1
|
Del Casale A, Mancino S, Arena JF, Spitoni GF, Campanini E, Adriani B, Tafaro L, Alcibiade A, Ciocca G, Romano A, Bozzao A, Ferracuti S. Neural Functioning in Late-Life Depression: An Activation Likelihood Estimation Meta-Analysis. Geriatrics (Basel) 2024; 9:87. [PMID: 39051251 PMCID: PMC11270429 DOI: 10.3390/geriatrics9040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Late-life depression (LLD) is a relatively common and debilitating mental disorder, also associated with cognitive dysfunctions and an increased risk of mortality. Considering the growing elderly population worldwide, LLD is increasingly emerging as a significant public health issue, also due to the rise in direct and indirect costs borne by healthcare systems. Understanding the neuroanatomical and neurofunctional correlates of LLD is crucial for developing more targeted and effective interventions, both from a preventive and therapeutic standpoint. This ALE meta-analysis aims to evaluate the involvement of specific neurofunctional changes in the neurophysiopathology of LLD by analysing functional neuroimaging studies conducted on patients with LLD compared to healthy subjects (HCs). We included 19 studies conducted on 844 subjects, divided into 439 patients with LLD and 405 HCs. Patients with LLD, compared to HCs, showed significant hypoactivation of the right superior and medial frontal gyri (Brodmann areas (Bas) 8, 9), left cingulate cortex (BA 24), left putamen, and left caudate body. The same patients exhibited significant hyperactivation of the left superior temporal gyrus (BA 42), left inferior frontal gyrus (BA 45), right anterior cingulate cortex (BA 24), right cerebellar culmen, and left cerebellar declive. In summary, we found significant changes in activation patterns and brain functioning in areas encompassed in the cortico-limbic-striatal network in LLD. Furthermore, our results suggest a potential role for areas within the cortico-striatal-cerebellar network in the neurophysiopathology of LLD.
Collapse
Affiliation(s)
- Antonio Del Casale
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Psychiatry, Emergency and Admissions Department, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Serena Mancino
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Jan Francesco Arena
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Grazia Fernanda Spitoni
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisa Campanini
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Barbara Adriani
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
| | - Laura Tafaro
- Department of Clinical and Molecular Medicine, Sapienza University, 00189 Rome, Italy;
- Unit of Internal Medicine, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Alessandro Alcibiade
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Marina Militare Italiana (Italian Navy), Ministry of Defence, Piazza della Marina, 4, 00196 Rome, Italy
| | - Giacomo Ciocca
- Department of Dynamic and Clinical Psychology and Health Studies, Faculty of Medicine and Psychology, Sapienza University of Rome, 00185 Rome, Italy
| | - Andrea Romano
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Neuroradiology, Department of Diagnostic Sciences, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Alessandro Bozzao
- Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, Sapienza University, 00189 Rome, Italy
- Unit of Neuroradiology, Department of Diagnostic Sciences, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| | - Stefano Ferracuti
- Department of Human Neuroscience, Faculty of Medicine and Dentistry, Sapienza University of Rome, 00185 Rome, Italy
- Unit of Risk Management, ‘Sant’Andrea’ University Hospital, 00189 Rome, Italy
| |
Collapse
|
2
|
Roy JC, Desmidt T, Dam S, Mirea-Grivel I, Weyl L, Bannier E, Barantin L, Drapier D, Batail JM, David R, Coloigner J, Robert GH. Connectivity patterns of the core resting-state networks associated with apathy in late-life depression. J Psychiatry Neurosci 2023; 48:E404-E413. [PMID: 37914222 PMCID: PMC10620011 DOI: 10.1503/jpn.230008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/28/2023] [Accepted: 08/03/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Apathy is associated with reduced antidepressant response and dementia in late-life depression (LLD). However, the functional cerebral basis of apathy is understudied in LLD. We investigated the functional connectivity of 5 resting-state networks (RSN) hypothesized to underlie apathy in LLD. METHODS Resting-state functional MRI data were collected from individuals with LLD who did not have dementia as well as healthy older adults between October 2019 and April 2022. Apathy was evaluated using the diagnostic criteria for apathy (DCA), the Apathy Evaluation Scale (AES) and the Apathy Motivation Index (AMI). Subnetworks whose connectivity was significantly associated with each apathy measure were identified via the threshold-free network-based statistics. Regions that were consistently associated with apathy across the measures were reported as robust findings. RESULTS Our sample included 39 individuals with LLD who did not have dementia and 26 healthy older adults. Compared with healthy controls, individuals with LLD had an altered intra-RSN and inter-RNS connectivity in the default mode, the cingulo-opercular and the frontoparietal networks. All 3 apathy measurements showed associations with modified intra-RSN connectivity in these networks, except for the DCA in the cingulo-opercular network. The AMI scores showed stronger associations with the cingulo-opercular and frontoparietal networks, whereas the AES had stronger associations with the default mode network and the goal-oriented behaviour network. LIMITATIONS The study was limited by the small number of participants without apathy according to the DCA, which may have reduced the statistical power of between-group comparisons. Additionally, the reliance on specific apathy measures may have influenced the observed overlap in brain regions. CONCLUSION Our findings indicate that apathy in LLD is consistently associated with changes in both intra-RSN and inter-RSN connectivity of brain regions implicated in goal-oriented behaviours. These results corroborate previous findings of altered functional RSN connectivity in severe LLD.
Collapse
Affiliation(s)
- Jean-Charles Roy
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Thomas Desmidt
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Sébastien Dam
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Iris Mirea-Grivel
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Louise Weyl
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Elise Bannier
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Laurent Barantin
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Dominique Drapier
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Jean-Marie Batail
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Renaud David
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Julie Coloigner
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| | - Gabriel H Robert
- From the Centre Hospitalier Guillaume Régnier, Pôle Hospitalo-Universitaire de Psychiatrie Adulte, Rennes, France (Roy, Mirea-Grivel, Louise, Drapier, Batail, Robert); the Centre d'investigation clinique (CIC) de Rennes 1414, CHU de Rennes, Institut national de la santé et de la recherche médicale (INSERM), Rennes, France (Roy, Drapier, Batail, Robert); l'Université de Rennes, Inria Centre, Centre National de la Recherche Scientifique, IRISA, INSERM, Empenn U1228 ERL, Rennes, France (Roy, Dam, Bannier, Coloigner, Robert); the Service de Radiologie, CHU Rennes, Rennes, France (Bannier); the CHU de Tours, Tours, France (Desmidt, Barantin); the UMR 1253, iBrain, Université de Tours, INSERM, Tours, France (Desmidt, Barantin); the CIC 1415, CHU de Tours, INSERM, Tours, France (Desmidt); the CoBTeK (Cognition Behaviour Technology) Lab, University Côte d'Azur, Nice, France (David)
| |
Collapse
|
3
|
Ghaderi AH, Brown EC, Clark DL, Ramasubbu R, Kiss ZHT, Protzner AB. Functional brain network features specify DBS outcome for patients with treatment resistant depression. Mol Psychiatry 2023; 28:3888-3899. [PMID: 37474591 DOI: 10.1038/s41380-023-02181-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023]
Abstract
Deep brain stimulation (DBS) has shown therapeutic benefits for treatment resistant depression (TRD). Stimulation of the subcallosal cingulate gyrus (SCG) aims to alter dysregulation between subcortical and cortex. However, the 50% response rates for SCG-DBS indicates that selection of appropriate patients is challenging. Since stimulation influences large-scale network function, we hypothesized that network features can be used as biomarkers to inform outcome. In this pilot project, we used resting-state EEG recorded longitudinally from 10 TRD patients with SCG-DBS (11 at baseline). EEGs were recorded before DBS-surgery, 1-3 months, and 6 months post surgery. We used graph theoretical analysis to calculate clustering coefficient, global efficiency, eigenvector centrality, energy, and entropy of source-localized EEG networks to determine their topological/dynamical features. Patients were classified as responders based on achieving a 50% or greater reduction in Hamilton Depression (HAM-D) scores from baseline to 12 months post surgery. In the delta band, false discovery rate analysis revealed that global brain network features (segregation, integration, synchronization, and complexity) were significantly lower and centrality of subgenual anterior cingulate cortex (ACC) was higher in responders than in non-responders. Accordingly, longitudinal analysis showed SCG-DBS increased global network features and decreased centrality of subgenual ACC. Similarly, a clustering method separated two groups by network features and significant correlations were identified longitudinally between network changes and depression symptoms. Despite recent speculation that certain subtypes of TRD are more likely to respond to DBS, in the SCG it seems that underlying brain network features are associated with ability to respond to DBS. SCG-DBS increased segregation, integration, and synchronizability of brain networks, suggesting that information processing became faster and more efficient, in those patients in whom it was lower at baseline. Centrality results suggest these changes may occur via altered connectivity in specific brain regions especially ACC. We highlight potential mechanisms of therapeutic effect for SCG-DBS.
Collapse
Affiliation(s)
- Amir Hossein Ghaderi
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Elliot C Brown
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
- Arden University Berlin, 10963, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Berlin, Germany
- Berlin Institute of Health, 10117, Berlin, Germany
| | - Darren Laree Clark
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
| | - Rajamannar Ramasubbu
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada
| | - Zelma H T Kiss
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada.
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
4
|
Brewster KK, Deal JA, Lin FR, Rutherford BR. Considering hearing loss as a modifiable risk factor for dementia. Expert Rev Neurother 2022; 22:805-813. [PMID: 36150235 PMCID: PMC9647784 DOI: 10.1080/14737175.2022.2128769] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Accumulating evidence links hearing loss to impaired cognitive performance and increased risk for dementia. Hearing loss can lead to deafferentation-induced atrophy of frontotemporal brain regions and dysregulation of cognitive control networks from increased listening effort. Hearing loss is also associated with reduced social engagement, loneliness, and depression, which are independently associated with poor cognitive function. AREAS COVERED We summarize the evidence and postulated mechanisms linking hearing loss to dementia in older adults and synthesize the available literature demonstrating beneficial effects of hearing remediation on brain structure and function. EXPERT OPINION : Further research is needed to evaluate whether treatment of hearing loss may reduce risk of cognitive decline and improve neural consequences of hearing loss. Studies may investigate the pathologic mechanisms linking these late-life disorders and identify individuals vulnerable to dementia, and future clinical trials may evaluate whether hearing treatment may reduce the risk for dementia.
Collapse
Affiliation(s)
- Katharine K Brewster
- Columbia University Vagelos College of Physicians and Surgeons, Department of Psychiatry, New York State Psychiatric Institute, New York
| | - Jennifer A Deal
- Department of Otolaryngology, Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Johns Hopkins University, Center on Aging and Health, Johns Hopkins University School of Medicine
| | - Frank R Lin
- Department of Otolaryngology, Johns Hopkins Bloomberg School of Public Health, Department of Epidemiology, Johns Hopkins University School of Medicine
| | - Bret R Rutherford
- Columbia University Vagelos College of Physicians and Surgeons, Department of Psychiatry, New York State Psychiatric Institute, New York, USA
| |
Collapse
|
5
|
Effects of aging on functional connectivity in a neurodegenerative risk cohort: resting state versus task measurement using near-infrared spectroscopy. Sci Rep 2022; 12:11262. [PMID: 35788629 PMCID: PMC9253312 DOI: 10.1038/s41598-022-13326-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/16/2022] [Indexed: 11/23/2022] Open
Abstract
Changes in functional brain organization are considered to be particularly sensitive to age-related effects and may precede structural cognitive decline. Recent research focuses on aging processes determined by resting state (RS) functional connectivity (FC), but little is known about differences in FC during RS and cognitive task conditions in elderly participants. The purpose of this study is to compare FC within and between the cognitive control (CCN) and dorsal attention network (DAN) at RS and during a cognitive task using functional near-infrared spectroscopy (fNIRS). In a matched, neurodegenerative high-risk cohort comprising early (n = 98; 50–65 y) and late (n = 98; 65–85 y) elder subjects, FC was measured at RS and during performance of the Trail Making Test (TMT) via fNIRS. Both, under RS and task conditions our results revealed a main effect for age, characterized by reduced FC for late elder subjects within the left inferior frontal gyrus. During performance of the TMT, negative correlations of age and FC were confirmed in various regions of the CCN and DAN. For the whole sample, FC of within-region connections was elevated, while FC between regions was decreased at RS. The results confirm a reorganization of functional brain connectivity with increasing age and cognitive demands.
Collapse
|
6
|
Oberlin LE, Victoria LW, Ilieva I, Dunlop K, Hoptman MJ, Avari J, Alexopoulos GS, Gunning FM. Comparison of Functional and Structural Neural Network Features in Older Adults With Depression With vs Without Apathy and Association With Response to Escitalopram: Secondary Analysis of a Nonrandomized Clinical Trial. JAMA Netw Open 2022; 5:e2224142. [PMID: 35895056 PMCID: PMC9331093 DOI: 10.1001/jamanetworkopen.2022.24142] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
IMPORTANCE Apathy is prevalent among individuals with late-life depression and is associated with poor response to pharmacotherapy, including chronicity and disability. Elucidating brain networks associated with apathy and poor treatment outcomes can inform intervention development. OBJECTIVES To assess the brain network features of apathy among individuals with late-life depression and identify brain network abnormalities associated with poor antidepressant response. DESIGN, SETTING, AND PARTICIPANTS This secondary analysis of a single-group, open-label nonrandomized clinical trial of escitalopram conducted at an outpatient geriatric psychiatry clinic enrolled 40 adults aged 59 to 85 years with major depressive disorder from July 1, 2012, to July 31, 2019. INTERVENTIONS After a 2-week washout period, participants received escitalopram titrated to a target of 20 mg/d for 12 weeks. MAIN OUTCOMES AND MEASURES Baseline and posttreatment magnetic resonance imaging (MRI), clinical, and cognitive assessments were conducted. Functional MRI was used to map group differences in resting state functional connectivity (rsFC) of the salience network, and diffusion MRI connectometry was performed to evaluate pathway-level disruptions in structural connectivity. The Apathy Evaluation Scale was used to quantify apathy, and the Hamilton Depression Rating Scale (HAM-D) was used to quantify the primary outcome of depression severity. RESULTS Forty participants (26 women [65%]; mean [SD] age, 70.0 [6.6] years [range, 59-85 years]) with depression were included; 20 participants (50%) also had apathy. Relative to nonapathetic participants with depression, those with depression and apathy had lower rsFC of salience network seeds with the dorsolateral prefrontal cortex (DLPFC), premotor cortex, midcingulate cortex, and paracentral lobule and greater rsFC with the lateral temporal cortex and temporal pole (z score >2.7; Bonferroni-corrected threshold of P < .0125). Compared with participants without apathy, those with apathy had lower structural connectivity in the splenium, cingulum, and fronto-occipital fasciculus (t score >2.5; false discovery rate-corrected P = .02). Twenty-seven participants completed escitalopram treatment; 16 (59%) achieved remission (HAM-D score <10). Lower insula-DLPFC/midcingulate cortex rsFC was associated with less symptomatic improvement (HAM-D % change) (β [df] = 0.588 [26]; P = .001) and a higher likelihood of nonremission (odds ratio, 1.041 [95% CI, 1.003-1.081]; P = .04) after treatment and, in regression models, was a mediator of the association between baseline apathy and persistence of depression. Lower dorsal anterior cingulate-DLPFC/paracentral rsFC was associated with residual cognitive difficulties on measures of attention (β [df] = 0.445 [26]; P = .04) and executive function (β [df] = 0.384 [26]; P = .04). CONCLUSIONS AND RELEVANCE This study suggests that disturbances in connectivity between the salience network and other large-scale networks that support goal-directed behavior may give rise to apathy and may be associated with poor response of late-life depression to antidepressant pharmacotherapy. These network disturbances may serve as targets for novel interventions. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT01728194.
Collapse
Affiliation(s)
- Lauren E. Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Lindsay W. Victoria
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Irena Ilieva
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Katharine Dunlop
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
| | - Matthew J. Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York
- Department of Psychiatry, NYU Grossman School of Medicine, New York, New York
| | - Jimmy Avari
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - George S. Alexopoulos
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| | - Faith M. Gunning
- Department of Psychiatry, Weill Cornell Medicine, New York, New York
- Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, New York
| |
Collapse
|
7
|
Luo M, Duan Z, Song X, Liu C, Li R, Su K, Bai Y, Wang X, Fu W, Gao J, Feng X. Effects of Optimized Acupuncture and Moxibustion Treatment on Depressive Symptoms and Executive Functions in Patients With Post-Stroke Depression: Study Protocol for a Randomized Controlled Trial. Front Neurol 2022; 13:833696. [PMID: 35370914 PMCID: PMC8975266 DOI: 10.3389/fneur.2022.833696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
Background Post-stroke depression (PSD), a common neuropsychiatric comorbidity after stroke, has a negative impact on the functional recovery and quality of life of survivors. It lacks effective therapeutic drugs with good curative effects and few adverse reactions. Preliminary experiments have shown that the optimized acupuncture and moxibustion treatment (OAMT), including acupuncture, moxibustion, and auricular intradermal acupuncture, improved depressive symptoms and neurological deficits in patients with PSD. However, the evidence for its effectiveness is still insufficient. Hence, we designed this study to evaluate the efficacy and safety of the OAMT in the treatment of PSD and to explore its possible mechanism from the perspective of executive functions. Methods/Design This is a randomized controlled trial, which comprises a total of 134 patients with PSD. Participants are randomized into intervention group and control group at a 1:1 ratio. All treatments are given five times per week for 4 weeks. The primary outcome is the severity of depression, which is evaluated by the Hamilton Depression Scale-17 (HAMD-17) and the Beck Depression Rating Scale (BDI). Secondary outcomes are executive abilities, which are measured by several neuropsychological tests, including the Stroop Color and Word Test (SCWT), the Trial Making Test (TMT), the Digit Symbol Substitution Test (DSST), and the Matrix Reasoning Test (MRT). All outcomes have been evaluated at baseline and weeks 4, 8, 12, and 20. At the same time, functional MRI (fMRI) is used to measure the functional connectivity in the cognitive control network (CCN) at baseline and 4 weeks after intervention. Discussion This study aims to provide high-quality evidence for the efficacy and safety of the OAMT for treating PSD. In addition, this trial is the first trial to explore if the improvement condition of depression in the OAMT group is related to the improvement of executive functions and the favorable changes in the structure. Clinical Trial Registration Chinese Clinical Trial Registry, identifier: ChiCTR2100048431.
Collapse
Affiliation(s)
- Meng Luo
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Zhaoyuan Duan
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaolei Song
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chengmei Liu
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Ruiqing Li
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Kaiqi Su
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
| | - Yanjie Bai
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Xiaodan Wang
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, China
| | - Jing Gao
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Jing Gao
| | - Xiaodong Feng
- Department of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou, China
- Rehabilitation Center, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- Xiaodong Feng
| |
Collapse
|
8
|
Luo L, Lei X, Zhu C, Wu J, Ren H, Zhan J, Qin Y. Decreased Connectivity in Precuneus of the Ventral Attentional Network in First-Episode, Treatment-Naïve Patients With Major Depressive Disorder: A Network Homogeneity and Independent Component Analysis. Front Psychiatry 2022; 13:925253. [PMID: 35693966 PMCID: PMC9184427 DOI: 10.3389/fpsyt.2022.925253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The ventral attentional network (VAN) can provide quantitative information on cognitive problems in patients with major depressive disorder (MDD). Nevertheless, little is known about network homogeneity (NH) changes in the VAN of these patients. The aim of this study was to examine the NH values in the VAN by independent component analysis (ICA) and compare the NH values between MDD patients and the normal controls (NCs). METHODS Attentional network test and resting-state functional magnetic resonance imaging (rs-fMRI) data were collected from 73 patients, and 70 NCs matched by gender, age, and education years. ICA and NH were employed to evaluate the data. Moreover, the NH values were compared, and Spearman's rank correlation analysis was used to assess the correlations with the executive control reaction time (ECRT). RESULTS Our results showed that the first-episode, treatment-naive MDD patients had decreased NH in the right precuneus (PCu) and abnormal ECRT compared with NCs. However, no significant correlation was found between the NH values and measured clinical variables. CONCLUSION Our results highlight the potential importance of VAN in the pathophysiology of cognitive problems in MDD, thus offering new directions for future research on MDD.
Collapse
Affiliation(s)
- Liqiong Luo
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xijun Lei
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Canmin Zhu
- Department of Neurology, The First People's Hospital of Jiangxia District, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, Wuhan Central Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jing Zhan
- Department of Oncology, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Yongzhang Qin
- Department of Endocrinology, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
9
|
Late-life depression accentuates cognitive weaknesses in older adults with small vessel disease. Neuropsychopharmacology 2022; 47:580-587. [PMID: 33564103 PMCID: PMC8674355 DOI: 10.1038/s41386-021-00973-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023]
Abstract
Neuroimaging features of small vessel disease (SVD) are highly prevalent in older adulthood and associated with significant variability in clinical symptoms, yet the factors predicting these symptom disparities are poorly understood. We employed a novel metric of SVD, peak width of skeletonized mean diffusivity (PSMD), to elucidate the relationship of late-life depression (LLD) to the cognitive presentation of vascular pathology. A total of 109 older adults without a diagnosis of a neurocognitive disorder were enrolled in the study; 44 with major depressive disorder and 65 age-matched controls. Subjects completed neuropsychological testing and magnetic resonance imaging including FLAIR and diffusion tensor imaging sequences, from which white matter hyperintensity volume and diffusion metrics (fractional anisotropy, mean diffusivity, PSMD) were quantified. In hierarchical models, the relationship between vascular burden and cognitive performance varied as a function of diagnostic status, such that the negative association between PSMD and processing speed was significantly stronger in participants with LLD compared to controls. Greater PSMD also predicted poorer performance on delayed memory and executive function tasks specifically among those with LLD, while there were no associations between PSMD and task performance among controls. PSMD outperformed conventional SVD and diffusion markers in predicting cognitive performance and dysexecutive behaviors in participants with LLD. These data suggest that LLD may confer a vulnerability to the cognitive manifestations of white matter abnormalities in older adulthood. PSMD, a novel biomarker of diffuse microstructural changes in SVD, may be a more sensitive marker of subtle cognitive deficits stemming from vascular pathology in LLD.
Collapse
|
10
|
Gao Y, Wang X, Xiong Z, Ren H, Liu R, Wei Y, Li D. Abnormal Fractional Amplitude of Low-Frequency Fluctuation as a Potential Imaging Biomarker for First-Episode Major Depressive Disorder: A Resting-State fMRI Study and Support Vector Machine Analysis. Front Neurol 2021; 12:751400. [PMID: 34912284 PMCID: PMC8666416 DOI: 10.3389/fneur.2021.751400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Major depressive disorder (MDD) is a psychiatric disorder with serious negative health outcomes; however, there is no reliable method of diagnosis. This study explored the clinical diagnostic value of the fractional amplitude of low-frequency fluctuation (fALFF) based on the support vector machine (SVM) method for the diagnosis of MDD. Methods: A total of 198 first-episode MDD patients and 234 healthy controls were involved in this study, and all participants underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Imaging data were analyzed with the fALFF and SVM methods. Results: Compared with the healthy controls, the first-episode MDD patients showed higher fALFF in the left mid cingulum, right precuneus, and left superior frontal gyrus (SFG). The increased fALFF in these three brain regions was positively correlated with the executive control reaction time (ECRT), and the increased fALFF in the left mid cingulum and left SFG was positively correlated with the 17-item Hamilton Rating Scale for Depression (HRSD-17) scores. The SVM results showed that increased fALFF in the left mid cingulum, right precuneus, and left SFG exhibited high diagnostic accuracy of 72.92% (315/432), 71.76% (310/432), and 73.84% (319/432), respectively. The highest diagnostic accuracy of 76.39% (330/432) was demonstrated for the combination of increased fALFF in the right precuneus and left SFG, along with a sensitivity of 84.34% (167/198), and a specificity of 70.51% (165/234). Conclusion: Increased fALFF in the left mid cingulum, right precuneus, and left SFG may serve as a neuroimaging marker for first-episode MDD. The use of the increased fALFF in the right precuneus and left SFG in combination showed the best diagnostic value.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhenying Xiong
- Department of Psychiatry, Jiangxia District Mental Hospital, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Ruoshi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Dongbin Li
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China.,Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
11
|
Cheng W, Luo N, Zhang Y, Zhang X, Tan H, Zhang D, Sui J, Yue W, Yan H. DNA Methylation and Resting Brain Function Mediate the Association between Childhood Urbanicity and Better Speed of Processing. Cereb Cortex 2021; 31:4709-4718. [PMID: 33987663 PMCID: PMC8408435 DOI: 10.1093/cercor/bhab117] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/10/2023] Open
Abstract
Urbanicity has been suggested to affect cognition, but the underlying mechanism remains unknown. We examined whether epigenetic modification (DNA methylation, DNAm), and brain white matter fiber integrity (fractional anisotropy, FA) or local spontaneous brain function activity (regional homogeneity, ReHo) play roles in the association between childhood urbanicity and cognition based on 497 healthy Chinese adults. We found significant correlation between childhood urbanicity and better cognitive performance. Multiset canonical correlation analysis (mCCA) identified an intercorrelated DNAm-FA-ReHo triplet, which showed significant pairwise correlations (DNAm-FA: Bonferroni-adjusted P, Pbon = 4.99E-03, rho = 0.216; DNAm-ReHo: Pbon = 4.08E-03, rho = 0.239; ReHo-FA: Pbon = 1.68E-06, rho = 0.328). Causal mediation analysis revealed that 1) ReHo mediated 10.86% childhood urbanicity effects on the speed of processing and 2) childhood urbanicity alters ReHo through DNA methylation in the cadherin and Wnt signaling pathways (mediated effect: 48.55%). The mediation effect of increased ReHo in the superior temporal gyrus underlying urbanicity impact on a better speed of processing was further validated in an independent cohort. Our work suggests a mediation role for ReHo, particularly increased brain activity in the superior temporal gyrus, in the urbanicity-associated speed of processing.
Collapse
Affiliation(s)
- Weiqiu Cheng
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuyanan Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Xiao Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| | - Haoyang Tan
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Jing Sui
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, Beijing 100191, China
- NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing 100191, China
| |
Collapse
|
12
|
Veselinović T, Rajkumar R, Amort L, Junger J, Shah NJ, Fimm B, Neuner I. Connectivity Patterns in the Core Resting-State Networks and Their Influence on Cognition. Brain Connect 2021; 12:334-347. [PMID: 34182786 DOI: 10.1089/brain.2020.0943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Three prominent resting-state networks (rsNW) (default mode network [DMN], salience network [SN], and central executive network [CEN]) are recognized for their important role in several neuropsychiatric conditions. However, our understanding of their relevance in terms of cognition remains insufficient. Materials and Methods: In response, this study aims at investigating the patterns of different network properties (resting-state activity [RSA] and short- and long-range functional connectivity [FC]) in these three core rsNWs, as well as the dynamics of age-associated changes and their relation to cognitive performance in a sample of healthy controls (N = 74) covering a large age span (20-79 years). Using a whole-network based approach, three measures were calculated from the functional magnetic resonance imaging (fMRI) data: amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo), and degree of network centrality (DC). The cognitive test battery covered the following domains: memory, executive functioning, processing speed, attention, and visual perception. Results: For all three fMRI measures (ALFF, ReHo, and DC), the highest values of spontaneous brain activity (ALFF), short- and long-range connectivity (ReHo, DC) were observed in the DMN and the lowest in the SN. Significant age-associated decrease was observed in the DMN for ALFF and DC, and in the SN for ALFF and ReHo. Significant negative partial correlations were observed for working memory and ALFF in all three networks, as well as for additional cognitive parameters and ALFF in CEN. Discussion: Our results show that higher RSA in the three core rsNWs may have an unfavorable effect on cognition. Conversely, the pattern of network properties in healthy subjects included low RSA and FC in the SN. This complements previous research related to the three core rsNW and shows that the chosen approach can provide additional insight into their function.
Collapse
Affiliation(s)
- Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| | | | - Jessica Junger
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany
| | - Nadim Jon Shah
- JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| | - Bruno Fimm
- JARA-BRAIN-Translational Medicine, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics and RWTH Aachen University, Aachen, Germany.,JARA-BRAIN-Translational Medicine, Aachen, Germany.,Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
13
|
Saberi A, Mohammadi E, Zarei M, Eickhoff SB, Tahmasian M. Structural and functional neuroimaging of late-life depression: a coordinate-based meta-analysis. Brain Imaging Behav 2021; 16:518-531. [PMID: 34331655 DOI: 10.1007/s11682-021-00494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 06/28/2021] [Indexed: 10/20/2022]
Abstract
Several neuroimaging studies have investigated localized aberrations in brain structure, function or connectivity in late-life depression, but the ensuing results are equivocal and often conflicting. Here, we provide a quantitative consolidation of neuroimaging in late-life depression using coordinate-based meta-analysis by searching multiple databases up to March 2020. Our search revealed 3252 unique records, among which we identified 32 eligible whole-brain neuroimaging publications comparing 674 patients with 568 controls. The peak coordinates of group comparisons between the patients and the controls were extracted and then analyzed using activation likelihood estimation method. Our sufficiently powered analysis on all the experiments, and more homogenous subsections of the data (patients > controls, controls > patients, and functional imaging experiments) revealed no significant convergent regional abnormality in late-life depression. This inconsistency might be due to clinical and biological heterogeneity of LLD, as well as experimental (e.g., choice of tasks, image modalities) and analytic flexibility (e.g., preprocessing and analytic parameters), and distributed patterns of neural abnormalities. Our findings highlight the importance of clinical/biological heterogeneity of late-life depression, in addition to the need for more reproducible research by using pre-registered and standardized protocols on more homogenous populations to identify potential consistent brain abnormalities in late-life depression.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Esmaeil Mohammadi
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.,Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
14
|
Altinok DCA, Rajkumar R, Nießen D, Sbaihat H, Kersey M, Shah NJ, Veselinović T, Neuner I. Common neurobiological correlates of resilience and personality traits within the triple resting-state brain networks assessed by 7-Tesla ultra-high field MRI. Sci Rep 2021; 11:11564. [PMID: 34079001 PMCID: PMC8172832 DOI: 10.1038/s41598-021-91056-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 05/10/2021] [Indexed: 11/28/2022] Open
Abstract
Despite numerous studies investigating resilience and personality trials, a paucity of information regarding their neurobiological commonalities at the level of the large resting-state networks (rsNWs) remains. Here we address this topic using the advantages of ultra-high-field (UHF) 7T-MRI, characterized by higher signal-to-noise ratio and increased sensitivity. The association between resilience, personality traits and three fMRI measures (fractional amplitude of low-frequency fluctuations (fALFF), degree centrality (DC) and regional homogeneity (ReHo)) determined for three core rsNWs (default mode (DMN), salience (SN), and central executive network (CEN)) were examined in 32 healthy volunteers. The investigation revealed a significant role of SN in both resilience and personality traits and a tight association of the DMN with resilience. DC in CEN emerged as a significant moderator for the correlations of resilience with the personality traits of neuroticism and extraversion. Our results indicate that the common neurobiological basis of resilience and the Big Five personality traits may be reflected at the level of the core rsNWs.
Collapse
Affiliation(s)
- Dilsa Cemre Akkoc Altinok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Ravichandran Rajkumar
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- JARA - BRAIN - Translational Medicine, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Dominik Nießen
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
| | - Hasan Sbaihat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Department of Medical Imaging, Arab-American University Palestine, AAUP, Jenin, Palestine
| | - Margo Kersey
- Department of Mathematics, University of California, Los Angeles, CA, 90095, USA
| | - N Jon Shah
- JARA - BRAIN - Translational Medicine, Pauwelsstraße 30, 52074, Aachen, Germany
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany
- Institute of Neuroscience and Medicine 11, INM-11, JARA, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Tanja Veselinović
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Irene Neuner
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany.
- JARA - BRAIN - Translational Medicine, Pauwelsstraße 30, 52074, Aachen, Germany.
- Institute of Neuroscience and Medicine, INM-4, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, 52428, Jülich, Germany.
| |
Collapse
|
15
|
Distinct association of plasma BDNF concentration and cognitive function in depressed patients treated with vortioxetine or escitalopram. Psychopharmacology (Berl) 2021; 238:1575-1584. [PMID: 33560444 DOI: 10.1007/s00213-021-05790-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
RATIONALE Cognitive dysfunction is frequent in major depressive disorder (MDD), and brain-derived neurotrophic factor (BDNF) is involved both in regulation of cognition and in therapeutic response in MDD. OBJECTIVES The aim of this study was to determine if baseline plasma BDNF might predict change in cognitive function in MDD patients treated with vortioxetine or escitalopram, and whether the alterations in BDNF levels correlate with changes in cognitive performance during treatment. METHODS Drug-naive or drug-free patients with MDD (N=121) were sampled and evaluated at baseline and 4 weeks after treatment initiation with vortioxetine or escitalopram. Cognitive function was evaluated using the F-A-S test, Digit Span test, and Digit Symbol Coding test. Plasma BDNF was determined using ELISA. RESULTS The results of the study indicate that both vortioxetine (V) and escitalopram (E) improved cognitive functions evaluated with F-A-S test (V: p<0.001; r=-0.427, E: p<0.001; r=-0.370), Digit Symbol Coding test (V: p<0.001; r=-0.706, E: p<0.001; r=-0.435), and Digit Span test-backward span (V: p=0.001; r=-0.311, E: p=0.042; r=-0.185), while only vortioxetine (p<0.001; r=-0.325) improved cognition evaluated with the Digit Span test-forward span. A moderate positive correlation between pretreatment plasma BDNF levels and improvement in cognitive performance was only detected in patients treated with vortioxetine (delta F-A-S test: p=0.011; r=0.325, delta Digit Span test-forward span: p=0.010, r=0.326). CONCLUSIONS These results suggest that higher baseline plasma BDNF levels might be associated with improvements in verbal fluency and working memory in vortioxetine, but not escitalopram treated patients. Vortioxetine treatment was superior in simple attention efficiency.
Collapse
|
16
|
Gunning FM, Anguera JA, Victoria LW, Areán PA. A digital intervention targeting cognitive control network dysfunction in middle age and older adults with major depression. Transl Psychiatry 2021; 11:269. [PMID: 33947831 PMCID: PMC8096948 DOI: 10.1038/s41398-021-01386-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 02/03/2023] Open
Abstract
Nonpharmacological interventions targeting putative network mechanisms of major depressive disorder (MDD) may represent novel treatments. This mechanistic study investigates how a video game-like intervention, designed to improve cognitive control network (CCN) functioning by targeting multitasking, influences the CCN of middle-aged and older adults with MDD. The sample consisted of 34 adults aged 45-75 with SCID-defined diagnosis of MDD, Hamilton depression rating scale scores ≥20, and a deficit in cognitive control. Participants were instructed to play at home for 20-25 min per day, at least 5 times per week, for 4 weeks. Evidence of target engagement was defined a priori as >2/3 of participants showing CCN improvement. CCN engagement was defined as a change in a Z score of ≥0.5 on functional magnetic resonance imaging (fMRI) in activation and functional connectivity of the CCN during task-based and resting-state fMRI, respectively. 74% of participants showed a change in activation of the CCN, and 72% showed an increase in resting-state functional connectivity. Sixty-eight percent demonstrated improved cognitive control function, measured as either improvement on sustained attention or working memory performance or reduced self-reported symptoms of apathy on the frontal systems behavioral scale (FrsBe). Participants also reported a significant reduction in mood symptoms measured by PHQ-9. A remotely deployed neuroscience-informed video game-like intervention improves both CCN functions and mood in middle-aged and older adults with MDD. This easily-disseminated intervention may rescue CCN dysfunction present in a substantial subset of middle-aged and older adults with MDD.
Collapse
Affiliation(s)
- Faith M. Gunning
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medicine, New York, NY USA
| | - Joaquin A. Anguera
- grid.266102.10000 0001 2297 6811Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco, CA USA
| | - Lindsay W. Victoria
- grid.5386.8000000041936877XDepartment of Psychiatry, Weill Cornell Medicine, New York, NY USA
| | - Patricia A. Areán
- grid.34477.330000000122986657Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA USA
| |
Collapse
|
17
|
Accelerated brain aging predicts impulsivity and symptom severity in depression. Neuropsychopharmacology 2021; 46:911-919. [PMID: 33495545 PMCID: PMC8115107 DOI: 10.1038/s41386-021-00967-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 01/08/2021] [Indexed: 01/30/2023]
Abstract
Multiple structural and functional neuroimaging measures vary over the course of the lifespan and can be used to predict chronological age. Accelerated brain aging, as quantified by deviations in the MRI-based predicted age with respect to chronological age, is associated with risk for neurodegenerative conditions, bipolar disorder, and mortality. Whether age-related changes in resting-state functional connectivity are accelerated in major depressive disorder (MDD) is unknown, and, if so, it is unclear if these changes contribute to specific cognitive weaknesses that often occur in MDD. Here, we delineated age-related functional connectivity changes in a large sample of normal control subjects and tested whether brain aging is accelerated in MDD. Furthermore, we tested whether accelerated brain aging predicts individual differences in cognitive function. We trained a support vector regression model predicting age using resting-state functional connectivity in 710 healthy adults aged 18-89. We applied this model trained on normal aging subjects to a sample of actively depressed MDD participants (n = 109). The difference between predicted brain age and chronological age was 2.11 years greater (p = 0.015) in MDD patients compared to control participants. An older MDD brain age was significantly associated with increased impulsivity and, in males, increased depressive severity. Unexpectedly, accelerated brain aging was also associated with increased placebo response in a sham-controlled trial of high-frequency repetitive transcranial magnetic stimulation targeting the dorsomedial prefrontal cortex. Our results indicate that MDD is associated with accelerated brain aging, and that accelerated aging is selectively associated with greater impulsivity and depression severity.
Collapse
|
18
|
Balogh L, Tanaka M, Török N, Vécsei L, Taguchi S. Crosstalk between Existential Phenomenological Psychotherapy and Neurological Sciences in Mood and Anxiety Disorders. Biomedicines 2021; 9:biomedicines9040340. [PMID: 33801765 PMCID: PMC8066576 DOI: 10.3390/biomedicines9040340] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Psychotherapy is a comprehensive biological treatment modifying complex underlying cognitive, emotional, behavioral, and regulatory responses in the brain, leading patients with mental illness to a new interpretation of the sense of self and others. Psychotherapy is an art of science integrated with psychology and/or philosophy. Neurological sciences study the neurological basis of cognition, memory, and behavior as well as the impact of neurological damage and disease on these functions, and their treatment. Both psychotherapy and neurological sciences deal with the brain; nevertheless, they continue to stay polarized. Existential phenomenological psychotherapy (EPP) has been in the forefront of meaning-centered counseling for almost a century. The phenomenological approach in psychotherapy originated in the works of Martin Heidegger, Ludwig Binswanger, Medard Boss, and Viktor Frankl, and it has been committed to accounting for the existential possibilities and limitations of one's life. EPP provides philosophically rich interpretations and empowers counseling techniques to assist mentally suffering individuals by finding meaning and purpose to life. The approach has proven to be effective in treating mood and anxiety disorders. This narrative review article demonstrates the development of EPP, the therapeutic methodology, evidence-based accounts of its curative techniques, current understanding of mood and anxiety disorders in neurological sciences, and a possible converging path to translate and integrate meaning-centered psychotherapy and neuroscience, concluding that the EPP may potentially play a synergistic role with the currently prevailing medication-based approaches for the treatment of mood and anxiety disorders.
Collapse
Affiliation(s)
- Lehel Balogh
- Center for Applied Ethics and Philosophy, Hokkaido University, North 10, West 7, Kita-ku, Sapporo 060-0810, Japan
- Correspondence: ; Tel.: +81-80-8906-4263
| | - Masaru Tanaka
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Nóra Török
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - László Vécsei
- MTA-SZTE, Neuroscience Research Group, Semmelweis u. 6, H-6725 Szeged, Hungary; (M.T.); (N.T.); (L.V.)
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| | - Shigeru Taguchi
- Faculty of Humanities and Human Sciences & Center for Human Nature, Artificial Intelligence, and Neuroscience (CHAIN), Hokkaido University, Kita 12, Nishi 7, Kita-ku, Sapporo 060-0812, Japan;
| |
Collapse
|
19
|
Crosstalk between Depression and Dementia with Resting-State fMRI Studies and Its Relationship with Cognitive Functioning. Biomedicines 2021; 9:biomedicines9010082. [PMID: 33467174 PMCID: PMC7830949 DOI: 10.3390/biomedicines9010082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, and depression is a risk factor for developing AD. Epidemiological studies provide a clinical correlation between late-life depression (LLD) and AD. Depression patients generally remit with no residual symptoms, but LLD patients demonstrate residual cognitive impairment. Due to the lack of effective treatments, understanding how risk factors affect the course of AD is essential to manage AD. Advances in neuroimaging, including resting-state functional MRI (fMRI), have been used to address neural systems that contribute to clinical symptoms and functional changes across various psychiatric disorders. Resting-state fMRI studies have contributed to understanding each of the two diseases, but the link between LLD and AD has not been fully elucidated. This review focuses on three crucial and well-established networks in AD and LLD and discusses the impacts on cognitive decline, clinical symptoms, and prognosis. Three networks are the (1) default mode network, (2) executive control network, and (3) salience network. The multiple properties emphasized here, relevant for the hypothesis of the linkage between LLD and AD, will be further developed by ongoing future studies.
Collapse
|
20
|
Koyama MS, Molfese PJ, Milham MP, Mencl WE, Pugh KR. Thalamus is a common locus of reading, arithmetic, and IQ: Analysis of local intrinsic functional properties. BRAIN AND LANGUAGE 2020; 209:104835. [PMID: 32738503 PMCID: PMC8087146 DOI: 10.1016/j.bandl.2020.104835] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 05/04/2023]
Abstract
Neuroimaging studies of basic achievement skills - reading and arithmetic - often control for the effect of IQ to identify unique neural correlates of each skill. This may underestimate possible effects of common factors between achievement and IQ measures on neuroimaging results. Here, we simultaneously examined achievement (reading and arithmetic) and IQ measures in young adults, aiming to identify MRI correlates of their common factors. Resting-state fMRI (rs-fMRI) data were analyzed using two metrics assessing local intrinsic functional properties; regional homogeneity (ReHo) and fractional amplitude low frequency fluctuation (fALFF), measuring local intrinsic functional connectivity and intrinsic functional activity, respectively. ReHo highlighted the thalamus/pulvinar (a subcortical region implied for selective attention) as a common locus for both achievement skills and IQ. More specifically, the higher the ReHo values, the lower the achievement and IQ scores. For fALFF, the left superior parietal lobule, part of the dorsal attention network, was positively associated with reading and IQ. Collectively, our results highlight attention-related regions, particularly the thalamus/pulvinar as a key region related to individual differences in performance on all the three measures. ReHo in the thalamus/pulvinar may serve as a tool to examine brain mechanisms underlying a comorbidity of reading and arithmetic difficulties, which could co-occur with weakness in general intellectual abilities.
Collapse
Affiliation(s)
- Maki S Koyama
- Haskins Laboratories, New Haven, CT, USA; Center for the Developing Brain, Child Mind Institute, New York, NY, USA.
| | - Peter J Molfese
- Haskins Laboratories, New Haven, CT, USA; Section on Functional Imaging Methods, Laboratory of Brain and Cognition, Department of Health and Human Services, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA.
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, USA; Center for Biomedical Imagingand Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.
| | | | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, USA; Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT, USA; University of Connecticut, Department of Psychology, Storrs, CT, USA.
| |
Collapse
|
21
|
Dumas JA. Functional Connectivity and Cognitive Control in Late-Life Depression. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:138-139. [PMID: 32035612 DOI: 10.1016/j.bpsc.2019.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/18/2022]
Affiliation(s)
- Julie A Dumas
- Department of Psychiatry, Larner College of Medicine, University of Vermont, Burlington, Vermont.
| |
Collapse
|