1
|
Narita H, Natsume J, Suzuki T, Shiohama T, Kawaguchi M, Okazaki M, Hashizume A, Naganawa S, Ito Y, Yamamoto H, Nakata T, Kidokoro H, Takahashi Y, Takahashi S, Tsujimura K. Diffuse but Non-homogeneous Brain Atrophy: Identification of Specific Brain Regions and Their Correlation with Clinical Severity in Rett Syndrome. Brain Dev 2025; 47:104348. [PMID: 40147315 DOI: 10.1016/j.braindev.2025.104348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Rett syndrome is a genetic neurodevelopmental disorder that predominantly affects girls. While microcephaly is a common feature, there is limited information on the detailed structural changes in the brain. This study aimed to identify regional brain volume abnormalities and explore the correlation between brain volume and clinical characteristics. METHODS We compared the regional brain volumes of 20 female children with Rett syndrome to those of 25 healthy female children. Additionally, we assessed the correlation between regional brain volume, Clinical Severity Scores, and epilepsy status. RESULTS Significantly smaller volumes were observed in all brain regions, including the cerebral cortex, cerebral white matter, subcortical gray matter, cerebellum, and brainstem. Within the cortical regions, volume reduction was prominent in the left precentral, right lateral occipital, left precuneus, left inferior parietal, and right medial orbitofrontal cortices. After correcting for intracranial volumes, volume reduction was more prominent in the cerebral cortices than in the cerebral white matter. Small volumes were consistently observed, regardless of age. Negative correlations were observed between the volumes of multiple regions and the Clinical Severity Scores. There were no correlations among regional brain volume, seizure control, or duration of epilepsy. CONCLUSION The mechanism underlying the cortical-dominant volume reduction remains unclear; however, it may be caused by altered synapse development associated with methyl-CpG-binding protein 2 gene abnormalities. Characteristic impairments in visual recognition and deterioration of motor function in Rett syndrome may be associated with significant volume reduction in specific cortical regions, such as the lateral occipital cortex, precuneus, and precentral gyrus.
Collapse
Affiliation(s)
- Hajime Narita
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jun Natsume
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Takeshi Suzuki
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tadashi Shiohama
- Department of Pediatrics, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masahiro Kawaguchi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masaki Okazaki
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Hashizume
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuji Ito
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Yamamoto
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiko Nakata
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroyuki Kidokoro
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Asahikawa, Japan
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan; Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
3
|
Singh G. Is Chronic Pain as an Autoimmune Disease? Can J Pain 2023. [DOI: 10.1080/24740527.2023.2175205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Linher-Melville K, Shah A, Singh G. Sex differences in neuro(auto)immunity and chronic sciatic nerve pain. Biol Sex Differ 2020; 11:62. [PMID: 33183347 PMCID: PMC7661171 DOI: 10.1186/s13293-020-00339-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/20/2020] [Indexed: 01/13/2023] Open
Abstract
Chronic pain occurs with greater frequency in women, with a parallel sexually dimorphic trend reported in sufferers of many autoimmune diseases. There is a need to continue examining neuro-immune-endocrine crosstalk in the context of sexual dimorphisms in chronic pain. Several phenomena in particular need to be further explored. In patients, autoantibodies to neural antigens have been associated with sensory pathway hyper-excitability, and the role of self-antigens released by damaged nerves remains to be defined. In addition, specific immune cells release pro-nociceptive cytokines that directly influence neural firing, while T lymphocytes activated by specific antigens secrete factors that either support nerve repair or exacerbate the damage. Modulating specific immune cell populations could therefore be a means to promote nerve recovery, with sex-specific outcomes. Understanding biological sex differences that maintain, or fail to maintain, neuroimmune homeostasis may inform the selection of sex-specific treatment regimens, improving chronic pain management by rebalancing neuroimmune feedback. Given the significance of interactions between nerves and immune cells in the generation and maintenance of neuropathic pain, this review focuses on sex differences and possible links with persistent autoimmune activity using sciatica as an example.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada
| | - Anita Shah
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada.
- Michael G. DeGroote Institute for Pain Research and Care, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Singh J, Lanzarini E, Santosh P. Autonomic dysfunction and sudden death in patients with Rett syndrome: a systematic review. J Psychiatry Neurosci 2020; 45:150-181. [PMID: 31702122 PMCID: PMC7828978 DOI: 10.1503/jpn.190033] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Rett syndrome (RTT), a debilitating neuropsychiatric disorder that begins in early childhood, is characterized by impairments in the autonomic nervous system that can lead to sudden unexpected death. This study explores the mechanisms of autonomic dysfunction to identify potential risk factors for sudden death in patients with RTT. METHODS Following the Reporting Items for Systematic Review and Meta-Analyses (PRISMA) criteria, we undertook comprehensive systematic reviews using the PubMed, Scopus, Cochrane, PsycINFO, Embase and Web of Science databases. RESULTS We identified and critically appraised 39 articles for autonomic dysfunction and 5 for sudden death that satisfied the eligibility criteria. Following thematic analysis, we identified 7 themes: breathing irregularities, abnormal spontaneous brainstem activations, heart rate variability metrics, QTc changes, vagal imbalance, fluctuation in peptides and serotonergic neurotransmission. We grouped these 7 themes into 3 final themes: (A) brainstem modulation of breathing, (B) electrical instability of the cardiovascular system and (C) neurochemical changes contributing to autonomic decline. We described key evidence relating to each theme and identified important areas that could improve the clinical management of patients with RTT. LIMITATIONS The heterogeneity of the methods used to assess autonomic function increased the difficulty of making inferences from the different studies. CONCLUSION This study identified the important mediators of autonomic dysfunction and sudden death in patients with RTT. We proposed brainstem mechanisms and emphasized risk factors that increase brainstem vulnerability. We discussed clinical management to reduce sudden death and future directions for this vulnerable population.
Collapse
Affiliation(s)
- Jatinder Singh
- From the Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK (Singh, Santosh); the Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London, and Maudsley NHS Foundation Trust, London, UK (Singh, Lanzarini, Santosh); and the Child and Adolescent Neuropsychiatry Unit, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy (Lanzarini)
| | - Evamaria Lanzarini
- From the Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK (Singh, Santosh); the Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London, and Maudsley NHS Foundation Trust, London, UK (Singh, Lanzarini, Santosh); and the Child and Adolescent Neuropsychiatry Unit, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy (Lanzarini)
| | - Paramala Santosh
- From the Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK (Singh, Santosh); the Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London, and Maudsley NHS Foundation Trust, London, UK (Singh, Lanzarini, Santosh); and the Child and Adolescent Neuropsychiatry Unit, S. Orsola-Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138, Bologna, Italy (Lanzarini)
| |
Collapse
|
6
|
Abstract
Developmental and epileptic encephalopathies (DEEs) can be primarily attributed to genetic causes. The genetic landscape of DEEs has been largely shaped by the rise of high-throughput sequencing, which led to the discovery of new DEE-associated genes and helped identify de novo pathogenic variants. We discuss briefly the contribution of de novo variants to DEE and also focus on alternative inheritance models that contribute to DEE. First, autosomal recessive inheritance in outbred populations may have a larger contribution than previously appreciated, accounting for up to 13% of DEEs. A small subset of genes that typically harbor de novo variants have been associated with recessive inheritance, and often these individuals have more severe clinical presentations. Additionally, pathogenic variants in X-linked genes have been identified in both affected males and females, possibly due to a lack of X-chromosome inactivation skewing. Collectively, exome sequencing has resulted in a molecular diagnosis for many individuals with DEE, but this still leaves many cases unsolved. Multiple factors contribute to the missing etiology, including nonexonic variants, mosaicism, epigenetics, and oligogenic inheritance. Here, we focus on the first 2 factors. We discuss the promises and challenges of genome sequencing, which allows for a more comprehensive analysis of the genome, including interpretation of structural and noncoding variants and also yields a high number of de novo variants for interpretation. We also consider the contribution of genetic mosaicism, both what it means for a molecular diagnosis in mosaic individuals and the important implications for genetic counseling.
Collapse
Affiliation(s)
- Hannah C Happ
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Gemma L Carvill
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Horga A, Woodward CE, Mills A, Pareés I, Hargreaves IP, Brown RM, Bugiardini E, Brooks T, Manole A, Remzova E, Rahman S, Reilly MM, Houlden H, Sweeney MG, Brown GK, Polke JM, Gago F, Parton MJ, Pitceathly RDS, Hanna MG. Differential phenotypic expression of a novel PDHA1 mutation in a female monozygotic twin pair. Hum Genet 2019; 138:1313-1322. [PMID: 31673819 PMCID: PMC6874639 DOI: 10.1007/s00439-019-02075-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/18/2019] [Indexed: 01/27/2023]
Abstract
Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.
Collapse
Affiliation(s)
- Alejandro Horga
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
- Neuromuscular Diseases Unit, Department of Neurology, Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Catherine E Woodward
- Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Alberto Mills
- Area of Pharmacology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Isabel Pareés
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Iain P Hargreaves
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Ruth M Brown
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Tony Brooks
- UCL Genomics, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Andreea Manole
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Elena Remzova
- Neurometabolic Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Shamima Rahman
- Metabolic Unit, Great Ormond Street Hospital for Children NHS Foundation Trust and UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mary M Reilly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Mary G Sweeney
- Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Garry K Brown
- Oxford Medical Genetics Laboratories, The Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - James M Polke
- Neurogenetics Unit, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Federico Gago
- Area of Pharmacology, Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Spain
| | - Matthew J Parton
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK
| | - Robert D S Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| | - Michael G Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
8
|
Yu S, Chen C, Pan Y, Kurz MC, Datner E, Hendry PL, Velilla MA, Lewandowski C, Pearson C, Domeier R, McLean SA, Linnstaedt SD. Genes known to escape X chromosome inactivation predict co-morbid chronic musculoskeletal pain and posttraumatic stress symptom development in women following trauma exposure. Am J Med Genet B Neuropsychiatr Genet 2019; 180:415-427. [PMID: 30537437 PMCID: PMC7138464 DOI: 10.1002/ajmg.b.32706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 09/28/2018] [Accepted: 11/14/2018] [Indexed: 12/16/2022]
Abstract
Co-morbid chronic musculoskeletal pain (CMSP) and posttraumatic stress symptoms (PTSS) are frequent sequelae of motor vehicle collision, are associated with greater disability than either outcome alone, and are more prevalent in women than men. In the current study we assessed for evidence that gene transcripts originating from the X chromosome contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision. Nested samples were drawn from a longitudinal study of African American individuals, and CMSP (0-10 numeric rating scale) and PTSS (impact of events scale, revised) outcomes were assessed 6 months following motor vehicle collision. Blood RNA were sequenced (n = 101) and the relationship between X chromosome mRNA expression levels and co-morbid CMSP and PTSS outcomes was evaluated using logistic regression analyses. A disproportionate number of peritraumatic X chromosome mRNA predicting CMSP and PTSS in women were genes previously found to escape X chromosome inactivation (11/40, z = -2.9, p = .004). Secondary analyses assessing gene ontology relationships between these genes identified an enrichment in genes known to influence neuronal plasticity. Further, the relationship of expression of two critical regulators of X chromosome inactivation, X-inactive specific transcript (XIST) and Yin Yang 1 (YY1), was different in women developing CMSP and PTSS. Together, these data suggest that X chromosome genes that escape inactivation may contribute to sex differences in vulnerability to CMSP and PTSS after motor vehicle collision.
Collapse
Affiliation(s)
- Shan Yu
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Constance Chen
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Yue Pan
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| | - Michael C. Kurz
- Department of Emergency Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Elizabeth Datner
- Department of Emergency Medicine, Albert Einstein Medical Center, Philadelphia, PA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine – Jacksonville, Jacksonville, FL
| | | | | | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, MI
| | - Robert Domeier
- Department of Emergency Medicine, St Joseph Mercy Health System, Ann Arbor, MI
| | - Samuel A. McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
- Department of Emergency Medicine, University of North Carolina, Chapel Hill, NC
| | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, NC
- Department of Anesthesiology, University of North Carolina, Chapel Hill, NC
| |
Collapse
|
9
|
Xiol C, Vidal S, Pascual-Alonso A, Blasco L, Brandi N, Pacheco P, Gerotina E, O'Callaghan M, Pineda M, Armstrong J. X chromosome inactivation does not necessarily determine the severity of the phenotype in Rett syndrome patients. Sci Rep 2019; 9:11983. [PMID: 31427717 PMCID: PMC6700087 DOI: 10.1038/s41598-019-48385-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/05/2019] [Indexed: 11/24/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.
Collapse
Affiliation(s)
- Clara Xiol
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Silvia Vidal
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Ainhoa Pascual-Alonso
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Laura Blasco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Núria Brandi
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Paola Pacheco
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Edgar Gerotina
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mar O'Callaghan
- Neurology Service, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercè Pineda
- Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Judith Armstrong
- Molecular and Genetics Medicine Section, Hospital Sant Joan de Déu, Barcelona, Spain. .,Institut de Recerca Pediàtrica, Hospital Sant Joan de Déu, Barcelona, Spain. .,CIBER-ER (Biomedical Network Research Center for Rare Diseases), Instituto de Salud Carlos III, Madrid, Spain.
| | | |
Collapse
|
10
|
Faundez V, Wynne M, Crocker A, Tarquinio D. Molecular Systems Biology of Neurodevelopmental Disorders, Rett Syndrome as an Archetype. Front Integr Neurosci 2019; 13:30. [PMID: 31379529 PMCID: PMC6650571 DOI: 10.3389/fnint.2019.00030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 07/02/2019] [Indexed: 12/17/2022] Open
Abstract
Neurodevelopmental disorders represent a challenging biological and medical problem due to their genetic and phenotypic complexity. In many cases, we lack the comprehensive understanding of disease mechanisms necessary for targeted therapeutic development. One key component that could improve both mechanistic understanding and clinical trial design is reliable molecular biomarkers. Presently, no objective biological markers exist to evaluate most neurodevelopmental disorders. Here, we discuss how systems biology and "omic" approaches can address the mechanistic and biomarker limitations in these afflictions. We present heuristic principles for testing the potential of systems biology to identify mechanisms and biomarkers of disease in the example of Rett syndrome, a neurodevelopmental disorder caused by a well-defined monogenic defect in methyl-CpG-binding protein 2 (MECP2). We propose that such an approach can not only aid in monitoring clinical disease severity but also provide a measure of target engagement in clinical trials. By deepening our understanding of the "big picture" of systems biology, this approach could even help generate hypotheses for drug development programs, hopefully resulting in new treatments for these devastating conditions.
Collapse
Affiliation(s)
- Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Meghan Wynne
- Department of Cell Biology, Emory University, Atlanta, GA, United States
| | - Amanda Crocker
- Program in Neuroscience, Middlebury College, Middlebury, VT, United States
| | - Daniel Tarquinio
- Rare Neurological Diseases (Private Research Institution), Atlanta, GA, United States
| |
Collapse
|
11
|
Singh J, Santosh P. Key issues in Rett syndrome: emotional, behavioural and autonomic dysregulation (EBAD) - a target for clinical trials. Orphanet J Rare Dis 2018; 13:128. [PMID: 30064458 PMCID: PMC6069816 DOI: 10.1186/s13023-018-0873-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 07/10/2018] [Indexed: 02/02/2023] Open
Abstract
Complex neurodevelopmental disorders need multi-disciplinary treatment approaches for optimal care. The clinical effectiveness of treatments is limited in patients with rare genetic syndromes with multisystem morbidity. Emotional and behavioural dysregulation is common across many neurodevelopmental disorders. It can manifest in children across multiple diagnostic groups, including those on the autism spectrum and in rare genetic syndromes such as Rett Syndrome (RTT). There is, however a remarkable scarcity in the literature on the impact of the autonomic component on emotional and behavioural regulation in these disorders, and on the longer-term outcomes on disorder burden.RTT is a debilitating and often life-threatening disorder involving multiple overlapping physiological systems. Autonomic dysregulation otherwise known as dysautonomia is a cardinal feature of RTT characterised by an imbalance between the sympathetic and parasympathetic arms of the autonomic nervous system. Unlocking the autonomic component of emotional and behavioural dysregulation would be central in reducing the impairment seen in patients with RTT. In this vein, Emotional, Behavioural and Autonomic Dysregulation (EBAD) would be a useful construct to target for treatment which could mitigate burden and improve the quality of life of patients.RTT can be considered as a congenital dysautonomia and because EBAD can give rise to impairments occurring in multiple overlapping physiological systems, understanding these physiological responses arising out of EBAD would be a critical part to consider when planning treatment strategies and improving clinical outcomes in these patients. Biometric guided pharmacological and bio-feedback therapy for the behavioural and emotional aspects of the disorder offers an attracting perspective to manage EBAD in these patients. This can also allow for the stratification of patients into clinical trials and could ultimately help streamline the patient care pathway for optimal outcomes.The objectives of this review are to emphasise the key issues relating to the management of EBAD in patients with RTT, appraise clinical trials done in RTT from the perspective of autonomic physiology and to discuss the potential of EBAD as a target for clinical trials.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK. .,Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
12
|
Santosh P, Lievesley K, Fiori F, Singh J. Development of the Tailored Rett Intervention and Assessment Longitudinal (TRIAL) database and the Rett Evaluation of Symptoms and Treatments (REST) Questionnaire. BMJ Open 2017; 7:e015342. [PMID: 28637735 PMCID: PMC5734452 DOI: 10.1136/bmjopen-2016-015342] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/12/2017] [Accepted: 04/21/2017] [Indexed: 01/02/2023] Open
Abstract
INTRODUCTION Rett syndrome (RTT) is a pervasive neurodevelopmental disorder that presents with deficits in brain functioning leading to language and learning regression, characteristic hand stereotypies and developmental delay. Different mutations in the gene implicated in RTT-methyl-CpG-binding protein 2 (MECP2) establishes RTT as a disorder with divergent symptomatology ranging from individuals with severe to milder phenotypes. A reliable and single multidimensional questionnaire is needed that can embrace all symptoms, and the relationships between them, and can map clinically meaningful data to symptomatology across the lifespan in patients with RTT. As part of the HealthTracker-based Tailored Rett Intervention and Assessment Longitudinal (TRIAL) database, the Rett Evaluation of Symptoms and Treatments (REST) Questionnaire will be able to marry with the physiological aspects of the disease obtained using wearable sensor technology, along with genetic and psychosocial data to stratify patients. Taken together, the web-based TRIAL database will empower clinicians and researchers with the confidence to delineate between different aspects of disorder symptomatology to streamline care pathways for individuals or for those patients entering clinical trials. This protocol describes the anticipated development of the REST questionnaire and the TRIAL database which links with the outcomes of the wearable sensor technology, and will serve as a barometer for longitudinal patient monitoring in patients with RTT. METHODS AND ANALYSIS The US Food and Drug Administration Guidance for Patient-Reported Outcome Measures will be used as a template to inform the methodology of the study. It will follow an iterative framework that will include item/concept identification, item/concept elicitation in parent/carer-mediated focus groups, expert clinician feedback, web-based presentation of questionnaires, initial scale development, instrument refinement and instrument validation. ETHICS AND DISSEMINATION The study has received favourable opinion from the National Health Service (NHS) Research Ethics Committee (REC): NHS Research Ethics Committee (REC)-London, Bromley Research Ethics Committee (reference: 15/LO/1772).
Collapse
Affiliation(s)
- Paramala Santosh
- Department of Child and Adolescent Psychiatry, King’s College London, London, UK
- HealthTracker Ltd, Gillingham, Kent, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK
| | - Kate Lievesley
- Department of Child and Adolescent Psychiatry, King’s College London, London, UK
- HealthTracker Ltd, Gillingham, Kent, UK
| | - Federico Fiori
- Department of Child and Adolescent Psychiatry, King’s College London, London, UK
- HealthTracker Ltd, Gillingham, Kent, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases, South London and Maudsley NHS Foundation Trust, London, UK
| | - Jatinder Singh
- Department of Child and Adolescent Psychiatry, King’s College London, London, UK
| |
Collapse
|
13
|
Cuddapah VA, Sinifunanya EN, Percy AK, Olsen ML. MeCP2 in the regulation of neural activity: Rett syndrome pathophysiological perspectives. Degener Neurol Neuromuscul Dis 2015; 5:103-116. [PMID: 32669918 PMCID: PMC7337177 DOI: 10.2147/dnnd.s61269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 04/23/2015] [Indexed: 11/23/2022] Open
Abstract
Rett syndrome (RTT), an X-linked neurodevelopment disorder, occurs in approximately one out of 10,000 females. Individuals afflicted by RTT display a constellation of signs and symptoms, affecting nearly every organ system. Most striking are the neurological manifestations, including regression of language and motor skills, increased seizure activity, autonomic dysfunction, and aberrant regulation of breathing patterns. The majority of girls with RTT have mutations in the gene encoding for methyl-CpG binding protein 2 (MeCP2). Since the discovery of this genetic cause of RTT in 1999, there has been an accelerated pace of research seeking to understand the role of MeCP2 in the brain in the hope of developing a disease-modifying therapy for RTT. In this study, we review the clinical features of RTT and then explore the latest mechanistic studies in order to explain how a mutation in MeCP2 leads to these unique features. We cover in detail studies examining the role of MeCP2 in neuronal physiology, as well as recent evidence that implicates a key role for glia in the pathogenesis of RTT. In the past 20 years, these basic and clinical studies have yielded an extraordinary understanding of RTT; as such, we end this narrative review considering the translation of these studies into clinical trials for the treatment of RTT.
Collapse
Affiliation(s)
| | | | - Alan K Percy
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | | |
Collapse
|
14
|
Andoh-Noda T, Akamatsu W, Miyake K, Matsumoto T, Yamaguchi R, Sanosaka T, Okada Y, Kobayashi T, Ohyama M, Nakashima K, Kurosawa H, Kubota T, Okano H. Differentiation of multipotent neural stem cells derived from Rett syndrome patients is biased toward the astrocytic lineage. Mol Brain 2015; 8:31. [PMID: 26012557 PMCID: PMC4446051 DOI: 10.1186/s13041-015-0121-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/30/2015] [Indexed: 12/23/2022] Open
Abstract
Background Rett syndrome (RTT) is one of the most prevalent neurodevelopmental disorders in females, caused by de novo mutations in the X-linked methyl CpG-binding protein 2 gene, MECP2. Although abnormal regulation of neuronal genes due to mutant MeCP2 is thought to induce autistic behavior and impaired development in RTT patients, precise cellular mechanisms underlying the aberrant neural progression remain unclear. Results Two sets of isogenic pairs of either wild-type or mutant MECP2-expressing human induced pluripotent stem cell (hiPSC) lines were generated from a single pair of 10-year-old RTT-monozygotic (MZ) female twins. Mutant MeCP2-expressing hiPSC lines did not express detectable MeCP2 protein during any stage of differentiation. The lack of MeCP2 reflected altered gene expression patterns in differentiated neural cells rather than in undifferentiated hiPSCs, as assessed by microarray analysis. Furthermore, MeCP2 deficiency in the neural cell lineage increased astrocyte-specific differentiation from multipotent neural stem cells. Additionally, chromatin immunoprecipitation (ChIP) and bisulfite sequencing assays indicated that anomalous glial fibrillary acidic protein gene (GFAP) expression in the MeCP2-negative, differentiated neural cells resulted from the absence of MeCP2 binding to the GFAP gene. Conclusions An isogenic RTT-hiPSC model demonstrated that MeCP2 participates in the differentiation of neural cells. Moreover, MeCP2 deficiency triggers perturbation of astrocytic gene expression, yielding accelerated astrocyte formation from RTT-hiPSC-derived neural stem cells. These findings are likely to shed new light on astrocytic abnormalities in RTT, and suggest that astrocytes, which are required for neuronal homeostasis and function, might be a new target of RTT therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13041-015-0121-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tomoko Andoh-Noda
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan. .,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Wado Akamatsu
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Center for Genomic and Regenerative Medicine, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Kunio Miyake
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Takuya Matsumoto
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Ryo Yamaguchi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Sumitomo Dainipponn Pharma Co. Ltd., Osaka, Osaka, 541-0045, Japan.
| | - Tsukasa Sanosaka
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Yohei Okada
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Neurology,School of Meidicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi, 480-1195, Japan.
| | - Tetsuro Kobayashi
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Manabu Ohyama
- Department of Dermatology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Hiroshi Kurosawa
- Division of Medicine and Engineering Science, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 4-4-37 Takeda, Yamanashi, Kofu, 400-8510, Japan.
| | - Takeo Kubota
- Department of Epigenetic Medicine, Faculty of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, 409-3898, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi,Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
15
|
Abstract
The recent descriptions of widespread random monoallelic expression (RMAE) of genes distributed throughout the autosomal genome indicate that there are more genes subject to RMAE on autosomes than the number of genes on the X chromosome where X-inactivation dictates RMAE of X-linked genes. Several of the autosomal genes that undergo RMAE have independently been implicated in human Mendelian disorders. Thus, parsing the relationship between allele-specific expression of these genes and disease is of interest. Mutations in the human forkhead box P2 gene, FOXP2, cause developmental verbal dyspraxia with profound speech and language deficits. Here, we show that the human FOXP2 gene undergoes RMAE. Studying an individual with developmental verbal dyspraxia, we identify a deletion 3 Mb away from the FOXP2 gene, which impacts FOXP2 gene expression in cis. Together these data suggest the intriguing possibility that RMAE impacts the haploinsufficiency phenotypes observed for FOXP2 mutations.
Collapse
|
16
|
Abstract
Mutations in Methyl-CpG-Binding protein 2 (MECP2) are commonly associated with the neurodevelopmental disorder Rett syndrome (RTT). However, some people with RTT do not have mutations in MECP2, and interestingly there have been people identified with MECP2 mutations that do not have the clinical features of RTT. In this report we present four people with neurodevelopmental abnormalities and clear RTT-disease causing MECP2 mutation but lacking the characteristic clinical features of RTT. One patient's symptoms suggest an extension of the known spectrum of MECP2 associated phenotypes to include global developmental delay with obsessive compulsive disorder and attention deficit hyperactivity disorder. These results reemphasize that RTT should remain a clinical diagnosis, based on the recent consensus criteria.
Collapse
|
17
|
Abstract
Rett syndrome (RTT) is a severe and progressive neurological disorder, which mainly affects young females. Mutations of the methyl-CpG binding protein 2 (MECP2) gene are the most prevalent cause of classical RTT cases. MECP2 mutations or altered expression are also associated with a spectrum of neurodevelopmental disorders such as autism spectrum disorders with recent links to fetal alcohol spectrum disorders. Collectively, MeCP2 relation to these neurodevelopmental disorders highlights the importance of understanding the molecular mechanisms by which MeCP2 impacts brain development, mental conditions, and compromised brain function. Since MECP2 mutations were discovered to be the primary cause of RTT, a significant progress has been made in the MeCP2 research, with respect to the expression, function and regulation of MeCP2 in the brain and its contribution in RTT pathogenesis. To date, there have been intensive efforts in designing effective therapeutic strategies for RTT benefiting from mouse models and cells collected from RTT patients. Despite significant progress in MeCP2 research over the last few decades, there is still a knowledge gap between the in vitro and in vivo research findings and translating these findings into effective therapeutic interventions in human RTT patients. In this review, we will provide a synopsis of Rett syndrome as a severe neurological disorder and will discuss the role of MeCP2 in RTT pathophysiology.
Collapse
|
18
|
Cuddapah VA, Pillai RB, Shekar KV, Lane JB, Motil KJ, Skinner SA, Tarquinio DC, Glaze DG, McGwin G, Kaufmann WE, Percy AK, Neul JL, Olsen ML. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J Med Genet 2014. [PMID: 24399845 DOI: 10.1136/jmedgenet‐2013‐102113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Rett syndrome (RTT), a neurodevelopmental disorder that primarily affects girls, is characterised by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress. More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. Surprisingly, although the disorder is caused by mutations in a single gene, disease severity in affected individuals can be quite variable. To explore the source of this phenotypic variability, we propose that specific MECP2 mutations lead to different degrees of disease severity. METHODS Using a database of 1052 participants assessed over 4940 unique visits, the largest cohort of both typical and atypical RTT patients studied to date, we examined the relationship between MECP2 mutation status and various phenotypic measures over time. RESULTS In general agreement with previous studies, we found that particular mutations, such as p.Arg133Cys, p.Arg294X, p.Arg306Cys, 3° truncations and other point mutations, were relatively less severe in both typical and atypical RTT. In contrast, p.Arg106Trp, p.Arg168X, p.Arg255X, p.Arg270X, splice sites, deletions, insertions and deletions were significantly more severe. We also demonstrated that, for most mutation types, clinical severity increases with age. Furthermore, of the clinical features of RTT, ambulation, hand use and age at onset of stereotypies are strongly linked to overall disease severity. CONCLUSIONS We have confirmed that MECP2 mutation type is a strong predictor of disease severity. These data also indicate that clinical severity continues to become progressively worse regardless of initial severity. These findings will allow clinicians and families to anticipate and prepare better for the needs of individuals with RTT.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Cuddapah VA, Pillai RB, Shekar KV, Lane JB, Motil KJ, Skinner SA, Tarquinio DC, Glaze DG, McGwin G, Kaufmann WE, Percy AK, Neul JL, Olsen ML. Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J Med Genet 2014; 51:152-8. [PMID: 24399845 DOI: 10.1136/jmedgenet-2013-102113] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rett syndrome (RTT), a neurodevelopmental disorder that primarily affects girls, is characterised by a period of apparently normal development until 6-18 months of age when motor and communication abilities regress. More than 95% of individuals with RTT have mutations in methyl-CpG-binding protein 2 (MECP2), whose protein product modulates gene transcription. Surprisingly, although the disorder is caused by mutations in a single gene, disease severity in affected individuals can be quite variable. To explore the source of this phenotypic variability, we propose that specific MECP2 mutations lead to different degrees of disease severity. METHODS Using a database of 1052 participants assessed over 4940 unique visits, the largest cohort of both typical and atypical RTT patients studied to date, we examined the relationship between MECP2 mutation status and various phenotypic measures over time. RESULTS In general agreement with previous studies, we found that particular mutations, such as p.Arg133Cys, p.Arg294X, p.Arg306Cys, 3° truncations and other point mutations, were relatively less severe in both typical and atypical RTT. In contrast, p.Arg106Trp, p.Arg168X, p.Arg255X, p.Arg270X, splice sites, deletions, insertions and deletions were significantly more severe. We also demonstrated that, for most mutation types, clinical severity increases with age. Furthermore, of the clinical features of RTT, ambulation, hand use and age at onset of stereotypies are strongly linked to overall disease severity. CONCLUSIONS We have confirmed that MECP2 mutation type is a strong predictor of disease severity. These data also indicate that clinical severity continues to become progressively worse regardless of initial severity. These findings will allow clinicians and families to anticipate and prepare better for the needs of individuals with RTT.
Collapse
Affiliation(s)
- Vishnu Anand Cuddapah
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
ZC4H2 mutations are associated with arthrogryposis multiplex congenita and intellectual disability through impairment of central and peripheral synaptic plasticity. Am J Hum Genet 2013; 92:681-95. [PMID: 23623388 DOI: 10.1016/j.ajhg.2013.03.021] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 12/19/2022] Open
Abstract
Arthrogryposis multiplex congenita (AMC) is caused by heterogeneous pathologies leading to multiple antenatal joint contractures through fetal akinesia. Understanding the pathophysiology of this disorder is important for clinical care of the affected individuals and genetic counseling of the families. We thus aimed to establish the genetic basis of an AMC subtype that is associated with multiple dysmorphic features and intellectual disability (ID). We used haplotype analysis, next-generation sequencing, array comparative genomic hybridization, and chromosome breakpoint mapping to identify the pathogenic mutations in families and simplex cases. Suspected disease variants were verified by cosegregation analysis. We identified disease-causing mutations in the zinc-finger gene ZC4H2 in four families affected by X-linked AMC plus ID and one family affected by cerebral palsy. Several heterozygous females were also affected, but to a lesser degree. Furthermore, we found two ZC4H2 deletions and one rearrangement in two female and one male unrelated simplex cases, respectively. In mouse primary hippocampal neurons, transiently produced ZC4H2 localized to the postsynaptic compartment of excitatory synapses, and the altered protein influenced dendritic spine density. In zebrafish, antisense-morpholino-mediated zc4h2 knockdown caused abnormal swimming and impaired α-motoneuron development. All missense mutations identified herein failed to rescue the swimming defect of zebrafish morphants. We conclude that ZC4H2 point mutations, rearrangements, and small deletions cause a clinically variable broad-spectrum neurodevelopmental disorder of the central and peripheral nervous systems in both familial and simplex cases of both sexes. Our results highlight the importance of ZC4H2 for genetic testing of individuals presenting with ID plus muscle weakness and minor or major forms of AMC.
Collapse
|
21
|
Jost KL, Rottach A, Milden M, Bertulat B, Becker A, Wolf P, Sandoval J, Petazzi P, Huertas D, Esteller M, Kremmer E, Leonhardt H, Cardoso MC. Generation and characterization of rat and mouse monoclonal antibodies specific for MeCP2 and their use in X-inactivation studies. PLoS One 2011; 6:e26499. [PMID: 22140431 PMCID: PMC3225355 DOI: 10.1371/journal.pone.0026499] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/28/2011] [Indexed: 11/23/2022] Open
Abstract
Methyl CpG binding protein 2 (MeCP2) binds DNA, and has a preference for methylated CpGs and, hence, in cells, it accumulates in heterochromatin. Even though it is expressed ubiquitously MeCP2 is particularly important during neuronal maturation. This is underscored by the fact that in Rett syndrome, a neurological disease, 80% of patients carry a mutation in the MECP2 gene. Since the MECP2 gene lies on the X chromosome and is subjected to X chromosome inactivation, affected patients are usually chimeric for wild type and mutant MeCP2. Here, we present the generation and characterization of the first rat monoclonal MeCP2 specific antibodies as well as mouse monoclonal antibodies and a rabbit polyclonal antibody. We demonstrate that our antibodies are suitable for immunoblotting, (chromatin) immunoprecipitation and immunofluorescence of endogenous and ectopically expressed MeCP2. Epitope mapping revealed that most of the MeCP2 monoclonal antibodies recognize the C-terminal domain and one the N-terminal domain of MeCP2. Using slot blot analysis, we determined a high sensitivity of all antibodies, detecting amounts as low as 1 ng of MeCP2 protein. Moreover, the antibodies recognize MeCP2 from different species, including human, mouse, rat and pig. Lastly, we have validated their use by analyzing and quantifying X chromosome inactivation skewing using brain tissue of MeCP2 heterozygous null female mice. The new MeCP2 specific monoclonal antibodies described here perform well in a large variety of immunological applications making them a very valuable set of tools for studies of MeCP2 pathophysiology in situ and in vitro.
Collapse
Affiliation(s)
- K. Laurence Jost
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Andrea Rottach
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Manuela Milden
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Bianca Bertulat
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Annette Becker
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Patricia Wolf
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - Juan Sandoval
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Paolo Petazzi
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Dori Huertas
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Manel Esteller
- Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute (IDIBELL), Barcelona, Spain
| | - Elisabeth Kremmer
- Helmholtz Center Munich, German Research Center for Environmental Health, Institute of Molecular Immunology, Munich, Germany
| | - Heinrich Leonhardt
- Department of Biology II, Ludwig Maximilians University Munich, Planegg-Martinsried, Germany
| | - M. Cristina Cardoso
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
22
|
Artuso R, Papa FT, Grillo E, Mucciolo M, Yasui DH, Dunaway KW, Disciglio V, Mencarelli MA, Pollazzon M, Zappella M, Hayek G, Mari F, Renieri A, Lasalle JM, Ariani F. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet 2011; 56:508-15. [PMID: 21593744 PMCID: PMC3145144 DOI: 10.1038/jhg.2011.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether Copy Number Variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by ChIP-chip analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.
Collapse
Affiliation(s)
- Rosangela Artuso
- Biotechnology Department, Medical Genetics Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zhu X, Li M, Pan H, Bao X, Zhang J, Wu X. Analysis of the parental origin of de novo MECP2 mutations and X chromosome inactivation in 24 sporadic patients with Rett syndrome in China. J Child Neurol 2010; 25:842-8. [PMID: 20207612 DOI: 10.1177/0883073809350722] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
24
|
Khil PP, Camerini-Otero RD. Molecular Features and Functional Constraints in the Evolution of the Mammalian X Chromosome. Crit Rev Biochem Mol Biol 2008; 40:313-30. [PMID: 16338684 DOI: 10.1080/10409230500356703] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Recent advances in genomic sequencing of multiple organisms have fostered significant advances in our understanding of the evolution of the sex chromosomes. The integration of this newly available sequence information with functional data has facilitated a considerable refinement of our conceptual framework of the forces driving this evolution. Here we address multiple functional constraints that were encountered in the evolution of the X chromosome and the impact that this evolutionary history has had on its modern behavior.
Collapse
Affiliation(s)
- Pavel P Khil
- Genetics and Biochemistry Branch, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
25
|
Takahashi S, Ohinata J, Makita Y, Suzuki N, Araki A, Sasaki A, Murono K, Tanaka H, Fujieda K. Skewed X chromosome inactivation failed to explain the normal phenotype of a carrier female with MECP2 mutation resulting in Rett syndrome. Clin Genet 2008; 73:257-61. [DOI: 10.1111/j.1399-0004.2007.00944.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Itaba-Matsumoto N, Maegawa S, Yamagata H, Kondo I, Oshimura M, Nanba E. Imprinting status of paternally imprinted DLX5 gene in Japanese patients with Rett syndrome. Brain Dev 2007; 29:491-5. [PMID: 17363207 DOI: 10.1016/j.braindev.2007.01.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Revised: 01/24/2007] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Rett syndrome (RTT) is an X-linked severe neurodevelopmental disorder mostly affecting female and is mainly caused by mutations of methyl-CpG-binding protein 2 gene (MECP2). MECP2, which has a crucial role for transcriptional repression and chromatin remodeling, consists of methyl-CpG binding domain (MBD) and transcriptional repression domain (TRD). Paternally imprinted distal-less homeobox gene 5 (DLX5), that has an important role for the development of gamma-aminobutyric acid (GABA)-ergic neurons, was identified as a target of MECP2 recently. We selected the 12 samples from the 40 RTT lymphoblast cell lines by a mononucleotide repeat polymorphism within the 3'UTR of DLX5. In 12 samples, 5 and 6 samples have the mutations located in MBD and TRD, respectively. No expression and 25-75% expression of the mutated MECP2 allele were detected in 4 samples with MBD mutation and 4 samples with TRD mutation. In this study, the expression of mutated MECP2 alleles was low especially in the samples with the MBD mutation suggesting the biased frequency of the cells during the culture. However, a sample with high expression of mutated MECP2 in TRD mutation showed bialleic expression of DLX5 suggesting loss of imprinting.
Collapse
Affiliation(s)
- Noriko Itaba-Matsumoto
- Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, 86 Nishicho, Yonago, Tottori 683-8503, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Rett syndrome (RS) is an X-linked neurodevelopmental disorder and the second most common cause of genetic mental retardation in females. Different mutations in MECP2 are found in up to 95% of typical cases of RS. This mainly neuronal expressed gene functions as a major transcription repressor. Extensive studies on girls who have RS and mouse models are aimed at finding main gene targets for MeCP2 protein and defining neuropathologic changes caused by its defects. Studies comparing autistic features in RS with idiopathic autism and mentally retarded patients are presented. Decreased dendritic arborization is common to RS and autism, leading to further research on similarities in pathogenesis, including MeCP2 protein levels in autistic brains and MeCP2 effects on genes connected to autism, like DLX5 and genes on 15q11-13 region. This area also is involved in Angelman syndrome, which has many similarities to RS. Despite these connections, MECP2 mutations in nonspecific autistic and mentally retarded populations are rare.
Collapse
Affiliation(s)
- Bruria Ben Zeev Ghidoni
- Pediatric Neurology Unit, Safra Pediatric Hospital, Sheba Medical Center, Ramat-Gan, Israel.
| |
Collapse
|
28
|
Archer H, Evans J, Leonard H, Colvin L, Ravine D, Christodoulou J, Williamson S, Charman T, Bailey MES, Sampson J, de Klerk N, Clarke A. Correlation between clinical severity in patients with Rett syndrome with a p.R168X or p.T158M MECP2 mutation, and the direction and degree of skewing of X-chromosome inactivation. J Med Genet 2006; 44:148-52. [PMID: 16905679 PMCID: PMC2598067 DOI: 10.1136/jmg.2006.045260] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder that is usually associated with mutations in the MECP2 gene. The most common mutations in the gene are p.R168X and p.T158M. The influence of X-chromosome inactivation (XCI) on clinical severity in patients with RTT with these mutations was investigated, taking into account the extent and direction of skewing. METHODS Female patients and their parents were recruited from the UK and Australia. Clinical severity was measured by the Pineda Severity and Kerr profile scores. The degree of XCI and its direction relative to the X chromosome parent of origin were measured in DNA prepared from peripheral blood leucocytes, and allele-specific polymerase chain reaction was used to determine the parental origin of mutation. Combining these, the percentage of cells expected to express the mutant allele was calculated. RESULTS Linear regression analysis was undertaken for fully informative cases with p.R168X (n = 23) and p.T158M (n = 20) mutations. A statistically significant increase in clinical severity with increase in the proportion of active mutated allele was shown for both the p.R168X and p.T158M mutations. CONCLUSIONS XCI may vary in neurological and haematological tissues. However, these data are the first to show a relationship between the degree and direction of XCI in leucocytes and clinical severity in RTT, although the clinical utility of this in giving a prognosis for individual patients is unclear.
Collapse
Affiliation(s)
- Hayley Archer
- Institute of Medical Genetics, Cardiff University, University Hospital of Wales, Cardiff, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Watson CM, Pelka GJ, Radziewic T, Shahbazian MD, Christodoulou J, Williamson SL, Tam PPL. Reduced proportion of Purkinje cells expressing paternally derived mutant Mecp2308 allele in female mouse cerebellum is not due to a skewed primary pattern of X-chromosome inactivation. Hum Mol Genet 2005; 14:1851-61. [PMID: 15888476 DOI: 10.1093/hmg/ddi191] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked disorder caused by mutations in the methyl CpG binding protein 2 (MECP2) gene. The pattern of X-chromosome inactivation (XCI) is thought to play a role in phenotypic severity. In the present study, patterns of XCI were assessed by lacZ staining of embryos and adult brains of mice heterozygous for a X-linked Hmgcr-nls-lacZ transgene on a mutant mouse model of RTT. We found that there was no difference between the lacZ staining patterns in the brain of wild-type and heterozygous mutant embryos at embryonic day 9.5 (E9.5) suggesting that Mecp2 has no effect on the primary pattern of XCI. At 20 weeks of age, there was no significant difference between XCI patterns in the Purkinje cells in the cerebellum of heterozygous mutant and wild-type mice when the mutant allele was inherited from the mother. However, when the mutant allele was paternally inherited, a significant difference was detected. Thus, parental origin of the mutation may have a bearing on phenotype through XCI patterns. An estimation of the Purkinje cell precursor number based on XCI mosaicism revealed that, when the mutation was paternally inherited, the precursor number was less than that in the wild-type mice. Therefore, it is likely that the number of precursor cells allocated to the Purkinje cell lineage is affected by a paternally inherited mutation in Mecp2. We also observed that the pattern of XCI in cultured fibroblasts was significantly correlated with patterns in the Purkinje cells in mutant animals but not in wild-type mice.
Collapse
|