1
|
Dai R, Wu H, Liu G, Shen L, Geng Y, Zhang S, Zhou H, Jiang C, Gong J, Fan X, Ji C. Investigation of bacterial and fungal population structure on environmental surfaces of three medical institutions during the COVID-19 pandemic. Front Microbiol 2023; 14:1089474. [PMID: 36970696 PMCID: PMC10033641 DOI: 10.3389/fmicb.2023.1089474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Objectives To evaluate the population structure of environmental bacteria and fungi in three different types of medical institutions and the potential risks due to antibiotic resistance during the coronavirus disease 2019 (COVID-19) pandemic. Methods One hundred twenty-six environmental surface samples were collected from three medical institutions during the COVID-19 pandemic. A total of 6,093 and 13,514 representative sequences of 16S and ITS ribosomal RNA (rRNA) were obtained by amplicon sequencing analysis. The functional prediction was performed using the Phylogenetic Investigation of Communities by Reconstruction of Unobserved States tool based on the Greengenes database and the FAPROTAX database. Results On environmental surfaces in three medical institutions during the COVID-19 pandemic, Firmicutes (51.6%) and Bacteroidetes (25%) were the dominant bacteria, while Ascomycota (39.4%) and Basidiomycota (14.2%) were the dominant fungi. A number of potential bacterial and fungal pathogens were successfully identified by the metagenomic approach. Furthermore, compared with the bacterial results, the fungi showed a generally closer Bray Curtis distance between samples. The overall ratio of Gram-negative bacteria to Gram-positive bacteria was about 3:7. The proportion of stress-tolerant bacteria in medical institutions A, B and C reached 88.9, 93.0 and 93.8%, respectively. Anaerobic bacteria accounted for 39.6% in outdoor environments, 77.7% in public areas, 87.9% in inpatient areas and 79.6% in restricted areas. Finally, the β-Lactam resistance pathway and polymyxin resistance pathway were revealed through functional prediction. Conclusion We described the microbial population structure changes in three different types of medical institutions using the metagenomic approach during the COVID-19 pandemic. We found that the disinfection measures performed by three healthcare facilities may be effective on the "ESKAPE" pathogens, but less effective on fungal pathogens. Moreover, emphasis should be given to the prevention and control of β-lactam and polymyxin antibiotics resistance bacteria during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Rongchen Dai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hanting Wu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guiming Liu
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Linlai Shen
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanyuan Geng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Canran Jiang
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jie Gong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xin Fan
- Department of Infectious Diseases and Clinical Microbiology, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Conghua Ji
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Piras A, Venuti V, D’Aviero A, Cusumano D, Pergolizzi S, Daidone A, Boldrini L. Covid-19 and radiotherapy: a systematic review after 2 years of pandemic. Clin Transl Imaging 2022; 10:611-630. [PMID: 35910079 PMCID: PMC9308500 DOI: 10.1007/s40336-022-00513-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 02/08/2023]
Abstract
Introduction Following the Covid-19 pandemic spread, changes in clinical practice were necessary to limit the pandemic diffusion. Also, oncological practice has undergone changes with radiotherapy (RT) treatments playing a key role.Although several experiences have been published, the aim of this review is to summarize the current evidence after 2 years of pandemic to provide useful conclusions for clinicians. Methods A Pubmed/MEDLINE and Embase systematic review was conducted. The search strategy was "Covid AND Radiotherapy" and only original articles in the English language were considered. Results A total of 2.733 papers were obtained using the mentioned search strategy. After the complete selection process, a total of 281 papers were considered eligible for the analysis of the results. Discussion RT has played a key role in Covid-19 pandemic as it has proved more resilient than surgery and chemotherapy. The impact of the accelerated use of hypofractionated RT and telemedicine will make these strategies central also in the post-pandemic period.
Collapse
Affiliation(s)
- Antonio Piras
- Radioterapia Oncologica, Villa Santa Teresa, Palermo, Italy
| | - Valeria Venuti
- Radioterapia Oncologica, Università degli Studi di Palermo, Palermo, Italy
| | - Andrea D’Aviero
- Radiation Oncology, Mater Olbia Hospital, Olbia, Sassari Italy
| | | | - Stefano Pergolizzi
- Radiation Oncology Unit, Department of Biomedical, Dental Science and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | - Luca Boldrini
- Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, UOC Radioterapia Oncologica - Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
- Università Cattolica del Sacro Cuore, Roma, Italy
| |
Collapse
|