1
|
Gerlach S, Siebert FA, Schlaefer A. Robust stochastic optimization of needle configurations for robotic HDR prostate brachytherapy. Med Phys 2024; 51:464-475. [PMID: 37897883 DOI: 10.1002/mp.16804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Ideally, inverse planning for HDR brachytherapy (BT) should include the pose of the needles which define the trajectory of the source. This would be particularly interesting when considering the additional freedom and accuracy in needle pose which robotic needle placement enables. However, needle insertion typically leads to tissue deformation, resulting in uncertainty regarding the actual pose of the needles with respect to the tissue. PURPOSE To efficiently address uncertainty during inverse planning for HDR BT in order to robustly optimize the pose of the needles before insertion, that is, to facilitate path planning for robotic needle placement. METHODS We use a form of stochastic linear programming to model the inverse treatment planning problem. To account for uncertainty, we consider random tissue displacements at the needle tip to simulate tissue deformation. Conventionally for stochastic linear programming, each simulated deformation is reflected by an addition to the linear programming problem which increases problem size and computational complexity substantially and leads to impractical runtime. We propose two efficient approaches for stochastic linear programming. First, we consider averaging dose coefficients to reduce the problem size. Second, we study weighting of the slack variables of an adjusted linear problem to approximate the full stochastic linear program. We compare different approaches to optimize the needle configurations and evaluate their robustness with respect to different amounts of tissue deformation. RESULTS Our results illustrate that stochastic planning can improve the robustness of the treatment with respect to deformation. The proposed approaches approximating stochastic linear programming better conform to the tissue deformation compared to conventional linear programming. They show good correlation with the plans computed after deformation while reducing the runtime by two orders of magnitude compared to the complete stochastic linear program. Robust optimization of needle configurations takes on average 59.42 s. Skew needle configurations lead to mean coverage improvements compared to parallel needles from 0.39 to 2.94 percentage points, when 8 mm tissue deformation is considered. Considering tissue deformations from 4 to 10 mm during planning with weighted stochastic optimization and skew needles generally results in improved mean coverage from 1.77 to 4.21 percentage points. CONCLUSIONS We show that efficient stochastic optimization allows selecting needle configurations which are more robust with respect to potentially negative effects of target deformation and displacement on the achievable prescription dose coverage. The approach facilitates robust path planning for robotic needle placement.
Collapse
Affiliation(s)
- Stefan Gerlach
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| | - Frank-André Siebert
- Department of Radiation Oncology, Karl-Lennert-Krebscentrum Nord, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Alexander Schlaefer
- Institute of Medical Technology and Intelligent Systems, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
2
|
Fagerstrom JM. Practical experience commissioning MRI-compatible tandem and ring applicators for use with the Bravos HDR afterloader. J Appl Clin Med Phys 2023; 24:e14094. [PMID: 37469228 PMCID: PMC10647988 DOI: 10.1002/acm2.14094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/10/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023] Open
Abstract
Five complete MR-conditionally approved ring sets, including fifteen tandems, and two additional rings, were commissioned at an institution intending to use them in an MRI planning environment with a Bravos HDR brachytherapy remote afterloader. Channel length, radiograph, autoradiograph, ring offset, and treatment interrupt measurements were performed, and applicators were assessed in both CT and MRI. During commissioning, one ring was found to be defective and was returned to the manufacturer for a replacement. The eventual complete applicator suite (including the replacement ring) was found to follow the manufacturer-provided specifications, including those delineated in vendor-provided 3D virtual models and those defined within the manufacturer's instructions for use documentation. Based on this work, an offset correction of -0.4 cm will be used for all tested rings using the Bravos system's internal distal dwell position correction feature during treatment preparation. This study reiterated the requirement for careful commissioning of each applicator intended for clinical service considering the intended use and the planned clinical environment and work processes.
Collapse
Affiliation(s)
- Jessica M. Fagerstrom
- Radiation OncologyUniversity of WashingtonSeattleWashingtonUSA
- Kaiser PermanenteSeattleWashingtonUSA
| |
Collapse
|
3
|
Prisciandaro J, Zoberi JE, Cohen G, Kim Y, Johnson P, Paulson E, Song W, Hwang KP, Erickson B, Beriwal S, Kirisits C, Mourtada F. AAPM Task Group Report 303 endorsed by the ABS: MRI Implementation in HDR Brachytherapy-Considerations from Simulation to Treatment. Med Phys 2022; 49:e983-e1023. [PMID: 35662032 DOI: 10.1002/mp.15713] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 11/05/2022] Open
Abstract
The Task Group (TG) on Magnetic Resonance Imaging (MRI) Implementation in High Dose Rate (HDR) Brachytherapy - Considerations from Simulation to Treatment, TG 303, was constituted by the American Association of Physicists in Medicine's (AAPM's) Science Council under the direction of the Therapy Physics Committee, the Brachytherapy Subcommittee, and the Working Group on Brachytherapy Clinical Applications. The TG was charged with developing recommendations for commissioning, clinical implementation, and on-going quality assurance (QA). Additionally, the TG was charged with describing HDR brachytherapy (BT) workflows and evaluating practical consideration that arise when implementing MR imaging. For brevity, the report is focused on the treatment of gynecologic and prostate cancer. The TG report provides an introduction and rationale for MRI implementation in BT, a review of previous publications on topics including available applicators, clinical trials, previously published BT related TG reports, and new image guided recommendations beyond CT based practices. The report describes MRI protocols and methodologies, including recommendations for the clinical implementation and logical considerations for MR imaging for HDR BT. Given the evolution from prescriptive to risk-based QA,1 an example of a risk-based analysis using MRI-based, prostate HDR BT is presented. In summary, the TG report is intended to provide clear and comprehensive guidelines and recommendations for commissioning, clinical implementation, and QA for MRI-based HDR BT that may be utilized by the medical physics community to streamline this process. This report is endorsed by the American Brachytherapy Society (ABS). This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | | | - Gil'ad Cohen
- Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | - Perry Johnson
- University of Florida Health Proton Therapy Institute, Jacksonville, FL
| | | | | | - Ken-Pin Hwang
- The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | - Sushil Beriwal
- Allegheny Health Network Cancer Institute, Pittsburgh, PA
| | | | - Firas Mourtada
- Sidney Kimmel Cancer Center at Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Liu C, Li M, Xiao H, Li T, Li W, Zhang J, Teng X, Cai J. Advances in MRI‐guided precision radiotherapy. PRECISION RADIATION ONCOLOGY 2022. [DOI: 10.1002/pro6.1143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Chenyang Liu
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Mao Li
- Department of Radiation Oncology Philips Healthcare Chengdu China
| | - Haonan Xiao
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Tian Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Wen Li
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jiang Zhang
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Xinzhi Teng
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| | - Jing Cai
- Department of Health Technology and Informatics The Hong Kong Polytechnic University Hong Kong SAR China
| |
Collapse
|
5
|
Bauer DF, Adlung A, Brumer I, Golla AK, Russ T, Oelschlegel E, Tollens F, Clausen S, Aumüller P, Schad LR, Nörenberg D, Zöllner FG. An anthropomorphic pelvis phantom for MR-guided prostate interventions. Magn Reson Med 2021; 87:1605-1612. [PMID: 34652819 DOI: 10.1002/mrm.29043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/02/2023]
Abstract
PURPOSE To design and manufacture a pelvis phantom for magnetic resonance (MR)-guided prostate interventions, such as MRGB (MR-guided biopsy) or brachytherapy seed placement. METHODS The phantom was designed to mimic the human pelvis incorporating bones, bladder, prostate with four lesions, urethra, arteries, veins, and six lymph nodes embedded in ballistic gelatin. A hollow rectum enables transrectal access to the prostate. To demonstrate the feasibility of the phantom for minimal invasive MRI-guided interventions, a targeted inbore MRGB was performed. The needle probe was rectally inserted and guided using an MRI-compatible remote controlled manipulator (RCM). RESULTS The presented pelvis phantom has realistic imaging properties for MR imaging (MRI), computed tomography (CT) and ultrasound (US). In the targeted inbore MRGB, a prostate lesion was successfully hit with an accuracy of 3.5 mm. The experiment demonstrates that the limited size of the rectum represents a realistic impairment for needle placements. CONCLUSION The phantom provides a valuable platform for evaluating the performance of MRGB systems. Interventionalists can use the phantom to learn how to deal with challenging situations, without risking harm to patients.
Collapse
Affiliation(s)
- Dominik F Bauer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Irène Brumer
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Alena-Kathrin Golla
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Tom Russ
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Eva Oelschlegel
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Fabian Tollens
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Clausen
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Philipp Aumüller
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| | - Dominik Nörenberg
- Department of Radiology and Nuclear Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank G Zöllner
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Mannheim Institute for Intelligent Systems in Medicine, Heidelberg University, Mannheim, Germany
| |
Collapse
|
6
|
Tollens F, Westhoff N, von Hardenberg J, Clausen S, Ehmann M, Zöllner FG, Adlung A, Bauer DF, Schoenberg SO, Nörenberg D. [MRI-guided minimally invasive treatment of prostate cancer]. Radiologe 2021; 61:829-838. [PMID: 34251481 DOI: 10.1007/s00117-021-00883-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2021] [Indexed: 11/27/2022]
Abstract
CLINICAL/METHODOLOGICAL ISSUE Multiparametric magnetic resonance imaging (mpMRI) of the prostate plays a crucial role in the diagnosis and local staging of primary prostate cancer. STANDARD RADIOLOGICAL METHODS Image-guided biopsy techniques such as MRI-ultrasound fusion not only allow guidance for targeted tissue sampling of index lesions for diagnostic confirmation, but also improve the detection of clinically significant prostate cancer. METHODOLOGICAL INNOVATIONS Minimally invasive, focal therapies of localized prostate cancer complement the treatment spectrum, especially for low- and intermediate-risk patients. PERFORMANCE In patients of low and intermediate risk, MR-guided, minimally invasive therapies could enable local tumor control, improved functional outcomes and possible subsequent therapy escalation. Further study results related to multimodal approaches and the application of artificial intelligence (AI) by machine and deep learning algorithms will help to leverage the full potential of focal therapies for prostate cancer in the upcoming era of precision medicine. ACHIEVEMENTS Completion of ongoing randomized trials comparing each minimally invasive therapy approach with established whole-gland procedures is needed before minimally invasive therapies can be implemented into existing treatment guidelines. PRACTICAL RECOMMENDATIONS This review article highlights minimally invasive therapies of prostate cancer and the key role of mpMRI for planning and conducting these therapies.
Collapse
Affiliation(s)
- Fabian Tollens
- Klinik für Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| | - Niklas Westhoff
- Klinik für Urologie und Urochirurgie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Jost von Hardenberg
- Klinik für Urologie und Urochirurgie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Sven Clausen
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Michael Ehmann
- Klinik für Strahlentherapie und Radioonkologie, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Frank G Zöllner
- Computerunterstützte Klinische Medizin, Mannheimer Institut für Intelligente Systeme in der Medizin, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Anne Adlung
- Computerunterstützte Klinische Medizin, Mannheimer Institut für Intelligente Systeme in der Medizin, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Dominik F Bauer
- Computerunterstützte Klinische Medizin, Mannheimer Institut für Intelligente Systeme in der Medizin, Medizinische Fakultät Mannheim, Universität Heidelberg, Mannheim, Deutschland
| | - Stefan O Schoenberg
- Klinik für Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland
| | - Dominik Nörenberg
- Klinik für Radiologie und Nuklearmedizin, Universitätsmedizin Mannheim, Medizinische Fakultät Mannheim, Universität Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Deutschland.
| |
Collapse
|
7
|
Lakosi F, Antal G, Pall J, Farkas A, Jenei T, Nagy D, Liptak J, Sipocz I, Pytel A, Csima M, Gulyban A, Toller G. HDR brachytherapy boost using MR-only workflow for intermediate- and high-risk prostate cancer: 8-year results of a pilot study. Brachytherapy 2021; 20:576-583. [PMID: 33478906 DOI: 10.1016/j.brachy.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE To report 8-year clinical outcome with high-dose-rate brachytherapy (HDRBT) boost using MRI-only workflow for intermediate (IR) and high-risk (HR) prostate cancer (PC) patients. METHODS AND MATERIALS Fifty-two patients were treated with 46-60 Gy of 3D conformal radiotherapy preceded and/or followed by a single dose of 8-10 Gy MRI-guided HDRBT. Interventions were performed in a 0.35 T MRI scanner. Trajectory planning, navigation, contouring, catheter reconstruction, and dose calculation were exclusively based on MRI images. Biochemical relapse-free- (BRFS), local relapse-free- (LRFS), distant metastasis-free- (DMFS), cancer-specific-(CCS) and overall survival (OS) were analyzed. Late morbidity was scored using the Common Terminology Criteria for Adverse Events (CTCAE 4.0) combined with RTOG (Radiation Therapy Oncology Group) scale for urinary toxicity and rectal urgency (RU) determined by Yeoh. RESULTS Median follow-up time was 107 (range: 19-143) months. The 8-year actuarial rates of BRFS, LRFS, DMFS, CSS and OS were 85.7%, 97%, 97.6%, and 77.6%, respectively. There were no Gr.3 GI side effects. The 8-year actuarial rate of Gr.2 proctitis was 4%. The 8-year cumulative incidence of Gr.3 GU side effects was 8%, including two urinary stenoses (5%) and one cystitis (3%). EPIC urinary and bowel scores did not change significantly over time. CONCLUSIONS MRI-only HDR-BT boost with moderate dose escalation provides excellent 8-year disease control with a favorable toxicity profile for IRPC and HRPC patients. Our results support the clinical importance of MRI across the BT workflow.
Collapse
Affiliation(s)
- Ferenc Lakosi
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary.
| | - Gergely Antal
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Janos Pall
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary; Department of Radiation Oncology, Csolnoky Ferenc Hospital, Veszprém, Hungary
| | - Andrea Farkas
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| | - Tibor Jenei
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Denes Nagy
- Somogy County Kaposi Mór Teaching Hospital, Department of Urology, Kaposvár, Hungary
| | - Jozsef Liptak
- Kanizsai Dorottya Hospital, Department of Urology, Nagykanizsa, Hungary
| | - Istvan Sipocz
- Petz Aladár County Teaching Hospital, Department of Radiation Oncology, Győr, Hungary
| | - Akos Pytel
- Pécs University, Department of Urology, Pecs, Hungary
| | - Melinda Csima
- Faculty of Pedagogy, Szent István University, Kaposvár Campus, Kaposvár, Hungary
| | - Akos Gulyban
- Medical Physics Department, Institut Jules Bordet, Bruxelles, Belgium
| | - Gabor Toller
- Somogy County Kaposi Mór Teaching Hospital, Dr. József Baka Center, Department of Radiation Oncology, Kaposvár, Hungary
| |
Collapse
|
8
|
A comparison of treatment planning techniques for low-dose-rate (LDR) prostate brachytherapy. Brachytherapy 2020; 20:410-419. [PMID: 33234407 DOI: 10.1016/j.brachy.2020.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE The purpose of this study was to compare low-dose-rate prostate brachytherapy treatment plans created using three retrospectively applied planning techniques with plans delivered to patients. METHODS AND MATERIALS Treatment plans were created retrospectively on transrectal ultrasound (TRUS) scans for 26 patients. The technique dubbed 4D Brachytherapy was applied, using TRUS and MRI to obtain prostatic measurements required for the associated webBXT online nomogram. Using a patient's MRI scan to create a treatment plan involving loose seeds was also explored. Plans delivered to patients were made using an intraoperative loose seed TRUS-based planning technique. Prostate V100 (%), prostate V150 (%), prostate D90 (Gy), rectum D0.1cc (Gy), rectum D2cc (Gy), urethra D10 (%), urethra D30 (%), and prostate volumes were measured for each patient. Statistical analysis was used to assess and compare plans. RESULTS Prostate volumes measured by TRUS and MRI were significantly different. Prostate volumes calculated by the webBXT online nomogram using TRUS- and MRI-based measurements were not significantly different. Compared with delivered plans, TRUS-based 4D Brachytherapy plans showed significantly lower rectum D0.1cc (Gy) values, MRI-based 4D Brachytherapy plans showed significantly higher prostate V100 (%) values and significantly lower rectum D0.1cc (Gy), urethra D10 (%), and urethra D30 (%) values, and loose seed MRI-based plans showed significantly lower prostate V100 (%), prostate D90 (Gy), rectum D0.1cc (Gy), rectum D2cc (Gy), urethra D10 (%), and urethra D30 (%) values. CONCLUSIONS TRUS-based 4D Brachytherapy plans showed similar dosimetry to delivered plans; rectal dosimetry was superior. MRI can be integrated into the 4D Brachytherapy workflow. The webBXT online nomogram overestimates the required number of seeds.
Collapse
|
9
|
Fagerstrom JM, Kaur S. Simple phantom fabrication for MRI-based HDR brachytherapy applicator commissioning. J Appl Clin Med Phys 2020; 21:283-287. [PMID: 33016469 PMCID: PMC7700937 DOI: 10.1002/acm2.13039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 09/01/2020] [Indexed: 11/26/2022] Open
Abstract
A new high dose rate (HDR) brachytherapy program was initiated in a community hospital setting, with the goal of using magnetic resonance (MR) images with the implant in place during the planning process. Physics acceptance testing and commissioning was completed for key program components, including multiple applicators. To image new applicators for MRI‐based planning prior to use with patients, agar gel doped with copper sulfate was created using simple, MR‐safe household materials as a practical and inexpensive alternative to custom‐machined precision phantoms. Applicators in‐phantom were scanned in a 1.5 T MRI scanner using the same sequences developed for the brachytherapy program, then rigidly registered to high‐resolution computed tomography (CT) images to assess distortion, artifact, and geometric displacement. To date, Varian tandem and ring sets, segmented cylinders, cervical probes, endometrial applicators; and third‐party plastic needles, tandems, and vaginal guides have been imaged in phantom and are available for use clinically.
Collapse
Affiliation(s)
- Jessica M Fagerstrom
- Northwest Medical Physics Center, Lynnwood, WA, USA.,Kaiser Permanente, Seattle, WA, USA
| | - Sukhjit Kaur
- Northwest Medical Physics Center, Lynnwood, WA, USA
| |
Collapse
|
10
|
Couñago F, Sancho G, Gómez-Iturriaga A, Henríquez I. Multiparametric MRI for prostate cancer: a national survey of patterns of practice among radiation oncologists in Spain. Clin Transl Oncol 2018; 20:1484-1491. [PMID: 29992463 DOI: 10.1007/s12094-018-1919-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/06/2018] [Indexed: 11/29/2022]
Abstract
PURPOSE To investigate patterns of practice among Spanish radiation oncologists in the use of multiparametric magnetic resonance imaging (mpMRI) for the treatment of prostate cancer (PCa). We evaluated (1) access to mpMRI, (2) current clinical practices, and (3) physician expectations of mpMRI. METHODS Cross-sectional survey of 118 radiation oncologists at 75 Radiation Oncology (RO) departments in Spain. RESULTS A total of 55 radiation oncologists from 52 RO departments (52/75; 69%) completed the survey. Prostate mpMRI is performed at 94.5% of the centres that provided data. The most common indications for mpMRI in routine clinical practice were: (1) detection/localization of the tumour prior to second biopsy (82.7%), (2) cancer staging (80.8%), and (3) detection of recurrence after definitive treatment (80.8%). Most respondents (72.7%) reported modifying the primary radiotherapy treatment when mpMRI findings indicate a more advanced T stage with a resultant change in the risk group. Most respondents (90.5%) treat macroscopic local recurrence after prostatectomy with high doses, ranging from 71 to 83 Gy; in 37.7% of cases, the full dose is delivered to the entire prostate bed. In pelvic nodal recurrence, more than half (59.3%) of the respondents reported performing elective pelvic radiotherapy, including the prostate bed, with a boost to the involved nodes. CONCLUSIONS This survey shows that prostate mpMRI is routinely used by radiation oncologists in Spain in a wide range of clinical scenarios. The findings reported here underscore the need to standardize treatment protocols for definitive and salvage radiotherapy in patients evaluated with mpMRI.
Collapse
Affiliation(s)
- F Couñago
- Department of Radiation Oncology, Hospital Universitario Quirónsalud, Madrid, Universidad Europea de Madrid, Calle Diego de Velázquez, 2, Pozuelo de Alarcón, 28223, Madrid, Spain.
| | - G Sancho
- Department of Radiation Oncology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - A Gómez-Iturriaga
- Department of Radiation Oncology, Hospital Universitario Cruces, Biocruces Health Research Institute, Barakaldo, Spain
| | - I Henríquez
- Department of Radiation Oncology, Hospital Universitario de Sant Joan, Institute d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain
| | | |
Collapse
|
11
|
Abstract
Prostate cancer is the most common male malignant tumor in Germany, which thus places growing demands on differentiated imaging and risk-adapted therapeutic approaches. Multiparametric MRI (mpMRI) of the prostate enables reliable detection of clinically significant cancers and is currently the leading imaging modality for the detection, characterization, and local staging of prostate cancer. According to the German S3 guideline, mpMRI of the prostate is currently primarily recommended in patients with previous negative TRUS biopsies and persisting tumor suspicion. The serial use of mpMRI in the pretherapeutic setting can support individual therapy planning of patients with locally advanced prostate cancer in the near future.
Collapse
|
12
|
Use of magnetic resonance imaging in low-dose-rate and high-dose-rate prostate brachytherapy from diagnosis to treatment assessment: Defining the knowledge gaps, technical challenges, and barriers to implementation. Brachytherapy 2017; 16:672-678. [DOI: 10.1016/j.brachy.2017.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 01/31/2017] [Indexed: 01/03/2023]
|