1
|
Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2025; 43:195-224. [PMID: 39386221 PMCID: PMC11462153 DOI: 10.1016/j.bioactmat.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/04/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024] Open
Abstract
The epithelium is one of the important tissues in the body as it plays a crucial barrier role serving as a gateway into and out of the body. Most organs in the body contain an epithelial tissue component, where the tightly connected, organ-specific epithelial cells organize into cysts, invaginations, or tubules, thereby performing distinct to endocrine or exocrine secretory functions. Despite the significance of epithelium, engineering functional epithelium in vitro has remained a challenge due to it is special architecture, heterotypic composition of epithelial tissues, and most importantly, difficulty in attaining the apico-basal and planar polarity of epithelial cells. Bioprinting has brought a paradigm shift in fabricating such apico-basal polarized tissues. In this review, we provide an overview of epithelial tissues and provide insights on recapitulating their cellular arrangement and polarization to achieve epithelial function. We describe the different bioprinting techniques that have been successful in engineering polarized epithelium, which can serve as in vitro models for understanding homeostasis and studying diseased conditions. We also discuss the different attempts that have been investigated to study these 3D bioprinted engineered epithelium for preclinical use. Finally, we highlight the challenges and the opportunities that need to be addressed for translation of 3D bioprinted epithelial tissues towards paving way for personalized healthcare in the future.
Collapse
Affiliation(s)
- Irem Deniz Derman
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Joseph Christakiran Moses
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Taino Rivera
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
| | - Ibrahim T. Ozbolat
- Engineering Science and Mechanics Department, Penn State University, University Park, PA, 16802, USA
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
- Biomedical Engineering Department, Penn State University, University Park, PA, 16802, USA
- Materials Research Institute, Penn State University, University Park, PA, 16802, USA
- Cancer Institute, Penn State University, University Park, PA, 16802, USA
- Neurosurgery Department, Penn State University, University Park, PA, 16802, USA
- Department of Medical Oncology, Cukurova University, Adana, 01330, Turkey
| |
Collapse
|
2
|
Rayat Pisheh H, Haghdel M, Jahangir M, Hoseinian MS, Rostami Yasuj S, Sarhadi Roodbari A. Effective and new technologies in kidney tissue engineering. Front Bioeng Biotechnol 2024; 12:1476510. [PMID: 39479295 PMCID: PMC11521926 DOI: 10.3389/fbioe.2024.1476510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Kidney disease encompasses a wide spectrum of conditions, ranging from simple infections to chronic kidney disease. When the kidneys are unable to filter blood and remove waste products, these abnormalities can lead to kidney failure. In severe cases of kidney failure, kidney transplantation is considered the only definitive treatment. Worldwide, the World Health Organization (WHO) repeatedly emphasizes the importance of organ donation and increasing transplantation rates. Many countries implement national programs to promote the culture of organ donation and improve patient access to kidney transplantation. The extent to which this procedure is performed varies across countries and is influenced by several factors, including the volume of organ donation, medical infrastructure, access to technology and health policies. However, a kidney transplant comes with challenges and problems that impact its success. Kidney tissue engineering is a new approach that shows promise for repairing and replacing damaged kidney tissue. This article reviews recent advances in kidney tissue engineering, focusing on engineered structures such as hydrogels, electrospinning, 3D bioprinting, and microfluidic systems. By mimicking the extracellular environment of the kidney, these structures provide suitable conditions for the growth and development of kidney cells. The role of these structures in the formation of blood vessels, the mimicry of kidney functions and the challenges in this field were also discussed. The results of this study show that kidney tissue engineering has high potential for treating kidney diseases and reducing the need for kidney transplantation. However, to achieve clinical application of this technology, further research is required to improve the biocompatibility, vascularization and long-term performance of engineered tissues.
Collapse
Affiliation(s)
- Hossein Rayat Pisheh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mobin Haghdel
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahboube Jahangir
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Monireh Sadat Hoseinian
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shaghayegh Rostami Yasuj
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Sarhadi Roodbari
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Beeren IAO, Morgan FLC, Rademakers T, Bauer J, Dijkstra PJ, Moroni L, Baker MB. Well-Defined Synthetic Copolymers with Pendant Aldehydes Form Biocompatible Strain-Stiffening Hydrogels and Enable Competitive Ligand Displacement. J Am Chem Soc 2024; 146:24330-24347. [PMID: 39163519 PMCID: PMC11378284 DOI: 10.1021/jacs.4c04988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Dynamic hydrogels are attractive platforms for tissue engineering and regenerative medicine due to their ability to mimic key extracellular matrix (ECM) mechanical properties like strain-stiffening and stress relaxation while enabling enhanced processing characteristics like injectability, 3D printing, and self-healing. Systems based on imine-type dynamic covalent chemistry (DCvC) have become increasingly popular. However, most reported polymers comprising aldehyde groups are based on either end-group-modified synthetic or side-chain-modified natural polymers; synthetic versions of side-chain-modified polymers are noticeably absent. To facilitate access to new classes of dynamic hydrogels, we report the straightforward synthesis of a water-soluble copolymer with a tunable fraction of pendant aldehyde groups (12-64%) using controlled radical polymerization and their formation into hydrogel biomaterials with dynamic cross-links. We found the polymer synthesis to be well-controlled with the determined reactivity ratios consistent with a blocky gradient microarchitecture. Subsequently, we observed fast gelation kinetics with imine-type cross-linking. We were able to vary hydrogel stiffness from ≈2 to 20 kPa, tune the onset of strain-stiffening toward a biologically relevant regime (σc ≈ 10 Pa), and demonstrate cytocompatibility using human dermal fibroblasts. Moreover, to begin to mimic the dynamic biochemical nature of the native ECM, we highlight the potential for temporal modulation of ligands in our system to demonstrate ligand displacement along the copolymer backbone via competitive binding. The combination of highly tunable composition, stiffness, and strain-stiffening, in conjunction with spatiotemporal control of functionality, positions these cytocompatible copolymers as a powerful platform for the rational design of next-generation synthetic biomaterials.
Collapse
Affiliation(s)
- Ivo A O Beeren
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Francis L C Morgan
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Jurica Bauer
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Pieter J Dijkstra
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Lorenzo Moroni
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Matthew B Baker
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Addario G, Fernández-Pérez J, Formica C, Karyniotakis K, Herkens L, Djudjaj S, Boor P, Moroni L, Mota C. 3D Humanized Bioprinted Tubulointerstitium Model to Emulate Renal Fibrosis In Vitro. Adv Healthc Mater 2024:e2400807. [PMID: 39152919 DOI: 10.1002/adhm.202400807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/07/2024] [Indexed: 08/19/2024]
Abstract
Chronic kidney disease (CKD) leads to a gradual loss of kidney function, with fibrosis as pathological endpoint, which is characterized by extracellular matrix (ECM) deposition and remodeling. Traditionally, in vivo models are used to study interstitial fibrosis, through histological characterization of biopsy tissue. However, ethical considerations and the 3Rs (replacement, reduction, and refinement) regulations emphasizes the need for humanized 3D in vitro models. This study introduces a bioprinted in vitro model which combines primary human cells and decellularized and partially digested extracellular matrix (ddECM). A protocol was established to decellularize kidney pig tissue and the ddECM was used to encapsulate human renal cells. To investigate fibrosis progression, cells were treated with transforming growth factor beta 1 (TGF-β1), and the mechanical properties of the ddECM hydrogel were modulated using vitamin B2 crosslinking. The bioprinting perfusable model replicates the renal tubulointerstitium. Results show an increased Young's modulus over time, together with the increase of ECM components and cell dedifferentiation toward myofibroblasts. Multiple fibrotic genes resulted upregulated, and the model closely resembled fibrotic human tissue in terms of collagen deposition. This 3D bioprinted model offers a more physiologically relevant platform for studying kidney fibrosis, potentially improving disease progression research and high-throughput drug screening.
Collapse
Affiliation(s)
- Gabriele Addario
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ET, The Netherlands
| | - Julia Fernández-Pérez
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ET, The Netherlands
| | - Chiara Formica
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ET, The Netherlands
| | | | - Lea Herkens
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Sonja Djudjaj
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, RWTH University of Aachen, 52074, Aachen, Germany
- Electron Microscopy Facility, RWTH University of Aachen, 52074, Aachen, Germany
| | - Lorenzo Moroni
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ET, The Netherlands
| | - Carlos Mota
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, 6229 ET, The Netherlands
| |
Collapse
|
5
|
Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, Zhou X, Yang B, Chen Z. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024; 12:1425-1448. [PMID: 38374788 DOI: 10.1039/d3bm01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
To date, organ transplantation remains an effective method for treating end-stage diseases of various organs. In recent years, despite the continuous development of organ transplantation technology, a variety of problems restricting its progress have emerged one after another, and the shortage of donors is at the top of the list. Bioprinting is a very useful tool that has huge application potential in many fields of life science and biotechnology, among which its use in medicine occupies a large area. With the development of bioprinting, advances in medicine have focused on printing cells and tissues for tissue regeneration and reconstruction of viable human organs, such as the heart, kidneys, and bones. In recent years, with the development of organ transplantation, three-dimensional (3D) bioprinting has played an increasingly important role in this field, giving rise to many unsolved problems, including a shortage of organ donors. This review respectively introduces the development of 3D bioprinting as well as its working principles and main applications in the medical field, especially in the applications, and advancements and challenges of 3D bioprinting in organ transplantation. With the continuous update and progress of printing technology and its deeper integration with the medical field, many obstacles will have new solutions, including tissue repair and regeneration, organ reconstruction, etc., especially in the field of organ transplantation. 3D printing technology will provide a better solution to the problem of donor shortage.
Collapse
Affiliation(s)
- Guobin Huang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Yuanyuan Zhao
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Dong Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Lai Wei
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhiping Hu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Junbo Li
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Xi Zhou
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Bo Yang
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Zhishui Chen
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology; Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, No. 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
6
|
Abstract
Bioprinting, as a groundbreaking technology, enables the fabrication of biomimetic tissues and organs with highly complex structures, multiple cell types, mechanical heterogeneity, and diverse functional gradients. With the growing demand for organ transplantation and the limited number of organ donors, bioprinting holds great promise for addressing the organ shortage by manufacturing completely functional organs. While the bioprinting of complete organs remains a distant goal, there has been considerable progress in the development of bioprinted transplantable tissues and organs for regenerative medicine. This review article recapitulates the current achievements of organ 3D bioprinting, primarily encompassing five important organs in the human body (i.e., the heart, kidneys, liver, pancreas, and lungs). Challenges from cellular techniques, biomanufacturing technologies, and organ maturation techniques are also deliberated for the broad application of organ bioprinting. In addition, the integration of bioprinting with other cutting-edge technologies including machine learning, organoids, and microfluidics is envisioned, which strives to offer the reader the prospect of bioprinting in constructing functional organs.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
7
|
Christou CD, Vasileiadou S, Sotiroudis G, Tsoulfas G. Three-Dimensional Printing and Bioprinting in Renal Transplantation and Regenerative Medicine: Current Perspectives. J Clin Med 2023; 12:6520. [PMID: 37892658 PMCID: PMC10607284 DOI: 10.3390/jcm12206520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
For patients with end-stage kidney disease (ESKD), renal transplantation is the treatment of choice, constituting the most common solid organ transplantation. This study aims to provide a comprehensive review regarding the application of three-dimensional (3D) printing and bioprinting in renal transplantation and regenerative medicine. Specifically, we present studies where 3D-printed models were used in the training of surgeons through renal transplantation simulations, in patient education where patients acquire a higher understanding of their disease and the proposed operation, in the preoperative planning to facilitate decision-making, and in fabricating customized, tools and devices. Three-dimensional-printed models could transform how surgeons train by providing surgical rehearsal platforms across all surgical specialties, enabling training with tissue realism and anatomic precision. The use of 3D-printed models in renal transplantations has shown a positive impact on surgical outcomes, including the duration of the operation and the intraoperative blood loss. Regarding 3D bioprinting, the technique has shown promising results, especially in the field of microfluidic devices, with the development of tissue demonstrating proximal tubules, glomerulus, and tubuloinerstitium function, and in renal organoid development. Such models can be applied for renal disease modeling, drug development, and renal regenerative medicine.
Collapse
Affiliation(s)
- Chrysanthos D. Christou
- Department of Transplantation Surgery, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (S.V.); (G.S.); (G.T.)
| | | | | | | |
Collapse
|
8
|
Syed Mohamed SMD, Welsh GI, Roy I. Renal tissue engineering for regenerative medicine using polymers and hydrogels. Biomater Sci 2023; 11:5706-5726. [PMID: 37401545 DOI: 10.1039/d3bm00255a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Chronic Kidney Disease (CKD) is a growing worldwide problem, leading to end-stage renal disease (ESRD). Current treatments for ESRD include haemodialysis and kidney transplantation, but both are deemed inadequate since haemodialysis does not address all other kidney functions, and there is a shortage of suitable donor organs for transplantation. Research in kidney tissue engineering has been initiated to take a regenerative medicine approach as a potential treatment alternative, either to develop effective cell therapy for reconstruction or engineer a functioning bioartificial kidney. Currently, renal tissue engineering encompasses various materials, mainly polymers and hydrogels, which have been chosen to recreate the sophisticated kidney architecture. It is essential to address the chemical and mechanical aspects of the materials to ensure they can support cell development to restore functionality and feasibility. This paper reviews the types of polymers and hydrogels that have been used in kidney tissue engineering applications, both natural and synthetic, focusing on the processing and formulation used in creating bioactive substrates and how these biomaterials affect the cell biology of the kidney cells used.
Collapse
Affiliation(s)
| | - Gavin I Welsh
- Renal Bristol, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS1 3NY, UK
| | - Ipsita Roy
- Department of Materials Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield S37HQ, UK.
| |
Collapse
|
9
|
Cadamuro F, Nicotra F, Russo L. 3D printed tissue models: From hydrogels to biomedical applications. J Control Release 2023; 354:726-745. [PMID: 36682728 DOI: 10.1016/j.jconrel.2023.01.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023]
Abstract
The development of new advanced constructs resembling structural and functional properties of human organs and tissues requires a deep knowledge of the morphological and biochemical properties of the extracellular matrices (ECM), and the capacity to reproduce them. Manufacturing technologies like 3D printing and bioprinting represent valuable tools for this purpose. This review will describe how morphological and biochemical properties of ECM change in different tissues, organs, healthy and pathological states, and how ECM mimics with the required properties can be generated by 3D printing and bioprinting. The review describes and classifies the polymeric materials of natural and synthetic origin exploited to generate the hydrogels acting as "inks" in the 3D printing process, with particular emphasis on their functionalization allowing crosslinking and conjugation with signaling molecules to develop bio-responsive and bio-instructive ECM mimics.
Collapse
Affiliation(s)
- Francesca Cadamuro
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Francesco Nicotra
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy
| | - Laura Russo
- University of Milano-Bicocca, Department of Biotechnology and Biosciences, Piazza della Scienza 2, 20126 Milano, Italy; CÚRAM, SFI Research Centre for Medical Devices, University of Galway, H91 W2TY Galway, Ireland.
| |
Collapse
|
10
|
The application of 3D bioprinting in urological diseases. Mater Today Bio 2022; 16:100388. [PMID: 35967737 PMCID: PMC9364106 DOI: 10.1016/j.mtbio.2022.100388] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/24/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Urologic diseases are commonly diagnosed health problems affecting people around the world. More than 26 million people suffer from urologic diseases and the annual expenditure was more than 11 billion US dollars. The urologic cancers, like bladder cancer, prostate cancer and kidney cancer are always the leading causes of death worldwide, which account for approximately 22% and 10% of the new cancer cases and death, respectively. Organ transplantation is one of the major clinical treatments for urological diseases like end-stage renal disease and urethral stricture, albeit strongly limited by the availability of matching donor organs. Tissue engineering has been recognized as a highly promising strategy to solve the problems of organ donor shortage by the fabrication of artificial organs/tissue. This includes the prospective technology of three-dimensional (3D) bioprinting, which has been adapted to various cell types and biomaterials to replicate the heterogeneity of urological organs for the investigation of organ transplantation and disease progression. This review discusses various types of 3D bioprinting methodologies and commonly used biomaterials for urological diseases. The literature shows that advances in this field toward the development of functional urological organs or disease models have progressively increased. Although numerous challenges still need to be tackled, like the technical difficulties of replicating the heterogeneity of urologic organs and the limited biomaterial choices to recapitulate the complicated extracellular matrix components, it has been proved by numerous studies that 3D bioprinting has the potential to fabricate functional urological organs for clinical transplantation and in vitro disease models. Outline the advantages and characteristics of 3D printing compared with traditional methods for urological diseases. Guide the selection of 3D bioprinting technology and material in urological tissue engineering. Discuss the challenges and future perspectives of 3D bioprinting in urological diseases and clinical translation.
Collapse
|
11
|
Genderen AMV, G Valverde M, Capendale PE, Kersten V, Sendino Garví E, Schuurmans CCL, Ruelas M, Soeiro JT, Tang G, Janssen MJ, Jansen J, Mihăilă SM, Vermonden T, Zhang YS, Masereeuw R. Co-axial Printing of Convoluted Proximal Tubule for Kidney Disease Modeling. Biofabrication 2022; 14. [PMID: 35700695 DOI: 10.1088/1758-5090/ac7895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/14/2022] [Indexed: 11/11/2022]
Abstract
Despite the increasing incidence of kidney-related diseases, we are still far from understanding the underlying mechanisms of these diseases and their progression. This lack of understanding is partly because of a poor replication of the diseases in vitro, limited to planar culture. Advancing towards three-dimensional models, hereby we propose coaxial printing to obtain microfibers containing a helical hollow microchannel. These recapitulate the architecture of the proximal tubule (PT), an important nephron segment often affected in kidney disorders. A stable gelatin/alginate-based ink was formulated to allow printability while maintaining structural properties. Fine tuning of the composition, printing temperature and extrusion rate allowed for optimal ink viscosity that led to coiling of the microfiber's inner channel. The printed microfibers exhibited prolonged structural stability (42 days) and cytocompatibility in culture. Healthy conditionally immortalized PT epithelial cells and a knockout cell model for cystinosis (CTNS-/-) were seeded to mimic two genotypes of PT. Upon culturing for 14 days, engineered PT showed homogenous cytoskeleton organization as indicated by staining for filamentous actin, barrier-formation and polarization with apical marker α-tubulin and basolateral marker Na+/K+-ATPase. Cell viability was slightly decreased upon prolonged culturing for 14 days, which was more pronounced inCTNS-/-microfibers. Finally, cystinosis cells showed reduced apical transport activity in the microfibers compared to healthy PT epithelial cells when looking at breast cancer resistance protein and multidrug resistance-associated protein 4. Engineered PT incorporated in a custom-designed microfluidic chip allowed to assess leak-tightness of the epithelium, which appeared less tight in cystinosis PT compared to healthy PT, in agreement with its in vivo phenotype. While we are still on the verge of patient-oriented medicine, this system holds great promise for further research in establishing advanced in vitro disease models.
Collapse
Affiliation(s)
- Anne Metje van Genderen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marta G Valverde
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Pamela E Capendale
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Valerie Kersten
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Elena Sendino Garví
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Carl C L Schuurmans
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Marina Ruelas
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Joana T Soeiro
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Guosheng Tang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Manoe J Janssen
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Jitske Jansen
- Pathology and Pediatric Nephrology, Radboud University Medical Center, -, Nijmegen, 6525 GA, NETHERLANDS
| | - Silvia M Mihăilă
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Tina Vermonden
- Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Universiteit Utrecht, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| | - Y Shrike Zhang
- Harvard Medical School, 65 Landsdowne Street, Cambridge, Massachusetts, 02139, UNITED STATES
| | - Rosalinde Masereeuw
- Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, Utrecht, 3584 CG, NETHERLANDS
| |
Collapse
|
12
|
Xu F, Dawson C, Lamb M, Mueller E, Stefanek E, Akbari M, Hoare T. Hydrogels for Tissue Engineering: Addressing Key Design Needs Toward Clinical Translation. Front Bioeng Biotechnol 2022; 10:849831. [PMID: 35600900 PMCID: PMC9119391 DOI: 10.3389/fbioe.2022.849831] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/12/2022] [Indexed: 12/15/2022] Open
Abstract
Graphical Abstract
Collapse
Affiliation(s)
- Fei Xu
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Dawson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Makenzie Lamb
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Eva Mueller
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
| | - Evan Stefanek
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
| | - Mohsen Akbari
- Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technologies, University of Victoria, Victoria, BC, Canada
- Biotechnology Center, Silesian University of Technology, Gliwice, Poland
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| | - Todd Hoare
- Department of Chemical Engineering, McMaster University, Hamilton, ON, Canada
- *Correspondence: Mohsen Akbari, ; Todd Hoare,
| |
Collapse
|
13
|
Robinson M, Bedford E, Witherspoon L, Willerth SM, Flannigan R. Using clinically derived human tissue to 3-dimensionally bioprint personalized testicular tubules for in vitro culturing: first report. F&S SCIENCE 2022; 3:130-139. [PMID: 35560010 DOI: 10.1016/j.xfss.2022.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To study the feasibility and spermatogenic potential of 3-dimensional (3D) bioprinting personalized human testicular cells derived from a patient with nonobstructive azoospermia (NOA). DESIGN A human testicular biopsy from a single donor with NOA was dissociated into single cells, expanded in vitro, and 3D bioprinted into tubular structures akin to the seminiferous tubule using AGC-10 bioink and an RX1 bioprinter with a CENTRA coaxial microfluidic printhead from Aspect Biosystems. Three-dimensional organoid cultures were used as a nonbioprinted in vitro control. SETTING Academic medical center. PATIENT(S) A 31-year-old man with NOA with testis biopsy demonstrating Sertoli cell-only syndrome. INTERVENTION(S) Three-dimensional bioprinting and in vitro culturing of patient-derived testis cells. MAIN OUTCOME MEASURE(S) Cellular viability after printing was determined, along with the expression of phenotypic and spermatogenic functional genetic markers after 12 days of in vitro culture. RESULT(S) Testicular cultures were expandable in vitro and generated sufficiently large numbers for 3D bioprinting at 35 million cells per mL of bioink. Viability 24 hours after printing was determined to be 93.4% ± 2.4%. Immunofluorescence staining for the phenotype markers SRY-Box transcription factor 9, insulin-like 3, actin alpha 2 smooth muscle, and synaptonemal complex protein 3 after 12 days was positive, confirming the presence of Sertoli, Leydig, peritubular myoid, and meiotic germ cells. Reverse transcription qualitative polymerase chain reaction analysis showed that after 12 days in spermatogenic media, the bioprints substantially up-regulated spermatogenic gene expression on par with nonbioprinted controls and showed a particularly significant improvement in genes involved in spermatogonial stem cell maintenance: inhibitor of deoxyribonucleic acid binding 4 by 365-fold; fibroblast growth factor 3 by 94,152-fold; stem cell growth factor receptor KIT by twofold; stimulated by retinoic acid 8 by 125-fold; deleted in azoospermia-like by 114-fold; synaptonemal complex protein 3 by sevenfold; zona pellucida binding protein by twofold; transition protein 1 by 2,908-fold; and protamine 2 by 11-fold. CONCLUSION(S) This study demonstrates for the first time the feasibility of 3D bioprinting adult human testicular cells. We show that the bioprinting process is compatible with high testicular cell viability and without loss of the main somatic phenotypes within the testis tissue. We demonstrate an increase in germ cell markers in the 3D bioprinted tubules after 12 days of in vitro culture. This platform may carry future potential for disease modeling and regenerative opportunities in a personalized medicine framework.
Collapse
Affiliation(s)
- Meghan Robinson
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada
| | - Erin Bedford
- Aspect Biosystems, Vancouver, British Columbia, Canada
| | - Luke Witherspoon
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, The Ottawa Hospital, Ottawa, Ontario, Canada
| | - Stephanie M Willerth
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ryan Flannigan
- Vancouver Prostate Centre, Vancouver, British Columbia, Canada; Department of Urologic Sciences, University of British Columbia, Vancouver, British Columbia, Canada; Department of Urology, Weill Cornell Medicine, New York, New York.
| |
Collapse
|
14
|
Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural Hydrogel-Based Bio-Inks for 3D Bioprinting in Tissue Engineering: A Review. Gels 2022; 8:179. [PMID: 35323292 PMCID: PMC8948717 DOI: 10.3390/gels8030179] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Three-dimensional (3D) printing is well acknowledged to constitute an important technology in tissue engineering, largely due to the increasing global demand for organ replacement and tissue regeneration. In 3D bioprinting, which is a step ahead of 3D biomaterial printing, the ink employed is impregnated with cells, without compromising ink printability. This allows for immediate scaffold cellularization and generation of complex structures. The use of cell-laden inks or bio-inks provides the opportunity for enhanced cell differentiation for organ fabrication and regeneration. Recognizing the importance of such bio-inks, the current study comprehensively explores the state of the art of the utilization of bio-inks based on natural polymers (biopolymers), such as cellulose, agarose, alginate, decellularized matrix, in 3D bioprinting. Discussions regarding progress in bioprinting, techniques and approaches employed in the bioprinting of natural polymers, and limitations and prospects concerning future trends in human-scale tissue and organ fabrication are also presented.
Collapse
Affiliation(s)
- Ahmed Fatimi
- Department of Chemistry, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
- ERSIC, Polydisciplinary Faculty, Sultan Moulay Slimane University, P.O. Box 592 Mghila, Beni-Mellal 23000, Morocco
| | - Oseweuba Valentine Okoro
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| | - Daria Podstawczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Julia Siminska-Stanny
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Faculty of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wroclaw, Poland;
| | - Amin Shavandi
- 3BIO-BioMatter, École Polytechnique de Bruxelles, Université Libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50-CP 165/61, 1050 Brussels, Belgium; (O.V.O.); (J.S.-S.)
| |
Collapse
|
15
|
Yang SM, Lv S, Zhang W, Cui Y. Microfluidic Point-of-Care (POC) Devices in Early Diagnosis: A Review of Opportunities and Challenges. SENSORS (BASEL, SWITZERLAND) 2022; 22:1620. [PMID: 35214519 PMCID: PMC8875995 DOI: 10.3390/s22041620] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/12/2022]
Abstract
The early diagnosis of infectious diseases is critical because it can greatly increase recovery rates and prevent the spread of diseases such as COVID-19; however, in many areas with insufficient medical facilities, the timely detection of diseases is challenging. Conventional medical testing methods require specialized laboratory equipment and well-trained operators, limiting the applicability of these tests. Microfluidic point-of-care (POC) equipment can rapidly detect diseases at low cost. This technology could be used to detect diseases in underdeveloped areas to reduce the effects of disease and improve quality of life in these areas. This review details microfluidic POC equipment and its applications. First, the concept of microfluidic POC devices is discussed. We then describe applications of microfluidic POC devices for infectious diseases, cardiovascular diseases, tumors (cancer), and chronic diseases, and discuss the future incorporation of microfluidic POC devices into applications such as wearable devices and telemedicine. Finally, the review concludes by analyzing the present state of the microfluidic field, and suggestions are made. This review is intended to call attention to the status of disease treatment in underdeveloped areas and to encourage the researchers of microfluidics to develop standards for these devices.
Collapse
Grants
- BRA2017216, BE2018627,2020THRC-GD-7, D18003, LM201603, KFKT2018001 the 333 project of Jiangsu Province in 2017, the Primary Research & Development Plan of Jiangsu Province, the Taihu Lake talent plan, the Complex and Intelligent Research Center, School of Mechanical and Power Engineering, East China University of Scien
- NSFC81971511 the National Natural Sciences Foundation of China
Collapse
Affiliation(s)
- Shih-Mo Yang
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Shuangsong Lv
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China; (S.-M.Y.); (S.L.)
| | - Wenjun Zhang
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada;
| | - Yubao Cui
- Clinical Research Center, The Affiliated Wuxi People’s Hospital, Nanjing Medical University, 299 Qingyang Road, Wuxi 214023, China
| |
Collapse
|
16
|
Abstract
The kidney is a highly complex organ in the human body. Although creating an in vitro model of the human kidney is challenging, tremendous advances have been made in recent years. Kidney organoids are in vitro kidney models that are generated from stem cells in three-dimensional (3D) cultures. They exhibit remarkable degree of similarities with the native tissue in terms of cell type, morphology, and function. The establishment of 3D kidney organoids facilitates a mechanistic study of cell communications, and these organoids can be used for drug screening, disease modeling, and regenerative medicine applications. This review discusses the cellular complexity during in vitro kidney generation. We intend to highlight recent progress in kidney organoids and the applications of these relatively new technologies.
Collapse
|
17
|
Microfluidic-Driven Biofabrication and the Engineering of Cancer-Like Microenvironments. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:205-230. [DOI: 10.1007/978-3-031-04039-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Bioprinting of kidney in vitro models: cells, biomaterials, and manufacturing techniques. Essays Biochem 2021; 65:587-602. [PMID: 34096573 PMCID: PMC8365327 DOI: 10.1042/ebc20200158] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022]
Abstract
The number of patients with end-stage renal disease is continuously increasing worldwide. The only therapies for these patients are dialysis and organ transplantation, but the latter is limited due to the insufficient number of donor kidneys available. Research in kidney disease and alternative therapies are therefore of outmost importance. In vitro models that mimic human kidney functions are essential to provide better insights in disease and ultimately novel therapies. Bioprinting techniques have been increasingly used to create models with some degree of function, but their true potential is yet to be achieved. Bioprinted renal tissues and kidney-like constructs presents challenges, for example, choosing suitable renal cells and biomaterials for the formulation of bioinks. In addition, the fabrication of complex renal biological structures is still a major bottleneck. Advances in pluripotent stem cell-derived renal progenitors has contributed to in vivo-like rudiment structures with multiple renal cells, and these started to make a great impact on the achieved models. Natural- or synthetic-based biomaterial inks, such as kidney-derived extracellular matrix and gelatin-fibrin hydrogels, which show the potential to partially replicate in vivo-like microenvironments, have been largely investigated for bioprinting. As the field progresses, technological, biological and biomaterial developments will be required to yield fully functional in vitro tissues that can contribute to a better understanding of renal disease, to improve predictability in vitro of novel therapeutics, and to facilitate the development of alternative regenerative or replacement treatments. In this review, we resume the main advances on kidney in vitro models reported so far.
Collapse
|
19
|
Decante G, Costa JB, Silva-Correia J, Collins MN, Reis RL, Oliveira JM. Engineering bioinks for 3D bioprinting. Biofabrication 2021; 13. [PMID: 33662949 DOI: 10.1088/1758-5090/abec2c] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
In recent years, three-dimensional (3D) bioprinting has attracted wide research interest in biomedical engineering and clinical applications. This technology allows for unparalleled architecture control, adaptability and repeatability that can overcome the limits of conventional biofabrication techniques. Along with the emergence of a variety of 3D bioprinting methods, bioinks have also come a long way. From their first developments to support bioprinting requirements, they are now engineered to specific injury sites requirements to mimic native tissue characteristics and to support biofunctionality. Current strategies involve the use of bioinks loaded with cells and biomolecules of interest, without altering their functions, to deliverin situthe elements required to enhance healing/regeneration. The current research and trends in bioink development for 3D bioprinting purposes is overviewed herein.
Collapse
Affiliation(s)
- Guy Decante
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João B Costa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, 4805-017 Barco GMR, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Rooney KM, Woolf AS, Kimber SJ. Towards Modelling Genetic Kidney Diseases with Human Pluripotent Stem Cells. Nephron Clin Pract 2021; 145:285-296. [PMID: 33774632 DOI: 10.1159/000514018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 12/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Kidney disease causes major suffering and premature mortality worldwide. With no cure for kidney failure currently available, and with limited options for treatment, there is an urgent need to develop effective pharmaceutical interventions to slow or prevent kidney disease progression. SUMMARY In this review, we consider the feasibility of using human pluripotent stem cell-derived kidney tissues, or organoids, to model genetic kidney disease. Notable successes have been made in modelling genetic tubular diseases (e.g., cystinosis), polycystic kidney disease, and medullary cystic kidney disease. Organoid models have also been used to test novel therapies that ameliorate aberrant cell biology. Some progress has been made in modelling congenital glomerular disease, even though glomeruli within organoids are developmentally immature. Less progress has been made in modelling structural kidney malformations, perhaps because sufficiently mature metanephric mesenchyme-derived nephrons, ureteric bud-derived branching collecting ducts, and a prominent stromal cell population are not generated together within a single protocol. Key Messages: We predict that the field will advance significantly if organoids can be generated with a full complement of cell lineages and with kidney components displaying key physiological functions, such as glomerular filtration. The future economic upscaling of reproducible organoid generation will facilitate more widespread research applications, including the potential therapeutic application of these stem cell-based technologies.
Collapse
Affiliation(s)
- Kirsty M Rooney
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
- Royal Manchester Children's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|