1
|
Poder J, Hoskin P, Reynolds H, Him Chan T, Haworth A. A review of whole gland prostate brachytherapy with focal dose escalation to intra-prostatic lesions: Clinical efficacy and technical aspects. Phys Imaging Radiat Oncol 2024; 32:100645. [PMID: 39381615 PMCID: PMC11459009 DOI: 10.1016/j.phro.2024.100645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Focal boost to intra-prostatic lesions (IPLs) in radiotherapy could enhance treatment efficacy. Brachytherapy (BT), delivering highly conformal dose with sharp dose gradients emerges as a potentially optimal approach for precise dose escalation to IPLs. This study aims to consolidate clinical and planning studies that implemented whole gland prostate BT and focal dose escalation to IPLs, with the view to synthesize evidence on the strategy's effectiveness and variability. In this review, we identified nine clinical studies and ten planning/simulation studies focusing on whole gland prostate BT with IPL dose escalation. From the clinical studies, the use of whole gland prostate BT with focal dose escalation in combination with external beam radiotherapy (EBRT) appears to be a safe and effective 21 form of treatment for men with T1b - T2c prostate cancer with average five-year biochemical failure22 free survival (BFFS) of 94 % (range 81.1 %-100 %) and minimal grade three toxicities reported. Both clinical and planning studies exemplified the high level of focal dose escalation achievable using BT with a mean IPL D90 % of 132 % and 146 %, respectively (expressed as a % of the whole gland prescription dose). There was considerable variation in the reporting of clinical and technical data in the identified studies. To facilitate a more widespread and uniform adoption of the technique, recommendations on essential and desirable items to be included in future studies incorporating whole gland prostate BT with focal boost to IPLs are provided.
Collapse
Affiliation(s)
- Joel Poder
- St George Hospital Cancer Care Centre, Kogarah, NSW, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, Australia
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| | - Peter Hoskin
- Mount Vernon Cancer Centre, Northwood, United Kingdom
- Division of Cancer Sciences, University of Manchester, United Kingdom
| | - Hayley Reynolds
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Tsz Him Chan
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Annette Haworth
- School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
2
|
Padasdao B, Imanaka R, Podder TK, Konh B. Curvilinear catheter implantation in HDR prostate brachytherapy: feasibility study. Med Phys 2024; 51:6332-6347. [PMID: 38695825 DOI: 10.1002/mp.17113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/29/2024] [Accepted: 04/21/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND High-dose-rate (HDR) brachytherapy (BT) has been acknowledged as a widely utilized treatment for patients with intermediate- and high-risk prostate cancer, despite its side effects such as edema, incontinence, and impotence. Nevertheless, the treatment is consistently limited by the potential danger of excessive irradiation to organs-at-risk (OARs) like the urethra, bladder, and rectum. PURPOSE This study aims to introduce curvilinear catheter implantation in the prostate gland for HDR treatment. The objective is to improve the radiation dose distribution by offering access channels conformal to the prostate anatomy. This approach seeks to minimize toxicity to nearby OARs while utilizing a reduced number of needles, potentially leading to improved clinical outcomes. METHODS Curvilinear catheters were first pre-planned for an anonymized patient using Oncentra treatment planning system (TPS) and hybrid inverse planning optimization (HIPO) algorithm. The trajectories of the catheters were then analyzed using MATLAB to extract their radius of curvature. Tendon-driven active needles were then used to implant curvilinear catheters inside an anthropomorphic phantom. RESULTS Proposed curvilinear catheter implantation resulted in significant improvement in terms of dosimetric constraints to the OARs and coverage to the prostate. Tendon-driven active needles were shown to be capable of realizing the required pre-planned curvatures inside prostate. It was shown that the active needle can realize a desired radius of curvature and a desired trajectory with an average accuracy of 9.1 ± 8.6 and 1.27 ± 0.50 mm in air and inside a tissue-mimicking phantom, respectively. CONCLUSION This work demonstrates the feasibility of using tendon-driven active curvilinear catheter implantation in prostate to improve the outcomes of HDR-BT via improved radiation dose distribution to the prostate and reduced toxicity to the OARs.
Collapse
Affiliation(s)
- Blayton Padasdao
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Rex Imanaka
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Tarun K Podder
- Department of Radiation Oncology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Bardia Konh
- Department of Mechanical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
3
|
Zhao Y, Haworth A, Rowshanfarzad P, Ebert MA. Focal Boost in Prostate Cancer Radiotherapy: A Review of Planning Studies and Clinical Trials. Cancers (Basel) 2023; 15:4888. [PMID: 37835581 PMCID: PMC10572027 DOI: 10.3390/cancers15194888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Focal boost radiotherapy was developed to deliver elevated doses to functional sub-volumes within a target. Such a technique was hypothesized to improve treatment outcomes without increasing toxicity in prostate cancer treatment. PURPOSE To summarize and evaluate the efficacy and variability of focal boost radiotherapy by reviewing focal boost planning studies and clinical trials that have been published in the last ten years. METHODS Published reports of focal boost radiotherapy, that specifically incorporate dose escalation to intra-prostatic lesions (IPLs), were reviewed and summarized. Correlations between acute/late ≥G2 genitourinary (GU) or gastrointestinal (GI) toxicity and clinical factors were determined by a meta-analysis. RESULTS By reviewing and summarizing 34 planning studies and 35 trials, a significant dose escalation to the GTV and thus higher tumor control of focal boost radiotherapy were reported consistently by all reviewed studies. Reviewed trials reported a not significant difference in toxicity between focal boost and conventional radiotherapy. Acute ≥G2 GU and late ≥G2 GI toxicities were reported the most and least prevalent, respectively, and a negative correlation was found between the rate of toxicity and proportion of low-risk or intermediate-risk patients in the cohort. CONCLUSION Focal boost prostate cancer radiotherapy has the potential to be a new standard of care.
Collapse
Affiliation(s)
- Yutong Zhao
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
| | - Annette Haworth
- Institute of Medical Physics, School of Physics, The University of Sydney, Camperdown, NSW 2050, Australia;
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Centre for Advanced Technologies in Cancer Research (CATCR), Perth, WA 6000, Australia
| | - Martin A. Ebert
- School of Physics, Mathematics and Computing, The University of Western Australia, Crawley, WA 6009, Australia; (P.R.); (M.A.E.)
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- 5D Clinics, Claremont, WA 6010, Australia
- School of Medicine and Population Health, University of Wisconsin, Madison WI 53706, USA
| |
Collapse
|
4
|
Strnad V, Lotter M, Kreppner S, Fietkau R. Brachytherapy focal dose escalation using ultrasound based tissue characterization by patients with non-metastatic prostate cancer: Five-year results from single-center phase 2 trial. Brachytherapy 2022; 21:415-423. [PMID: 35396138 DOI: 10.1016/j.brachy.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/11/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This prospective trial investigates side effects and efficacy of focal dose escalation with brachytherapy for patients with prostate cancer. METHODS AND MATERIALS In the Phase II, monocentric prospective trial 101 patients with low-/intermediate- and high-risk prostate cancer were enrolled between 2011 and 2013. Patients received either PDR-/HDR-brachytherapy alone with 86-90 Gy (EQD2, α/β = 3 Gy) or PDR-/HDR-brachytherapy as boost after external beam radiation therapy up to a total dose of 91-96 Gy (EQD2, α/β = 3 Gy). Taking place brachytherapy all patients received the simultaneous integrated focal boost to the intra-prostatic tumor lesions visible in computer-aided ultrasonography (HistoScanning™) - up to a total dose of 108-119 Gy (EQD2, α/β = 3 Gy). The primary endpoint was toxicity. Secondary endpoints were cumulative freedom from local recurrence, PSA-free survival, distant metastases-free survival, and overall survival. This trial is registered with ClinicalTrials.gov, number NCT01409876. RESULTS Median follow-up was 65 months. Late toxicity was generally low with only four patients scoring urinary grade 3 toxicity (4/101, 4%). Occurrence of any grade of late rectal toxicities was very low. We did not register any grade ≥2 of late rectal toxicities. The cumulative 5 years local recurrence rate (LRR) for all patients was 1%. Five years- biochemical disease-free survival estimates according Kaplan-Meier were 98,1% and 81,3% for low-/intermediate-risk and high-risk patients, respectively. Five years metastases-free survival estimates according Kaplan-Meier were 98,0% and 83,3% for all patients, low-/intermediate-risk and high-risk patients, respectively. CONCLUSIONS The 5 years-results from this Phase II Trial show that focal dose escalation with computer-aided ultrasonography and brachytherapy for patients with non-metastatic prostate cancer is safe and effective.
Collapse
Affiliation(s)
- Vratislav Strnad
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany.
| | - Michael Lotter
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Stephan Kreppner
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Targeting prostate lesions on multiparametric MRI with HDR brachytherapy: Optimal planning margins determined using whole-mount digital histology. Brachytherapy 2022; 21:435-441. [PMID: 35337747 DOI: 10.1016/j.brachy.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/03/2021] [Accepted: 01/29/2022] [Indexed: 11/23/2022]
Abstract
PURPOSE Multiparametric magnetic resonance imaging (mpMRI) has demonstrated the ability to localize intraprostatic lesions. It is our goal to determine how to optimally target the underlying histopathological cancer within the setting of high-dose-rate brachytherapy (HDR-BT). METHODS AND MATERIALS Ten prostatectomy patients had pathologist-annotated mid-gland histology registered to pre-procedural mpMRI, which were interpreted by four different observers. Simulated HDR-BT plans with realistic catheter placements were generated by registering the mpMRI lesions and corresponding histology annotations to previously performed clinical HDR-BT implants. Inverse treatment planning was used to generate treatment plans that treated the entire gland to a single dose of 15 Gy, as well as focally targeted plans that aimed to escalate dose to the mpMRI lesions to 20.25 Gy. Three margins to the lesion were explored: 0 mm, 1 mm, and 2 mm. The analysis compared the dose that would have been delivered to the corresponding histologically-defined cancer with the different treatment planning techniques. RESULTS mpMRI-targeted plans delivered a significantly higher dose to the histologically-defined cancer (p < 0.001), in comparison to the standard treatment plans. Additionally, adding a 1 mm margin resulted in significantly higher D98, and D90 to the histologically-defined cancer in comparison to the 0 mm margin targeted plans (p = 0.019 & p = 0.0026). There was no significant difference between plans using 1 mm and 2 mm margins. CONCLUSIONS Adding a 1 mm margin to intraprostatic mpMRI lesions significantly increased the dose to histologically-defined cancer, in comparison applying no margin. No significant effect was observed by further expanding the margins.
Collapse
|
6
|
Zhou J, Yang X, Chang CW, Tian S, Wang T, Lin L, Wang Y, Janopaul-Naylor JR, Patel P, Demoor JD, Bohannon D, Stanforth A, Eaton B, McDonald MW, Liu T, Patel SA. Dosimetric Uncertainties in Dominant Intraprostatic Lesion Simultaneous Boost Using Intensity Modulated Proton Therapy. Adv Radiat Oncol 2021; 7:100826. [PMID: 34805623 PMCID: PMC8581277 DOI: 10.1016/j.adro.2021.100826] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022] Open
Abstract
Purpose While intensity modulated proton therapy can deliver simultaneous integrated boost (SIB) to the dominant intraprostatic lesion (DIL) with high precision, it is sensitive to anatomic changes. We investigated the dosimetric effects from these changes based on pretreatment cone-beam computed tomographic (CBCT) images and identified the most important factors using a multilayer perceptron neural network (MLPNN). Methods and Materials DILs were contoured based on coregistered multiparametric magnetic resonance images for 25 previously treated prostate cancer patients. SIB plans were created with (1) prostate clinical target volume − V70 Gy = 98%; (2) DIL − V98 Gy > 95%; and (3) all organs at risk (OARs)"?> within clinical constraints. SIB plans were applied to daily CBCT-based deformed planning computed tomography (CT)"?>. DIL − V98 Gy, bladder/rectum maximum dose (Dmax) and volume changes, femur shifts, and the distance from DIL to organs at riskOARs"?> in both planning computed tomogramsCT"?> and CBCT were calculated. Wilcoxon signed-ranks tests were used to compare the changes. MLPNNs were used to model the change in ΔDIL − V98 Gy > 10% and bladder/rectum Dmax > 80 Gy, and the relative importance factors for the model were provided. The performances of the models were evaluated with receiver operating characteristic curves. Results Comparing initial plan to the average from evaluation plans, respectively, DIL − V98 Gy was 89.3% ± 19.9% versus 86.2% ± 21.3% (P = .151); bladder Dmax 71.9 ± 0.6 Gy versus 74.5 ± 2.9 Gy (P < .001); and rectum Dmax 70.1 ± 2.4 Gy versus 74.9 ± 9.1Gy (P = .007). Bladder and rectal volumes were 99.6% ± 39.5% and 112.8% ± 27.2%, respectively, of their initial volume. The femur shift was 3.16 ± 2.52 mm. In the modeling of ΔDIL V98 Gy > 10%, DIL to rectum distance changes, DIL to bladder distance changes, and rectum volume changes ratio are the 3 most important factors. The areas under the receiver operating characteristic curves were 0.89, 1.00, and 0.99 for the modeling of ΔDIL − V98 Gy > 10%, and bladder and rectum Dmax > 80 Gy, respectively. Conclusions Dosimetric changes in DIL SIB with intensity modulated proton therapy can be modeled and classified based on anatomic changes on pretreatment images by an MLPNN.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Xiaofeng Yang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Chih-Wei Chang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Sibo Tian
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Tonghe Wang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Liyong Lin
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Yinan Wang
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | | | - Pretesh Patel
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - John D Demoor
- Department of Medical Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Duncan Bohannon
- Department of Medical Physics, Georgia Institute of Technology, Atlanta, Georgia
| | - Alex Stanforth
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Bree Eaton
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Mark W McDonald
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Tian Liu
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Sagar Anil Patel
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| |
Collapse
|
7
|
Shah C, Vicini F, Beriwal S, Thaker N, Frank SJ, Rossi P, Orio P, Chang AJ, Joshi N, Campbell SR, Naghavi A, Chao S, Kamrava M, Deufel CL, Mourtada F, Suh JH. American brachytherapy society radiation oncology alternative payment model task force: Quality measures and metrics for brachytherapy. Brachytherapy 2021; 21:63-74. [PMID: 34732290 DOI: 10.1016/j.brachy.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE Brachytherapy is an essential technique to deliver radiation therapy and is involved in the treatment of multiple disease sites as monotherapy or as an adjunct to external beam radiation therapy. With a growing focus on the cost and value of cancer treatments as well new payment models, it is essential that standardized quality measures and metrics exist to allow for straightforward assessment of brachytherapy quality and for the development of clinically significant and relevant clinical data elements. We present the American Brachytherapy Society consensus statement on quality measures and metrics for brachytherapy as well as suggested clinical data elements. METHODS AND MATERIALS Members of the American Brachytherapy Society with expertise in disease site specific brachytherapy created a consensus statement based on a literature review and clinical experience. RESULTS Key quality measures (ex. workup, clinical indications), dosimetric metrics, and clinical data elements for brachytherapy were evaluated for each modality including breast cancer, cervical cancer, endometrial cancer, prostate cancer, keratinocyte carcinoma, soft tissue sarcoma, and uveal melanoma. CONCLUSIONS This consensus statement provides standardized quality measures and dosimetric quality metrics as well as clinical data elements for each disease site to allow for standardized assessments of brachytherapy quality. Moving forward, a similar paradigm can be considered for external beam radiation therapy as well, providing comprehensive radiation therapy quality measures, metrics, and clinical data elements that can be incorporated into new payment models.
Collapse
Affiliation(s)
- Chirag Shah
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH.
| | | | - Sushil Beriwal
- Department of Radiation Oncology, UPMC Hillman cancer Center, Pittsburgh, PA
| | - Nikhil Thaker
- Division of Radiation Oncology, Arizona Oncology, Tucson, AZ
| | - Steven J Frank
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| | | | - Peter Orio
- Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA
| | - Albert J Chang
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, CA
| | - Nikhil Joshi
- Department of Radiation Oncology, Rush University, Chicago, IL
| | - Shauna R Campbell
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Arash Naghavi
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, FL
| | - Samuel Chao
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| | - Mitchell Kamrava
- Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Firas Mourtada
- Department of Radiation Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH
| |
Collapse
|
8
|
McGeachy P, Watt E, Husain S, Martell K, Martinez P, Sawhney S, Thind K. MRI-TRUS registration methodology for TRUS-guided HDR prostate brachytherapy. J Appl Clin Med Phys 2021; 22:284-294. [PMID: 34318581 PMCID: PMC8364261 DOI: 10.1002/acm2.13292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 04/26/2021] [Accepted: 05/05/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose High‐dose‐rate (HDR) prostate brachytherapy is an established technique for whole‐gland treatment. For transrectal ultrasound (TRUS)‐guided HDR prostate brachytherapy, image fusion with a magnetic resonance image (MRI) can be performed to make use of its soft‐tissue contrast. The MIM treatment planning system has recently introduced image registration specifically for HDR prostate brachytherapy and has incorporated a Predictive Fusion workflow, which allows clinicians to attempt to compensate for differences in patient positioning between imaging modalities. In this study, we investigate the accuracy of the MIM algorithms for MRI‐TRUS fusion, including the Predictive Fusion workflow. Materials and Methods A radiation oncologist contoured the prostate gland on both TRUS and MRI. Four registration methodologies to fuse the MRI and the TRUS images were considered: rigid registration (RR), contour‐based (CB) deformable registration, Predictive Fusion followed by RR (pfRR), and Predictive Fusion followed by CB deformable registration (pfCB). Registrations were compared using the mean distance to agreement and the Dice similarity coefficient for the prostate as contoured on TRUS and the registered MRI prostate contour. Results Twenty patients treated with HDR prostate brachytherapy at our center were included in this retrospective evaluation. For the cohort, mean distance to agreement was 2.1 ± 0.8 mm, 0.60 ± 0.08 mm, 2.0 ± 0.5 mm, and 0.59 ± 0.06 mm for RR, CB, pfRR, and pfCB, respectively. Dice similarity coefficients were 0.80 ± 0.05, 0.93 ± 0.02, 0.81 ± 0.03, and 0.93 ± 0.01 for RR, CB, pfRR, and pfCB, respectively. The inclusion of the Predictive Fusion workflow did not significantly improve the quality of the registration. Conclusions The CB deformable registration algorithm in the MIM treatment planning system yielded the best geometric registration indices. MIM offers a commercial platform allowing for easier access and integration into clinical departments with the potential to play an integral role in future focal therapy applications for prostate cancer.
Collapse
Affiliation(s)
- Philip McGeachy
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Elizabeth Watt
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - Siraj Husain
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Kevin Martell
- Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Radiation Oncology, Tom Baker Cancer Centre, Calgary, AB, Canada
| | - Pedro Martinez
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| | - Summit Sawhney
- Department of Radiology and Diagnostic Imaging, University of Calgary, Calgary, AB, Canada
| | - Kundan Thind
- Department of Medical Physics, Tom Baker Cancer Centre, Calgary, AB, Canada.,Department of Oncology, University of Calgary, Calgary, AB, Canada.,Department of Physics and Astronomy, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
9
|
McGee KP, Hwang KP, Sullivan DC, Kurhanewicz J, Hu Y, Wang J, Li W, Debbins J, Paulson E, Olsen JR, Hua CH, Warner L, Ma D, Moros E, Tyagi N, Chung C. Magnetic resonance biomarkers in radiation oncology: The report of AAPM Task Group 294. Med Phys 2021; 48:e697-e732. [PMID: 33864283 PMCID: PMC8361924 DOI: 10.1002/mp.14884] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/24/2021] [Accepted: 03/28/2021] [Indexed: 12/16/2022] Open
Abstract
A magnetic resonance (MR) biologic marker (biomarker) is a measurable quantitative characteristic that is an indicator of normal biological and pathogenetic processes or a response to therapeutic intervention derived from the MR imaging process. There is significant potential for MR biomarkers to facilitate personalized approaches to cancer care through more precise disease targeting by quantifying normal versus pathologic tissue function as well as toxicity to both radiation and chemotherapy. Both of which have the potential to increase the therapeutic ratio and provide earlier, more accurate monitoring of treatment response. The ongoing integration of MR into routine clinical radiation therapy (RT) planning and the development of MR guided radiation therapy systems is providing new opportunities for MR biomarkers to personalize and improve clinical outcomes. Their appropriate use, however, must be based on knowledge of the physical origin of the biomarker signal, the relationship to the underlying biological processes, and their strengths and limitations. The purpose of this report is to provide an educational resource describing MR biomarkers, the techniques used to quantify them, their strengths and weakness within the context of their application to radiation oncology so as to ensure their appropriate use and application within this field.
Collapse
Affiliation(s)
- Kiaran P McGee
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ken-Pin Hwang
- Department of Imaging Physics, Division of Diagnostic Imaging, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Daniel C Sullivan
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - John Kurhanewicz
- Department of Radiology, University of California, San Francisco, California, USA
| | - Yanle Hu
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, Arizona, USA
| | - Jihong Wang
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| | - Wen Li
- Department of Radiation Oncology, University of Arizona, Tucson, Arizona, USA
| | - Josef Debbins
- Department of Radiology, Barrow Neurologic Institute, Phoenix, Arizona, USA
| | - Eric Paulson
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Jeffrey R Olsen
- Department of Radiation Oncology, University of Colorado Denver - Anschutz Medical Campus, Denver, Colorado, USA
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | - Daniel Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eduardo Moros
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Caroline Chung
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, Texas, USA
| |
Collapse
|
10
|
Smith CW, Hoover D, Surry K, D'Souza D, Cool DW, Kassam Z, Bastian-Jordan M, Gomez JA, Moussa M, Chin J, Pautler S, Bauman GS, Ward AD. A multiobserver study investigating the effectiveness of prostatic multiparametric magnetic resonance imaging to dose escalate corresponding histologic lesions using high-dose-rate brachytherapy. Brachytherapy 2021; 20:601-610. [PMID: 33648893 DOI: 10.1016/j.brachy.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE Using multiparametric MRI data and the pathologic data from radical prostatectomy specimens, we simulated the treatment planning of dose-escalated high-dose-rate brachytherapy (HDR-BT) to the Multiparametric MRI dominant intraprostatic lesion (mpMRI-DIL) to compare the dose potentially delivered to the pathologically confirmed locations of the high-grade component of the cancer. METHODS AND MATERIALS Pathologist-annotated prostatectomy midgland histology sections from 12 patients were registered to preprostatectomy mpMRI scans that were interpreted by four radiologists. To simulate realistic HDR-BT, we registered each observer's mpMRI-DILs and corresponding histology to two transrectal ultrasound images of other HDR-BT patients with a 15-Gy whole-gland prescription. We used clinical inverse planning to escalate the mpMRI-DILs to 20.25 Gy. We compared the dose that the histopathology would have received if treated with standard treatment plans to the dose mpMRI-targeting would have achieved. The histopathology was grouped as high-grade cancer (any Gleason Grade 4 or 5) and low-grade cancer (only Gleason Grade 3). RESULTS 212 mpMRI-targeted HDR-BT plans were analyzed. For high-grade histology, the mpMRI-targeted plans achieved significantly higher median [IQR] D98 and D90 values of 18.2 [16.7-19.5] Gy and 19.4 [17.8-20.9] Gy, respectively, in comparison with the standard plans (p = 0.01 and p = 0.003). For low-grade histology, the targeted treatment plans would have resulted in a significantly higher median D90 of 17.0 [16.1-18.4] Gy in comparison with standard plans (p = 0.015); the median D98 was not significantly higher (p = 0.2). CONCLUSIONS In this retrospective pilot study of 12 patients, mpMRI-based dose escalation led to increased dose to high-grade, but not low-grade, cancer. In our data set, different observers and mpMRI sequences had no substantial effect on dose to histologic cancer.
Collapse
Affiliation(s)
- Christopher W Smith
- Baines Imaging Research Laboratory, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - Douglas Hoover
- Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - Kathleen Surry
- Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - David D'Souza
- Lawson Health Research Institute, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - Derek W Cool
- Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Zahra Kassam
- Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Imaging, Western University, London, Ontario, Canada
| | - Matthew Bastian-Jordan
- Department of Medical Imaging, University of Queensland, Brisbane, Queensland, Australia
| | - Jose A Gomez
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Madeleine Moussa
- Department of Pathology and Laboratory Medicine, Western University, London, Ontario, Canada
| | - Joseph Chin
- Department of Surgery, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Stephen Pautler
- Department of Surgery, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada
| | - Glenn S Bauman
- Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada
| | - Aaron D Ward
- Baines Imaging Research Laboratory, London, Ontario, Canada; Lawson Health Research Institute, London, Ontario, Canada; Department of Medical Biophysics, Western University, London, Ontario, Canada; Department of Oncology, Western University, London, Ontario, Canada; London Regional Cancer Program, London, Ontario, Canada.
| |
Collapse
|
11
|
Wang T, Zhou J, Tian S, Wang Y, Patel P, Jani AB, Langen KM, Curran WJ, Liu T, Yang X. A planning study of focal dose escalations to multiparametric MRI-defined dominant intraprostatic lesions in prostate proton radiation therapy. Br J Radiol 2020; 93:20190845. [PMID: 31904261 PMCID: PMC7066949 DOI: 10.1259/bjr.20190845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES The purpose of this study is to investigate the dosimetric effect and clinical impact of delivering a focal radiotherapy boost dose to multiparametric MRI (mp-MRI)-defined dominant intraprostatic lesions (DILs) in prostate cancer using proton therapy. METHODS We retrospectively investigated 36 patients with pre-treatment mp-MRI and CT images who were treated using pencil beam scanning (PBS) proton radiation therapy to the whole prostate. DILs were contoured on co-registered mp-MRIs. Simultaneous integrated boost (SIB) plans using intensity-modulated proton therapy (IMPT) were created based on conventional whole-prostate-irradiation for each patient and optimized with additional DIL coverage goals and urethral constraints. DIL dose coverage and organ-at-risk (OAR) sparing were compared between conventional and SIB plans. Tumor control probability (TCP) and normal tissue complication probability (NTCP) were estimated to evaluate the clinical impact of the SIB plans. RESULTS Optimized SIB plans significantly escalated the dose to DILs while meeting OAR constraints. SIB plans were able to achieve 125, 150 and 175% of prescription dose coverage in 74, 54 and 17% of 36 patients, respectively. This was modeled to result in an increase in DIL TCP by 7.3-13.3% depending on α / β and DIL risk level. CONCLUSION The proposed mp-MRI-guided DIL boost using proton radiation therapy is feasible without violating OAR constraints and demonstrates a potential clinical benefit by improving DIL TCP. This retrospective study suggested the use of IMPT-based DIL SIB may represent a strategy to improve tumor control. ADVANCES IN KNOWLEDGE This study investigated the planning of mp-MRI-guided DIL boost in prostate proton radiation therapy and estimated its clinical impact with respect to TCP and NTCP.
Collapse
Affiliation(s)
- Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Jun Zhou
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Sibo Tian
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Yinan Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Ashesh B. Jani
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Katja M. Langen
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Walter J. Curran
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Tian Liu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta 30322, Georgia
| |
Collapse
|
12
|
|
13
|
Gao S, Xu J, Lu W. Research on the improvement of the diagnostic effect of machine learning on nuclear magnetic resonance of brain tumors. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-179212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Shuyan Gao
- The CT Room in Yulin City Traditional Chinese Medicine Hospital of Shaanxi, Shanxi, China
| | - Jiaqi Xu
- Burn and Plastic Surgery, the Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai, China
| | - Weiheng Lu
- Neurology Department, Dongguan Third People’s Hospital, Dongguan, China
| |
Collapse
|
14
|
Wang T, Press RH, Giles M, Jani AB, Rossi P, Lei Y, Curran WJ, Patel P, Liu T, Yang X. Multiparametric MRI-guided dose boost to dominant intraprostatic lesions in CT-based High-dose-rate prostate brachytherapy. Br J Radiol 2019; 92:20190089. [PMID: 30912959 DOI: 10.1259/bjr.20190089] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE The purpose of this study is to investigate the dosimetric feasibility of delivering focal dose to multiparametric (mp) MRI-defined DILs in CT-based high-dose-rate (HDR) prostate brachytherapy with MR/CT registration and estimate its clinical benefit. METHODS We retrospectively investigated a total of 17 patients with mp-MRI and CT images acquired pre-treatment and treated by HDR prostate brachytherapy. 21 dominant intraprostatic lesions (DILs) were contoured on mp-MRI and propagated to CT images using a deformable image registration method. A boost plan was created for each patient and optimized on the original needle pattern. In addition, separate plans were generated using a virtually implanted needle around the DIL to mimic mp-MRI guided needle placement. DIL dose coverage and organ-at-rick (OAR) sparing were compared with original plan results. Tumor control probability (TCP) was estimated to further evaluate the clinical impact on the boost plans. RESULTS Overall, optimized boost plans significantly escalated dose to DILs while meeting OAR constraints. The addition of mp-MRI guided virtual needles facilitate increased coverage of DIL volumes, achieving a V150 > 90% in 85 % of DILs compared with 57 % of boost plan without an additional needle. Compared with original plan, TCP models estimated improvement in DIL control by 28 % for patients with external-beam treatment and by 8 % for monotherapy patients. CONCLUSION With MR/CT registration, the proposed mp-MRI guided DIL boost in CT-based HDR brachytherapy is feasible without violating OAR constraints, and indicates significant clinical benefit in improving TCP of DIL. It may represent a strategy to personalize treatment delivery and improve tumor control. ADVANCES IN KNOWLEDGE This study investigated the feasibility of mp-MRI guided DIL boost in HDR prostate brachytherapy with CT-based treatment planning, and estimated its clinical impact by TCP and NTCP estimation.
Collapse
Affiliation(s)
- Tonghe Wang
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Robert H Press
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Matt Giles
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Ashesh B Jani
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Peter Rossi
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Yang Lei
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Walter J Curran
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Pretesh Patel
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Tian Liu
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| | - Xiaofeng Yang
- 1 Department of Radiation Oncology and Winship Cancer Institute, Emory University , Atlanta, GA , USA
| |
Collapse
|
15
|
Tissaverasinghe S, Crook J, Bachand F, Batchelar D, Hilts M, Araujo C, Anderson D, Bainbridge T, Farnquist B. Dose to the dominant intraprostatic lesion using HDR vs. LDR monotherapy: A Phase II randomized trial. Brachytherapy 2019; 18:299-305. [PMID: 30795889 DOI: 10.1016/j.brachy.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE To present the dosimetric results of a Phase II randomized trial comparing dose escalation to the MRI-defined dominant intraprostatic lesion (DIL) using either low-dose-rate (LDR) or high-dose-rate (HDR) prostate brachytherapy. MATERIAL AND METHODS Patients receiving prostate brachytherapy as monotherapy were randomized to LDR or HDR brachytherapy. Prostate and DILs were contoured on preoperative multiparametric MRI. These images were registered with transrectal ultrasound for treatment planning. LDR brachytherapy was preplanned using I-125 seeds. HDR brachytherapy used intraoperative transrectal ultrasound-based planning to deliver 27 Gy/2 fractions in separate implants. DIL location was classified as peripheral, central, or anterior. A student t-test compared DIL D90 between modalities and DIL locations. RESULTS Of 60 patients, 31 underwent LDR and 29 HDR brachytherapy. Up to three DILs were identified per patient (100 total) with 74 peripheral, six central, and 20 anterior DILs. Mean DIL volume was 1.9 cc (SD: 1.7 cc) for LDR and 1.6 cc (SD 1.3 cc) for HDR (p = 0.279). Mean DIL D90 was 151% (SD 30%) for LDR and 132% (SD 13%) for HDR. For LDR, mean peripheral DIL D90 was 159% (SD 27%) and central or anterior 127% (SD 13%). HDR peripheral DILs received 137% (SD 12%) and central or anterior 119% (SD 7%). DIL D90 for peripheral lesions was higher than anterior and central (p < 0.001). CONCLUSIONS DIL location affects dose escalation, particularly because of urethral proximity, such as for anterior and central DILs. HDR brachytherapy may dose escalate better when target DIL is close to critical organs.
Collapse
Affiliation(s)
- Steven Tissaverasinghe
- Radiation Oncology, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Juanita Crook
- Radiation Oncology, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada.
| | - Francois Bachand
- Radiation Oncology, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Deidre Batchelar
- Medical Physics, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Michelle Hilts
- Medical Physics, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Cynthia Araujo
- Medical Physics, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Danielle Anderson
- Medical Physics, BC Cancer and University of British Columbia, Vancouver, British Columbia, Canada
| | - Terry Bainbridge
- Department of Pathology, Kelowna General Hospital, Kelowna, British Columbia, Canada
| | - Brenda Farnquist
- Department of Radiology, Kelowna General Hospital, Kelowna, British Columbia, Canada
| |
Collapse
|
16
|
The Role of Magnetic Resonance Imaging in Brachytherapy. Clin Oncol (R Coll Radiol) 2018; 30:728-736. [DOI: 10.1016/j.clon.2018.07.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 11/19/2022]
|
17
|
Tisseverasinghe SA, Crook JM. The role of salvage brachytherapy for local relapse after external beam radiotherapy for prostate cancer. Transl Androl Urol 2018; 7:414-435. [PMID: 30050801 PMCID: PMC6043745 DOI: 10.21037/tau.2018.05.09] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Prostate cancer is the most prevalent cancer amongst men. For localized disease, there currently exist several reliable treatment modalities including surgery, radiotherapy and brachytherapy. Our growing understanding of this disease indicates that local control plays a very important role in prevention of subsequent dissemination. Many improvements to external beam radiotherapy over recent years have decreased toxicity and improved outcomes, but nonetheless, local relapse remains common. Many salvage options exist for locally recurrent prostate cancer, but are rarely offered, partly because of the fear of toxicity. Many men with isolated local recurrence therefore do not receive potentially curative second line treatment and are instead treated with palliative androgen suppression. Selection plays an important role in determining which individuals are likely to benefit from salvage. Those at high risk of pre-existing micro-metastatic disease despite negative staging scans are unlikely to benefit. Prostate brachytherapy has evolved over the more than 3 decades of experience. Modern techniques allow more precise tumor localization and dose delivery. Better understanding of dosimetric parameters can distinguish optimal from suboptimal implants. Salvage brachytherapy can be an effective treatment for locally recurrent prostate cancer after prior external beam radiotherapy. We review the literature pertaining to both low dose rate (LDR) and high dose rate (HDR) salvage brachytherapy and discuss patient selection, optimal dose, treatment volume and toxicity avoidance.
Collapse
Affiliation(s)
- Steven A Tisseverasinghe
- BC Cancer Agency Centre for the Southern Interior, University of British Columbia, Kelowna, British Columbia, Canada
| | - Juanita M Crook
- BC Cancer Agency Centre for the Southern Interior, University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
18
|
Hellebust T. Place of modern imaging in brachytherapy planning. Cancer Radiother 2018; 22:326-333. [DOI: 10.1016/j.canrad.2018.03.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023]
|
19
|
Gainey M, Carles M, Mix M, Meyer PT, Bock M, Grosu AL, Baltas D. Biological imaging for individualized therapy in radiation oncology: part I physical and technical aspects. Future Oncol 2018. [PMID: 29521520 DOI: 10.2217/fon-2017-0464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recently, there has been an increase in the imaging modalities available for radiotherapy planning and radiotherapy prognostic outcome: dual energy computed tomography (CT), dynamic contrast enhanced CT, dynamic contrast enhanced magnetic resonance imaging (MRI), diffusion-weighted MRI, positron emission tomography-CT, dynamic contrast enhanced ultrasound, MR spectroscopy and positron emission tomography-MR. These techniques enable more precise gross tumor volume definition than CT alone and moreover allow subvolumes within the gross tumor volume to be defined which may be given a boost dose or an individual voxelized dose prescription may be derived. With increased plan complexity care must be taken to immobilize the patient in an accurate and reproducible manner. Moreover the physical and technical limitations of the entire treatment planning chain need to be well characterized and understood, interdisciplinary collaboration ameliorated (physicians and physicists within nuclear medicine, radiology and radiotherapy) and image protocols standardized.
Collapse
Affiliation(s)
- Mark Gainey
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Montserrat Carles
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Michael Mix
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Philipp T Meyer
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Department of Nuclear Medicine, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Michael Bock
- German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany.,Radiology - Medical Physics, Department of Radiology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany
| | - Anca-Ligia Grosu
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| | - Dimos Baltas
- Department of Radiation Oncology, Faculty of Medicine, Medical Center, University of Freiburg, D-79106 Germany.,German Cancer Consortium (DKTK), Partner Site Freiburg, German Cancer Research Center (DFKZ), Heidelberg, D-69120 Germany
| |
Collapse
|
20
|
Poulin E, Boudam K, Pinter C, Kadoury S, Lasso A, Fichtinger G, Ménard C. Validation of MRI to TRUS registration for high-dose-rate prostate brachytherapy. Brachytherapy 2018; 17:283-290. [PMID: 29331575 DOI: 10.1016/j.brachy.2017.11.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 11/27/2017] [Accepted: 11/30/2017] [Indexed: 11/26/2022]
Abstract
PURPOSE The objective of this study was to develop and validate an open-source module for MRI to transrectal ultrasound (TRUS) registration to support tumor-targeted prostate brachytherapy. METHODS AND MATERIALS In this study, 15 patients with prostate cancer lesions visible on multiparametric MRI were selected for the validation. T2-weighted images with 1-mm isotropic voxel size and diffusion weighted images were acquired on a 1.5T Siemens imager. Three-dimensional (3D) TRUS images with 0.5-mm slice thickness were acquired. The investigated registration module was incorporated in the open-source 3D Slicer platform, which can compute rigid and deformable transformations. An extension of 3D Slicer, SlicerRT, allows import of and export to DICOM-RT formats. For validation, similarity indices, prostate volumes, and centroid positions were determined in addition to registration errors for common 3D points identified by an experienced radiation oncologist. RESULTS The average time to compute the registration was 35 ± 3 s. For the rigid and deformable registration, respectively, Dice similarity coefficients were 0.87 ± 0.05 and 0.93 ± 0.01 while the 95% Hausdorff distances were 4.2 ± 1.0 and 2.2 ± 0.3 mm. MRI volumes obtained after the rigid and deformable registration were not statistically different (p > 0.05) from reference TRUS volumes. For the rigid and deformable registration, respectively, 3D distance errors between reference and registered centroid positions were 2.1 ± 1.0 and 0.4 ± 0.1 mm while registration errors between common points were 3.5 ± 3.2 and 2.3 ± 1.1 mm. Deformable registration was found significantly better (p < 0.05) than rigid registration for all parameters. CONCLUSIONS An open-source MRI to TRUS registration platform was validated for integration in the brachytherapy workflow.
Collapse
|
21
|
Maenhout M, van der Voort van Zyp JR, Borot de Battisti M, Peters M, van Vulpen M, van den Bosch M, Moerland MA. The effect of catheter displacement and anatomical variations on the dose distribution in MRI-guided focal HDR brachytherapy for prostate cancer. Brachytherapy 2018; 17:68-77. [DOI: 10.1016/j.brachy.2017.04.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 04/08/2017] [Accepted: 04/17/2017] [Indexed: 01/20/2023]
|
22
|
Maenhout M, Peters M, van Vulpen M, Moerland MA, Meijer RP, van den Bosch MAAJ, Nguyen PL, Frank SJ, van der Voort van Zyp JRN. Focal MRI-Guided Salvage High-Dose-Rate Brachytherapy in Patients With Radiorecurrent Prostate Cancer. Technol Cancer Res Treat 2017; 16:1194-1201. [PMID: 29333958 PMCID: PMC5762090 DOI: 10.1177/1533034617741797] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Introduction: Whole-gland salvage treatment of radiorecurrent prostate cancer has a high rate of severe toxicity. The standard of care in case of a biochemical recurrence is androgen deprivation treatment, which is associated with morbidity and negative effects on quality of life. A salvage treatment with acceptable toxicity might postpone the start of androgen deprivation treatment, might have a positive influence on the patients’ quality of life, and might even be curative. Here, toxicity and biochemical outcome are described after magnetic resonance imaging–guided focal salvage high-dose-rate brachytherapy in patients with radiorecurrent prostate cancer. Materials and Methods: Seventeen patients with pathologically proven locally recurrent prostate cancer were treated with focal high-dose-rate brachytherapy in a single 19-Gy fraction using magnetic resonance imaging for treatment guidance. Primary radiotherapy consisted of external beam radiotherapy or low-dose-rate brachytherapy. Tumors were delineated with Ga-68–prostate-specific membrane antigen or F18-choline positron emission tomography in combination with multiparametric magnetic resonance imaging. All patients had a prostate-specific antigen level of less than 10 ng/mL at the time of recurrence and a prostate-specific antigen doubling time of ≥12 months. Toxicity was measured by using the Common Terminology Criteria for Adverse Events version 4. Results: Eight of 17 patients had follow-up interval of at least 1 year. At a median follow-up interval of 10 months (range 3-40 months), 1 patient experienced a biochemical recurrence according to the Phoenix criteria, and prostate-specific membrane antigen testing revealed that this was due to a distant nodal metastasis. One patient had a grade 3 urethral stricture at 2 years after treatment. Conclusion: Focal salvage high-dose-rate brachytherapy in patients with radiorecurrent prostate cancer showed grade 3 toxicity in 1 of 17 patients and a distant nodal metastasis in another patient. Whether this treatment option leads to cure in a subset of patients or whether it can successfully postpone androgen deprivation treatment needs further investigation.
Collapse
Affiliation(s)
- Metha Maenhout
- 1 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Max Peters
- 1 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marco van Vulpen
- 2 Department of Urology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marinus A Moerland
- 1 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Richard P Meijer
- 1 Department of Radiotherapy, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Paul L Nguyen
- 3 Department of Radiation Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Steven J Frank
- 4 Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
23
|
Focal therapy for prostate cancer: the technical challenges. J Contemp Brachytherapy 2017; 9:383-389. [PMID: 28951759 PMCID: PMC5611463 DOI: 10.5114/jcb.2017.69809] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022] Open
Abstract
Focal therapy for prostate cancer has been proposed as an alternative treatment to whole gland therapy, offering the opportunity for tumor dose escalation and/or reduced toxicity. Brachytherapy, either low-dose-rate or high-dose-rate, provides an ideal approach, offering both precision in dose delivery and opportunity for a highly conformal, non-uniform dose distribution. Whilst multiple consensus documents have published clinical guidelines for patient selection, there are insufficient data to provide clear guidelines on target volume delineation, treatment planning margins, treatment planning approaches, and many other technical issues that should be considered before implementing a focal brachytherapy program. Without consensus guidelines, there is the potential for a diversity of practices to develop, leading to challenges in interpreting outcome data from multiple centers. This article provides an overview of the technical considerations for the implementation of a clinical service, and discusses related topics that should be considered in the design of clinical trials to ensure precise and accurate methods are applied for focal brachytherapy treatments.
Collapse
|
24
|
|
25
|
Ménard C, Pambrun JF, Kadoury S. The utilization of magnetic resonance imaging in the operating room. Brachytherapy 2017; 16:754-760. [PMID: 28139421 DOI: 10.1016/j.brachy.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 11/26/2022]
Abstract
Online image guidance in the operating room using ultrasound imaging led to the resurgence of prostate brachytherapy in the 1980s. Here we describe the evolution of integrating MRI technology in the brachytherapy suite or operating room. Given the complexity, cost, and inherent safety issues associated with MRI system integration, first steps focused on the computational integration of images rather than systems. This approach has broad appeal given minimal infrastructure costs and efficiencies comparable with standard care workflows. However, many concerns remain regarding accuracy of registration through the course of a brachytherapy procedure. In selected academic institutions, MRI systems have been integrated in or near the brachytherapy suite in varied configurations to improve the precision and quality of treatments. Navigation toolsets specifically adapted to prostate brachytherapy are in development and are reviewed.
Collapse
Affiliation(s)
- C Ménard
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; TECHNA Institute, University of Toronto, Toronto, ON, Canada; Princess Margaret Cancer Center, Toronto, ON, Canada.
| | - J-F Pambrun
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; École polytechnique de Montréal, Montréal, QC, Canada
| | - S Kadoury
- University of Montréal Hospital Research Centre (CRCHUM), Montréal, QC, Canada; École polytechnique de Montréal, Montréal, QC, Canada
| |
Collapse
|
26
|
Abstract
The past decade has brought an improved ability to precisely target and deliver radiation as well as other focal prostate-directed therapy. Stereotactic body radiotherapy (SBRT), proton beam radiation, high-dose-rate (HDR) brachytherapy, as well as nonradiotherapy treatments such as cryoablation and high-intensity focused ultrasound are several therapeutic modalities that have been investigated for the treatment of prostate cancer in an attempt to reduce toxicity while improving cancer control. However, high-risk prostate cancer requires a comprehensive treatment of the prostate as well as areas at risk for cancer spread. Therefore, most new radiation treatment (SBRT, HDR, and proton beam radiation) modalities have been largely investigated in combination with regional radiation therapy. Though the evidence is evolving, the use of SBRT, HDR, and proton beam radiation is promising. Nonradiation focal therapy has been proposed mainly for partial gland treatment in men with low-risk disease, and its use in high-risk prostate cancer patients remains experimental.
Collapse
Affiliation(s)
- William J Magnuson
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
| | - Amandeep Mahal
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT
| | - James B Yu
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT.
| |
Collapse
|
27
|
Lai YL, Wu CY, Chao KSC. Biological imaging in clinical oncology: radiation therapy based on functional imaging. Int J Clin Oncol 2016; 21:626-632. [PMID: 27384183 DOI: 10.1007/s10147-016-1000-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 05/29/2016] [Indexed: 12/25/2022]
Abstract
Radiation therapy is one of the most effective tools for cancer treatment. In recent years, intensity-modulated radiation therapy has become increasingly popular in that target dose-escalation can be done while sparing adjacent normal tissues. For this reason, the development of measures to pave the way for accurate target delineation is of great interest. With the integration of functional information obtained by biological imaging with radiotherapy, strategies using advanced biological imaging to visualize metabolic pathways and to improve therapeutic index and predict treatment response are discussed in this article.
Collapse
Affiliation(s)
- Yo-Liang Lai
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chun-Yi Wu
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan
| | - K S Clifford Chao
- China Medical University, 91 Hsueh-Shih Road, Taichung, 40402, Taiwan.
| |
Collapse
|
28
|
Peach MS, Trifiletti DM, Libby B. Systematic Review of Focal Prostate Brachytherapy and the Future Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion. Prostate Cancer 2016; 2016:4754031. [PMID: 27293899 PMCID: PMC4884850 DOI: 10.1155/2016/4754031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 11/26/2022] Open
Abstract
Prostate cancer is the most common malignancy found in North American and European men and the second most common cause of cancer related death. Since the practice of PSA screening has become common the disease is most often found early and can have a long indolent course. Current definitive therapy treats the whole gland but has considerable long-term side effects. Focal therapies may be able to target the cancer while decreasing dose to organs at risk. Our objective was to determine if focal prostate brachytherapy could meet target objectives while permitting a decrease in dose to organs at risk in a way that would allow future salvage treatments. Further, we wanted to determine if focal treatment results in less toxicity. Utilizing the Medline repository, dosimetric papers comparing whole gland to partial gland brachytherapy and clinical papers that reported toxicity of focal brachytherapy were selected. A total of 9 dosimetric and 6 clinical papers met these inclusion criteria. Together, these manuscripts suggest that focal brachytherapy may be employed to decrease dose to organs at risk with decreased toxicity. Of current technology, image-guided HDR brachytherapy using MRI registered to transrectal ultrasound offers the flexibility and efficiency to achieve such focal treatments.
Collapse
Affiliation(s)
- M. Sean Peach
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Daniel M. Trifiletti
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Bruce Libby
- Department of Radiation Oncology, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| |
Collapse
|
29
|
King MT, Nasser NJ, Mathur N, Cohen GN, Kollmeier MA, Yuen J, Vargas HA, Pei X, Yamada Y, Zakian KL, Zaider M, Zelefsky MJ. Long-term outcome of magnetic resonance spectroscopic image-directed dose escalation for prostate brachytherapy. Brachytherapy 2016; 15:266-273. [PMID: 27009848 DOI: 10.1016/j.brachy.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 10/21/2022]
Abstract
PURPOSE To report the long-term control and toxicity outcomes of patients with clinically localized prostate cancer, who underwent low-dose-rate prostate brachytherapy with magnetic resonance spectroscopic image (MRSI)-directed dose escalation to intraprostatic regions. METHODS AND MATERIALS Forty-seven consecutive patients between May 2000 and December 2003 were analyzed retrospectively. Each patient underwent a preprocedural MRSI, and MRS-positive voxels suspicious for malignancy were identified. Intraoperative planning was used to determine the optimal seed distribution to deliver a standard prescription dose to the entire prostate, while escalating the dose to MRS-positive voxels to 150% of prescription. Each patient underwent transperineal implantation of radioactive seeds followed by same-day CT for postimplant dosimetry. RESULTS The median prostate D90 (minimum dose received by 90% of the prostate) was 125.7% (interquartile range [IQR], 110.3-136.5%) of prescription. The median value for the MRS-positive mean dose was 229.9% (IQR, 200.0-251.9%). Median urethra D30 and rectal D30 values were 142.2% (137.5-168.2%) and 56.1% (40.1-63.4%), respectively. Median followup was 86.4 months (IQR, 49.8-117.6). The 10-year actuarial prostate-specific antigen relapse-free survival was 98% (95% confidence interval, 93-100%). Five patients (11%) experienced late Grade 3 urinary toxicity (e.g., urethral stricture), which improved after operative intervention. Four of these patients had dose-escalated voxels less than 1.0 cm from the urethra. CONCLUSIONS Low-dose-rate brachytherapy with MRSI-directed dose escalation to suspicious intraprostatic regions exhibits excellent long-term biochemical control. Patients with dose-escalated voxels close to the urethra were at higher risk of late urinary stricture.
Collapse
Affiliation(s)
- Martin T King
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nicola J Nasser
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nitin Mathur
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Gil'ad N Cohen
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Marisa A Kollmeier
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jasper Yuen
- Department of Radiation Oncology, The Carlo Fidani Regional Cancer Centre, Mississauga, Ontario
| | - Hebert A Vargas
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xin Pei
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Yoshiya Yamada
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kristen L Zakian
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Marco Zaider
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Michael J Zelefsky
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, NY.
| |
Collapse
|
30
|
Thiruthaneeswaran N, Hoskin PJ. High dose rate brachytherapy for prostate cancer: Standard of care and future direction. Cancer Radiother 2016; 20:66-72. [PMID: 26811209 DOI: 10.1016/j.canrad.2016.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 10/22/2022]
Abstract
High dose rate brachytherapy is a highly conformal method of radiation dose escalation for prostate cancer and one of several treatment options for men with localised disease. The large doses per fraction exploit the low alpha/beta ratio of prostate cancer cells so that biological radiation dose delivered is substantially greater than that achieved with conventional external beam delivery. This review article presents contemporary data on the rationale for high dose rate brachytherapy including treatment technique and future directions.
Collapse
Affiliation(s)
- N Thiruthaneeswaran
- Cancer Centre, Mount Vernon Hospital, Rickmansworth Road, Northwood, HA6 2RN, United Kingdom
| | - P J Hoskin
- Cancer Centre, Mount Vernon Hospital, Rickmansworth Road, Northwood, HA6 2RN, United Kingdom.
| |
Collapse
|
31
|
Mason J, Bownes P, Carey B, Henry A. Comparison of focal boost high dose rate prostate brachytherapy optimisation methods. Radiother Oncol 2015; 117:521-4. [PMID: 26411294 DOI: 10.1016/j.radonc.2015.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/02/2015] [Accepted: 09/20/2015] [Indexed: 02/04/2023]
Abstract
For HDR prostate brachytherapy treatments of 15 Gy to the whole gland plus focal boost, optimisation to either tumour plus margin (F-PTV) or involved sectors was compared. For 15 patients median F-PTV D90 and V150 were 21.0 Gy and 77.2% for F-PTV optimisation and 19.8 Gy and 75.6% for sector optimisation.
Collapse
|
32
|
Zhou J, Zamdborg L, Sebastian E. Review of advanced catheter technologies in radiation oncology brachytherapy procedures. Cancer Manag Res 2015; 7:199-211. [PMID: 26203277 PMCID: PMC4507789 DOI: 10.2147/cmar.s46042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The development of new catheter and applicator technologies in recent years has significantly improved treatment accuracy, efficiency, and outcomes in brachytherapy. In this paper, we review these advances, focusing on the performance of catheter imaging and reconstruction techniques in brachytherapy procedures using magnetic resonance images and electromagnetic tracking. The accuracy of catheter reconstruction, imaging artifacts, and other notable properties of plastic and titanium applicators in gynecologic treatments are reviewed. The accuracy, noise performance, and limitations of electromagnetic tracking for catheter reconstruction are discussed. Several newly developed applicators for accelerated partial breast irradiation and gynecologic treatments are also reviewed. New hypofractionated high dose rate treatment schemes in prostate cancer and accelerated partial breast irradiation are presented.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
- Oakland University William Beaumont School of Medicine, Royal Oak, MI, USA
| | - Leonid Zamdborg
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Evelyn Sebastian
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| |
Collapse
|
33
|
Polders DL, Steggerda M, van Herk M, Nichol K, Witteveen T, Moonen L, Nijkamp J, van der Heide UA. Establishing implantation uncertainties for focal brachytherapy with I-125 seeds for the treatment of localized prostate cancer. Acta Oncol 2015; 54:839-46. [PMID: 25591817 DOI: 10.3109/0284186x.2014.995312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The efficacy of focal continuous low dose-rate brachytherapy (CLDR-BT) for prostate cancer requires that appropriate margins are applied to ensure robust target coverage. In this study we propose a method to establish such margins by emulating a focal treatment in patients treated with CLDR-BT to the entire gland. MATERIAL AND METHODS In 15 patients with localized prostate cancer, prostate volumes and dominant intra-prostatic lesions were delineated on pre-treatment magnetic resonance imaging (MRI). Delineations and MRI were registered to trans-rectal ultrasound images in the operating theater. The patients received CLDR-BT treatment to the total prostate volume. The implantation consisted of two parts: an experimental focal plan covering the dominant intra-prostatic lesion (F-GTV), followed by a plan containing additional seeds to achieve entire prostate coverage. Isodose surfaces were reconstructed using follow-up computed tomography (CT). The focal dose was emulated by reconstructing seeds from the focal plan only. The distance to agreement between planned and delivered isodose surfaces and F-GTV coverage was determined to calculate the margin required for robust treatment. RESULTS If patients had been treated only focally, the target volume would have been reduced from an average of 40.9 cm3 for the entire prostate to 5.8 cm3 for the focal plan. The D90 for the F-GTV in the focal plan was 195±60 Gy, the V100 was 94% [range 71-100%]. The maximum distance (cd95) between the planned and delivered isodose contours was 0.48 cm. CONCLUSIONS This study provides an estimate of 0.5 cm for the margin required for robust coverage of a focal target volume prior to actually implementing a focal treatment protocol.
Collapse
Affiliation(s)
- Daniel L Polders
- Department of Radiation Oncology, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital , Amsterdam , The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zaorsky NG, Hurwitz MD, Dicker AP, Showalter TN, Den RB. Is robotic arm stereotactic body radiation therapy “virtual high dose ratebrachytherapy” for prostate cancer? An analysis of comparative effectiveness using published data [corrected]. Expert Rev Med Devices 2014; 12:317-27. [PMID: 25540018 DOI: 10.1586/17434440.2015.994606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
High-dose rate brachytherapy (HDR-BT) monotherapy and robotic arm (i.e., CyberKnife) stereotactic body radiation therapy (SBRT) are emerging technologies that have become popular treatment options for prostate cancer. Proponents of both HDR-BT monotherapy and robotic arm SBRT claim that these modalities are as efficacious as intensity-modulated radiation therapy in treating prostate cancer. Moreover, proponents of robotic arm SBRT believe it is more effective than HDR-BT monotherapy because SBRT is non-invasive, touting it as 'virtual HDR-BT.' We perform a comparative effective analysis of the two technologies. The tumor control rates and toxicities of HDR-BT monotherapy and robotic arm SBRT are promising. However, at present, it would be inappropriate to state that HDR-BT monotherapy and robotic arm SBRT are as efficacious or effective as other treatment modalities for prostate cancer, which have stronger foundations of evidence. Studies reporting on these technologies have relatively short follow-up time, few patients and are largely retrospective.
Collapse
|
35
|
Dosimetry modeling for focal high-dose-rate prostate brachytherapy. Brachytherapy 2014; 13:611-7. [DOI: 10.1016/j.brachy.2014.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 11/21/2022]
|
36
|
Lee CD. Recent developments and best practice in brachytherapy treatment planning. Br J Radiol 2014; 87:20140146. [PMID: 24734939 PMCID: PMC4453147 DOI: 10.1259/bjr.20140146] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 12/20/2022] Open
Abstract
Brachytherapy has evolved over many decades, but more recently, there have been significant changes in the way that brachytherapy is used for different treatment sites. This has been due to the development of new, technologically advanced computer planning systems and treatment delivery techniques. Modern, three-dimensional (3D) imaging modalities have been incorporated into treatment planning methods, allowing full 3D dose distributions to be computed. Treatment techniques involving online planning have emerged, allowing dose distributions to be calculated and updated in real time based on the actual clinical situation. In the case of early stage breast cancer treatment, for example, electronic brachytherapy treatment techniques are being used in which the radiation dose is delivered during the same procedure as the surgery. There have also been significant advances in treatment applicator design, which allow the use of modern 3D imaging techniques for planning, and manufacturers have begun to implement new dose calculation algorithms that will correct for applicator shielding and tissue inhomogeneities. This article aims to review the recent developments and best practice in brachytherapy techniques and treatments. It will look at how imaging developments have been incorporated into current brachytherapy treatment and how these developments have played an integral role in the modern brachytherapy era. The planning requirements for different treatments sites are reviewed as well as the future developments of brachytherapy in radiobiology and treatment planning dose calculation.
Collapse
Affiliation(s)
- C D Lee
- Physics Department, Clatterbridge Cancer Centre, Bebington, Wirral, UK
| |
Collapse
|