ shortage by fabrication of fully-functional whole organs. Though organ bioprinting is a far-fetched goal, there has been a considerable and commendable progress in the field of bioprinting that could be used as transplantable tissues in regenerative medicine. This paper presents a first-time review of 3D bioprinting in regenerative medicine, where the current status and contemporary issues of 3D bioprinting pertaining to the eleven organ systems of the human body including skeletal, muscular, nervous, lymphatic, endocrine, reproductive, integumentary, respiratory, digestive, urinary, and circulatory systems were critically reviewed. The implications of 3D bioprinting in drug discovery, development, and delivery systems are also briefly discussed, in terms of in vitro drug testing models, and personalized medicine. While there is a substantial progress in the field of bioprinting in the recent past, there is still a long way to go to fully realize the translational potential of this technology. Computational studies for study of tissue growth or tissue fusion post-printing, improving the scalability of this technology to fabricate human-scale tissues, development of hybrid systems with integration of different bioprinting modalities, formulation of new bioinks with tuneable mechanical and rheological properties, mechanobiological studies on cell-bioink interaction, 4D bioprinting with smart (stimuli-responsive) hydrogels, and addressing the ethical, social, and regulatory issues concerning bioprinting are potential futuristic focus areas that would aid in successful clinical translation of this technology.
Collapse
|
37
|
Vijayavenkataraman S. A Perspective on Bioprinting Ethics. Artif Organs 2018; 40:1033-1038. [PMID: 28374411 DOI: 10.1111/aor.12873] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 09/01/2016] [Indexed: 12/12/2022]
|
38
|
Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2018; 107:261-275. [DOI: 10.1016/j.ijbiomac.2017.08.171] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/16/2023]
|
39
|
Vermeulen N, Haddow G, Seymour T, Faulkner-Jones A, Shu W. 3D bioprint me: a socioethical view of bioprinting human organs and tissues. JOURNAL OF MEDICAL ETHICS 2017; 43:618-624. [PMID: 28320774 PMCID: PMC5827711 DOI: 10.1136/medethics-2015-103347] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 05/06/2023]
Abstract
In this article, we review the extant social science and ethical literature on three-dimensional (3D) bioprinting. 3D bioprinting has the potential to be a 'game-changer', printing human organs on demand, no longer necessitating the need for living or deceased human donation or animal transplantation. Although the technology is not yet at the level required to bioprint an entire organ, 3D bioprinting may have a variety of other mid-term and short-term benefits that also have positive ethical consequences, for example, creating alternatives to animal testing, filling a therapeutic need for minors and avoiding species boundary crossing. Despite a lack of current socioethical engagement with the consequences of the technology, we outline what we see as some preliminary practical, ethical and regulatory issues that need tackling. These relate to managing public expectations and the continuing reliance on technoscientific solutions to diseases that affect high-income countries. Avoiding prescribing a course of action for the way forward in terms of research agendas, we do briefly outline one possible ethical framework 'Responsible Research Innovation' as an oversight model should 3D bioprinting promises are ever realised. 3D bioprinting has a lot to offer in the course of time should it move beyond a conceptual therapy, but is an area that requires ethical oversight and regulation and debate, in the here and now. The purpose of this article is to begin that discussion.
Collapse
Affiliation(s)
- Niki Vermeulen
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| | - Gill Haddow
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| | - Tirion Seymour
- Department of Science, Technology and Innovation Studies, University of Edinburgh, Edinburgh, UK
| | - Alan Faulkner-Jones
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, UK
| |
Collapse
|
40
|
Vijayavenkataraman S, Shuo Z, Fuh JYH, Lu WF. Design of Three-Dimensional Scaffolds with Tunable Matrix Stiffness for Directing Stem Cell Lineage Specification: An In Silico Study. Bioengineering (Basel) 2017; 4:E66. [PMID: 28952545 PMCID: PMC5615312 DOI: 10.3390/bioengineering4030066] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 07/24/2017] [Accepted: 07/25/2017] [Indexed: 12/22/2022] Open
Abstract
Tissue engineering is a multi-disciplinary area of research bringing together the fields of engineering and life sciences with the aim of fabricating tissue constructs aiding in the regeneration of damaged tissues and organs. Scaffolds play a key role in tissue engineering, acting as the templates for tissue regeneration and guiding the growth of new tissue. The use of stem cells in tissue engineering and regenerative medicine becomes indispensable, especially for applications involving successful long-term restoration of continuously self-renewing tissues, such as skin. The differentiation of stem cells is controlled by a number of cues, of which the nature of the substrate and its innate stiffness plays a vital role in stem cell fate determination. By tuning the substrate stiffness, the differentiation of stem cells can be directed to the desired lineage. Many studies on the effect of substrate stiffness on stem cell differentiation has been reported, but most of those studies are conducted with two-dimensional (2D) substrates. However, the native in vivo tissue microenvironment is three-dimensional (3D) and life science researchers are moving towards 3D cell cultures. Porous 3D scaffolds are widely used by the researchers for 3D cell culture and the properties of such scaffolds affects the cell attachment, proliferation, and differentiation. To this end, the design of porous scaffolds directly influences the stem cell fate determination. There exists a need to have 3D scaffolds with tunable stiffness for directing the differentiation of stem cells into the desired lineage. Given the limited number of biomaterials with all the desired properties, the design of the scaffolds themselves could be used to tune the matrix stiffness. This paper is an in silico study, investigating the effect of various scaffold parameter, namely fiber width, porosity, number of unit cells per layer, number of layers, and material selection, on the matrix stiffness, thereby offering a guideline for design of porous tissue engineering scaffolds with tunable matrix stiffness for directing stem cell lineage specification.
Collapse
Affiliation(s)
| | - Zhang Shuo
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
- NUS Research Institute, Suzhou Industry Park, Suzhou 215123, China.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Singapore 117576, Singapore.
| |
Collapse
|
41
|
Vijayavenkataraman S, Fuh JYH, Lu WF. 3D Printing and 3D Bioprinting in Pediatrics. Bioengineering (Basel) 2017; 4:E63. [PMID: 28952542 PMCID: PMC5615309 DOI: 10.3390/bioengineering4030063] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/04/2017] [Accepted: 07/10/2017] [Indexed: 12/14/2022] Open
Abstract
Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.
Collapse
Affiliation(s)
- Sanjairaj Vijayavenkataraman
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Jerry Y H Fuh
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| | - Wen Feng Lu
- Department of Mechanical Engineering, National University of Singapore (NUS), Block EA 02-17, 9 Engineering Drive 1, Singapore 117576, Singapore.
| |
Collapse
|