1
|
Das S, Brown L, Nikkel SM, Saunders J, Dunham C. Dual white matter pathology in fetal holoprosencephaly featuring concurrent malformative and destructive features: A case series. J Neuropathol Exp Neurol 2024; 83:722-735. [PMID: 38981113 DOI: 10.1093/jnen/nlae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
Holoprosencephaly (HPE) is a classic brain malformation involving defective forebrain induction and patterning. Cases of HPE bearing white matter abnormalities have not been well documented, with only rare cases exhibiting hypoxic-ischemic damage. However, neuroradiologic studies of HPE using diffusion tensor imaging have suggested the presence of white matter architectural disarray. Described in this case series are the clinicopathologic features of 8 fetuses with HPE who underwent autopsy at BC Children's Hospital. All 8 cases exhibited subacute to chronic, periventricular leukomalacia (PVL)-like white matter pathology, with 7 of 8 cases also demonstrating aberrant white matter tracts, one of which manifested as a discreet bundle crossing the midline within the ventral aspects of the fused deep gray nuclei. In 6 of these 7 cases, the PVL-like pathology resided within this aberrant white matter tract. Original workup, alongside an additional HPE-focused next-generation sequencing panel identified a likely etiologic cause for the HPE in 4 cases, with an additional 2 cases exhibiting a variant of unknown significance in genes previously suggested to be involved in HPE. Despite our in-depth clinicopathologic and molecular review, no unifying etiology was definitively identified among our series of fetal HPE bearing this unusual pattern of white matter pathology.
Collapse
Affiliation(s)
- Sumit Das
- Department of Pathology and Lab Medicine, University of Alberta and Stollery Children's Hospital, Edmonton, AB, Canada
| | - Lindsay Brown
- Department of Pathology and Laboratory Medicine, Division of Genome Diagnostics, BC Children's Hospital, Vancouver, BC, Canada
| | - Sarah M Nikkel
- Department of Medical Genetics, University of British Columbia, Provincial Medical Genetics Program, BC Women's Hospital, Vancouver, BC, Canada
| | - Jessica Saunders
- Department of Pathology and Laboratory Medicine, Division of Anatomic Pathology, BC Children's Hospital, Vancouver, BC, Canada
| | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, Division of Anatomic Pathology, BC Children's Hospital, Vancouver, BC, Canada
| |
Collapse
|
2
|
Antoniadi M, Vitoratou DI, Marinou M, Fafoula O, Mylona F, Palaiologou D, Leandros L, Kostaridou S. Novel sonic hedgehog gene variant in a patient with hyponatremia, microsomia, and midline defects; phenotype description in association with a variant of unknown significance [c.755_757del p.(Phe252del)] and an approach to salt-wasting in SHH-related adrenal disorders. J Pediatr Endocrinol Metab 2023:jpem-2023-0015. [PMID: 37184081 DOI: 10.1515/jpem-2023-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To contribute a novel sonic hedgehog (SHH) gene variant in association with a novel-meagerly described phenotype and discuss SHH signaling pathway pathology. CASE PRESENTATION We present a 5-year-old boy with excessive hyponatremia and natriuresis, microform holoprosencephaly and microsomia, with morphologically intact hypothalamic-pituitary-adrenal (HPA) axis, and hypoaldosteronism, yet without hyperreninemia, hyperkalemia, dehydration episodes, or glucocorticoid insufficiency. Extensive workup excluded common causes of salt-wasting and revealed a novel variant of unknown significance on the sonic hedgehog (SHH) gene; NM_000193.4:c.755_757del (p.Phe252del), in heterozygosity. CONCLUSIONS Salt-wasting in children is predominantly caused by central nervous system lesions, renal tubular dysfunction, or adrenal insufficiency. The SHH protein is a signaling molecule, essential in embryogenesis-including HPA axis differentiation. Inactivating SHH variants disrupt the signaling pathway, leading to dysplasia or dysfunction of target organs. What's new: • We analyze the patient's phenotype in the light of this novel variant • Patient's isolated aldosterone deficiency possibly implies a selective signaling defect affecting the development of adrenal zona glomerulosa • Unexplained hyporeninemia and hypokalemia in the context of hypoaldosteronism raise questions on SHH signaling pathophysiology.
Collapse
Affiliation(s)
- Marita Antoniadi
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | | | - Maria Marinou
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Olga Fafoula
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Fani Mylona
- Pediatric Department, Penteli Children's Hospital, Athens, Greece
| | - Danai Palaiologou
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | - Lazaros Leandros
- Genesis Genoma Lab, Genetic Diagnosis, Clinical Genetics & Research, Athens, Greece
| | | |
Collapse
|
3
|
Nessler J, Wunderlich C, Eikelberg D, Beineke A, Raue J, Runge M, Tipold A, Ganter M, Rehage J. Holoprosencephalia, hypoplasia of corpus callosum and cerebral heterotopia in a male belted Galloway heifer with adipsia. BMC Vet Res 2022; 18:51. [PMID: 35057802 PMCID: PMC8772152 DOI: 10.1186/s12917-022-03152-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/10/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Specialized neurons in the diencephalon detect blood hypernatremia in dehydrated animals. These neurons are connected with the pituitary gland, subsequently producing antidiuretic hormone to reabsorb water from urine in the kidneys, and to the forebrain to generate thirst and trigger drinking behavior. CASE PRESENTATION This is the first case report describing clinical findings, magnetic resonance imaging (MRI) and necropsy results of a Belted Galloway heifer with severe clinical signs of dehydration and hypernatremia, but concurrent adipsia and isosthenuria. Due to insufficient recovery with symptomatic treatment, owners elected euthanasia. Postmortem MRI and necropsy revealed a complex forebrain malformation: mild abnormal gyrification of the forebrain cortex, lobar holoprosencephaly, and corpus callosum hypoplasia. The affected brain structures are well known to be involved in osmoregulation and generation of thirst in dogs, humans and rodents. CONCLUSIONS Complex forebrain malformation can be involved in the pathogenesis of hypernatremia and adipsia in bovines.
Collapse
Affiliation(s)
- Jasmin Nessler
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany.
| | - Christian Wunderlich
- Clinic for Cattle, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Deborah Eikelberg
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Andreas Beineke
- Institute for Pathology, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hannover, Germany
| | - Jonathan Raue
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany
| | - Martin Runge
- Lower Saxony State Office for Consumer Protection and Food Safety Food and Veterinary Institute Braunschweig/Hannover, Eintrachtweg 17, 30173, Hannover, Germany
| | - Andrea Tipold
- Department for Small Animal Internal Medicine and Surgery, University of Veterinary Medicine Hannover, Foundation, Buenteweg 9, 30559, Hannover, Germany
| | - Martin Ganter
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Jürgen Rehage
- Clinic for Cattle, University of Veterinary Medicine Vienna (Vetmeduni Vienna), Veterinaerplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
4
|
Nota A, Ehsani S, Pittari L, Gastaldi G, Tecco S. Rare case of skeletal third class in a subject suffering from Solitary Median Maxillary Central Incisor syndrome (SMMCI) associated to panhypopituitarism. Head Face Med 2021; 17:49. [PMID: 34814931 PMCID: PMC8609825 DOI: 10.1186/s13005-021-00300-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background The median solitary maxillary central incisor syndrome (SMMCI) is a rare malformative syndrome consisting of multiple defects, mainly found on the body midline. It can be correlated to the etiopathological and phenotypic pattern of panhypopituitarism. This case-report describes the rare case of a patient suffering from SMMCI and panhypopituitarism, showing an unusual craniofacial morphology. Case presentation From the cephalometric analysis, a skeletal class III was identified (despite the other cases described in literature described as skeletal class II), derived from hypomaxillia and mandibular protrusion. A convex lip profile, with tendency to mandibular hyper-divergency, airway patency, anterior and posterior cross-bite were observed. At the clinical examination, a maxillary cant was evident on the frontal plane that appeared asymmetric, with the prevalence of the third lower part of the face. There were some dysmorphic signs such as: small nose, rectilinear eyelid line and reduced interocular distance. Conclusions The present clinical case shows how, despite the literature, SMMCI can be associated with a III skeletal class, with maxillary hypoplasia and mandibular protrusion. The interdisciplinary collaboration between dentist and pediatrician is therefore important for the early interception of the malocclusions associated with these syndromes.
Collapse
Affiliation(s)
- Alessandro Nota
- Dental School and Postgraduate School of Orthodontics, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, via Olgettina 58, Milan, Italy
| | - Shideh Ehsani
- Dental School and Postgraduate School of Orthodontics, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, via Olgettina 58, Milan, Italy
| | - Laura Pittari
- Dental School and Postgraduate School of Orthodontics, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, via Olgettina 58, Milan, Italy.
| | - Giorgio Gastaldi
- Dental School and Postgraduate School of Orthodontics, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, via Olgettina 58, Milan, Italy
| | - Simona Tecco
- Dental School and Postgraduate School of Orthodontics, Vita-Salute San Raffaele University and IRCCS San Raffaele Hospital, via Olgettina 58, Milan, Italy
| |
Collapse
|
5
|
Yi X, Yuan X, Xie H, Chen X, Zhu Y. A familial Sonic Hedgehog (SHH) stop-gain mutation associated with agenesis of the corpus callosum, mild intellectual disability and facial dysmorphism. Brain Dev 2020; 42:771-774. [PMID: 32703609 DOI: 10.1016/j.braindev.2020.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND Agenesis of the corpus callosum (ACC) is a relatively common brain malformation in children with developmental disabilities, caused by mutations in many genes. These genetic causes are characterized by their extreme heterogeneity with more than 300 causative genes identified to date. CASE REPORT We describe two new cases from a three-generation family with ACC and a de novo mutation of the sonic hedgehog (SHH) gene. The affected family members had mild intellectual disability, broad forehead, and widely spaced eyes. A next-generation sequencing (NGS) approach revealed a stop-gain mutation (NM_000193.2:c.1300_1301insA p.Trp434Ter) of the SHH gene; it is the first family to report ACC associated with a single SHH gene mutation. CONCLUSION ACC with mild intellectual disability and facial dysmorphism may be caused by a mutation in SHH, but further research investigating the genotype-phenotype correlation of SHH mutations is required.
Collapse
Affiliation(s)
- Xiaoli Yi
- Department of Radiology, Capital Institute of Pediatrics, Beijing 100020 PR China
| | - Xinyu Yuan
- Department of Radiology, Capital Institute of Pediatrics, Beijing 100020 PR China
| | - Hua Xie
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020 PR China
| | - Xiaoli Chen
- Department of Medical Genetics, Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020 PR China
| | - Yanli Zhu
- Department of Neurology, Capital Institute of Pediatrics, Beijing 100020 PR China.
| |
Collapse
|
6
|
Hong S, Hu P, Jang JH, Carrington B, Sood R, Berger SI, Roessler E, Muenke M. Functional analysis of Sonic Hedgehog variants associated with holoprosencephaly in humans using a CRISPR/Cas9 zebrafish model. Hum Mutat 2020; 41:2155-2166. [PMID: 32939873 DOI: 10.1002/humu.24119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/17/2020] [Accepted: 09/12/2020] [Indexed: 01/20/2023]
Abstract
Genetic variation in the highly conserved Sonic Hedgehog (SHH) gene is one of the most common genetic causes for the malformations of the brain and face in humans described as the holoprosencephaly clinical spectrum. However, only a minor fraction of known SHH variants have been experimentally proven to lead to abnormal function. Employing a phenotypic rescue assay with synthetic human messenger RNA variant constructs in shha-/- knockout zebrafish, we evaluated 104 clinically reported in-frame and missense SHH variants. Our data helped us to classify them into loss of function variants (31), hypomorphic variants (33), and nonpathogenic variants (40). We discuss the strengths and weaknesses of currently accepted predictors of variant deleteriousness and the American College of Medical Genetics and Genomics guidelines for variant interpretation in the context of this functional model; furthermore, we demonstrate the robustness of model systems such as zebrafish as a rapid method to resolve variants of uncertain significance.
Collapse
Affiliation(s)
- Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jae Hee Jang
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, Maryland, USA
| | - Blake Carrington
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Raman Sood
- Zebrafish Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Seth I Berger
- Children's National Hospital, Center for Genetic Medicine Research and Rare Disease Institute, Washington DC, USA
| | - Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.,American College of Medical Genetics and Genomics, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Li X, Li Y, Li S, Li H, Yang C, Lin J. The role of Shh signalling pathway in central nervous system development and related diseases. Cell Biochem Funct 2020; 39:180-189. [PMID: 32840890 DOI: 10.1002/cbf.3582] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/07/2020] [Accepted: 08/01/2020] [Indexed: 12/15/2022]
Abstract
Sonic hedgehog (Shh) plays important roles in developmental of vertebrate animal central nervous system (CNS), and Gli is its downstream signal molecule. Shh signalling is essential for pattern formation, cell-fate specification, axon guidance, proliferation, survival and differentiation of neurons in CNS development. The abnormal signalling pathway of Shh leads to the occurrence of many nervous system diseases. The mechanism of Shh signalling is complex and remains incompletely understood. Nevertheless, studies have revealed that Shh signalling pathway is classified into canonical and non-canonical pathways. Here we review the role of the Shh signalling pathway and its impact in CNS development and related diseases. Specifically, we discuss the role of Shh in the spinal cord and brain development, cell differentiation and proliferation in CNS and related diseases such as brain tumour, Parkinson's diseases, epilepsy, autism, depression and traumatic brain injury. We also highlight future directions of research that could help to clarify the mechanisms and consequences of Shh signalling in the process of CNS development and related diseases. SIGNIFICANCE OF THE STUDY: This review summarized the role of Shh signalling pathway in CNS development and related diseases such as brain tumour, Parkinson's diseases, epilepsy, autism, depression and traumatic brain injury. It also presented the author's opinions on the future research direction of Shh signalling pathway.
Collapse
Affiliation(s)
- Xiaoying Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Yunxiao Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Shuanqing Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
| | - Han Li
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Ciqing Yang
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Juntang Lin
- Stem Cells & Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang, China.,Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Xiong J, Xiang B, Chen X, Cai T. Case report: a novel mutation in ZIC2 in an infant with microcephaly, holoprosencephaly, and arachnoid cyst. Medicine (Baltimore) 2019; 98:e14780. [PMID: 30855487 PMCID: PMC6417543 DOI: 10.1097/md.0000000000014780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Holoprosencephaly (HPE) is a severe congenital brain malformation resulting from failed or incomplete forebrain division in early pregnancy. PATIENT CONCERNS In this study, we reported a 9-month old infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst. DIAGNOSES Potential genetic defects were screened directly using trio-case whole exome sequencing (WES) rather than traditional karyotype, microarray, and Sanger sequencing of select genes. OUTCOMES A previous unpublished de novo missense mutation (c.1069C >G, p.H357D) in the 3rd zinc finger domain (ZFD3) of the ZIC2 gene was identified in the affected individual, but not in the parents. Sanger sequencing using specific primers verified the mutation. Extensive bioinformatics analysis confirmed the pathogenicity of this extremely rare mutation. Phenotype-genotype analysis revealed significant correlation between the 3rd zinc-finger domain with semilobor HPE. LESSONS These findings expanded the spectrum of the ZIC2 gene mutations and associated clinical manifestations, which is the first identification of a mutated ZIC2 gene in a Han infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst.
Collapse
Affiliation(s)
- Jianjun Xiong
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Bingwu Xiang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
9
|
Del Giovane A, Ragnini-Wilson A. Targeting Smoothened as a New Frontier in the Functional Recovery of Central Nervous System Demyelinating Pathologies. Int J Mol Sci 2018; 19:E3677. [PMID: 30463396 PMCID: PMC6274747 DOI: 10.3390/ijms19113677] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/09/2018] [Accepted: 11/14/2018] [Indexed: 12/20/2022] Open
Abstract
Myelin sheaths on vertebrate axons provide protection, vital support and increase the speed of neuronal signals. Myelin degeneration can be caused by viral, autoimmune or genetic diseases. Remyelination is a natural process that restores the myelin sheath and, consequently, neuronal function after a demyelination event, preventing neurodegeneration and thereby neuron functional loss. Pharmacological approaches to remyelination represent a promising new frontier in the therapy of human demyelination pathologies and might provide novel tools to improve adaptive myelination in aged individuals. Recent phenotypical screens have identified agonists of the atypical G protein-coupled receptor Smoothened and inhibitors of the glioma-associated oncogene 1 as being amongst the most potent stimulators of oligodendrocyte precursor cell (OPC) differentiation in vitro and remyelination in the central nervous system (CNS) of mice. Here, we discuss the current state-of-the-art of studies on the role of Sonic Hedgehog reactivation during remyelination, referring readers to other reviews for the role of Hedgehog signaling in cancer and stem cell maintenance.
Collapse
Affiliation(s)
- Alice Del Giovane
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| | - Antonella Ragnini-Wilson
- Department of Biology University of Rome Tor Vergata, Viale Della Ricerca Scientifica, 00133 Rome, Italy.
| |
Collapse
|
10
|
Staal YC, Pennings JL, Hessel EV, Piersma AH. Advanced Toxicological Risk Assessment by Implementation of Ontologies Operationalized in Computational Models. ACTA ACUST UNITED AC 2017. [DOI: 10.1089/aivt.2017.0019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yvonne C.M. Staal
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L.A. Pennings
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ellen V.S. Hessel
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Aldert H. Piersma
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
11
|
Savastano CP, El-Jaick KB, Costa-Lima MA, Abath CMB, Bianca S, Cavalcanti DP, Félix TM, Scarano G, Llerena JC, Vargas FR, Moreira MÂM, Seuánez HN, Castilla EE, Orioli IM. Molecular analysis of holoprosencephaly in South America. Genet Mol Biol 2014; 37:250-62. [PMID: 24764759 PMCID: PMC3983586 DOI: 10.1590/s1415-47572014000200011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Holoprosencephaly (HPE) is a spectrum of brain and facial malformations primarily reflecting genetic factors, such as chromosomal abnormalities and gene mutations. Here, we present a clinical and molecular analysis of 195 probands with HPE or microforms; approximately 72% of the patients were derived from the Latin American Collaborative Study of Congenital Malformations (ECLAMC), and 82% of the patients were newborns. Alobar HPE was the predominant brain defect in almost all facial defect categories, except for patients without oral cleft and median or lateral oral clefts. Ethmocephaly, cebocephaly, and premaxillary agenesis were primarily observed among female patients. Premaxillary agenesis occurred in six of the nine diabetic mothers. Recurrence of HPE or microform was approximately 19%. The frequency of microdeletions, detected using Multiplex Ligation-dependant Probe Amplification (MLPA) was 17% in patients with a normal karyotype. Cytogenetics or QF-PCR analyses revealed chromosomal anomalies in 27% of the probands. Mutational analyses in genes SHH, ZIC2, SIX3 and TGIF were performed in 119 patients, revealing eight mutations in SHH, two mutations in SIX3 and two mutations in ZIC2. Thus, a detailed clinical description of new HPE cases with identified genetic anomalies might establish genotypic and phenotypic correlations and contribute to the development of additional strategies for the analysis of new cases.
Collapse
Affiliation(s)
- Clarice Pagani Savastano
- Estudo Colaborativo Latino Americano de Malformações Congênitas, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil . ; Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, RJ, Brazil
| | - Kênia Balbi El-Jaick
- Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | - Sebastiano Bianca
- Centro di Consulenza Genetica e di Teratologia della Riproduzione, Dipartimento Materno Infantile, ARNAS Garibaldi Nesima, Catania, CT, Italy
| | | | - Têmis Maria Félix
- Serviço de Genética Médica, Hospital das Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Gioacchino Scarano
- Registro Campano Difetti Congeniti, Azienda Ospedaliera "Gaetano Rummo", Benevento, BN, Italy
| | - Juan Clinton Llerena
- Centro de Genética Médica, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Fernando Regla Vargas
- Departamento de Genética e Biologia Molecular, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil . ; Estudo Colaborativo Latino Americano de Malformações Congênitas, Laboratório de Epidemiologia de Defeitos Congênitos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | - Hector N Seuánez
- Programa de Genética, Instituto Nacional de Câncer, Rio de Janeiro, RJ, Brazil
| | - Eduardo Enrique Castilla
- Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, RJ, Brazil . ; Estudio Colaborativo Latino Americano de Malformaciones Congenitas, Centro de Educación Médica e Investigación Clínica, Buenos Aires, Argentina
| | - Iêda Maria Orioli
- Estudo Colaborativo Latino Americano de Malformações Congênitas, Departamento de Genética, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil . ; Instituto Nacional de Genética Médica Populacional, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
12
|
Tatsi C, Sertedaki A, Voutetakis A, Valavani E, Magiakou MA, Kanaka-Gantenbein C, Chrousos GP, Dacou-Voutetakis C. Pituitary stalk interruption syndrome and isolated pituitary hypoplasia may be caused by mutations in holoprosencephaly-related genes. J Clin Endocrinol Metab 2013; 98:E779-84. [PMID: 23476075 DOI: 10.1210/jc.2012-3982] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
CONTEXT Holoprosencephaly (HPE) is a developmental defect characterized by wide phenotypic variability, ranging from minor midline malformations (eg, single central incisor) to severe deformities. In 10-15% of HPE patients, mutations in specific genes have been identified (eg, SHH, TGIF, SIX3). Pituitary stalk interruption syndrome (PSIS) constitutes a distinct abnormality of unknown pathogenesis, whereas isolated pituitary hypoplasia (IPH) has been linked to various developmental genes. OBJECTIVE Three of our patients with PSIS had a single central incisor, a malformation encountered in some HPE cases. Based on this observation, we initiated a search for mutations in HPE-associated genes in 30 patients with PSIS or IPH. DESIGN AND PARTICIPANTS The entire coding region of the TGIF, SHH, and SIX3 genes was sequenced in patients with combined pituitary hormone deficiency associated with either PSIS or IPH and in healthy controls. RESULTS Two novel mutations in the HPE-related genes were detected (ie, c.799 C>T, p.Q267X in the TGIF gene, and c.1279G>A, p.G427R in the SHH gene) in 2 of our patients. The overall incidence of HPE-related gene mutations in our nonsyndromic and nonchromosomal patients was 6.6%. No molecular defect in the SIX3 gene was detected in our cohort. CONCLUSIONS The data suggest that HPE-related gene mutations are implicated in the etiology of isolated pituitary defects (PSIS or IPH). Alternatively, PSIS or IPH may constitute mild forms of an expanded HPE spectrum.
Collapse
Affiliation(s)
- Christina Tatsi
- Division of Endocrinology, Metabolism, and Diabetes, First Department of Pediatrics, Athens University Medical School, 11527 Athens, Greece
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Bibliography. Genetics. Current world literature. Curr Opin Pediatr 2010; 22:833-5. [PMID: 21610333 DOI: 10.1097/mop.0b013e32834179f9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Greene RM, Pisano MM. Palate morphogenesis: current understanding and future directions. ACTA ACUST UNITED AC 2010; 90:133-54. [PMID: 20544696 DOI: 10.1002/bdrc.20180] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past, most scientists conducted their inquiries of nature via inductivism, the patient accumulation of "pieces of information" in the pious hope that the sum of the parts would clarify the whole. Increasingly, modern biology employs the tools of bioinformatics and systems biology in attempts to reveal the "big picture." Most successful laboratories engaged in the pursuit of the secrets of embryonic development, particularly those whose research focus is craniofacial development, pursue a middle road where research efforts embrace, rather than abandon, what some have called the "pedestrian" qualities of inductivism, while increasingly employing modern data mining technologies. The secondary palate has provided an excellent paradigm that has enabled examination of a wide variety of developmental processes. Examination of cellular signal transduction, as it directs embryogenesis, has proven exceptionally revealing with regard to clarification of the "facts" of palatal ontogeny-at least the facts as we currently understand them. Herein, we review the most basic fundamentals of orofacial embryology and discuss how functioning of TGFbeta, BMP, Shh, and Wnt signal transduction pathways contributes to palatal morphogenesis. Our current understanding of palate medial edge epithelial differentiation is also examined. We conclude with a discussion of how the rapidly expanding field of epigenetics, particularly regulation of gene expression by miRNAs and DNA methylation, is critical to control of cell and tissue differentiation, and how examination of these epigenetic processes has already begun to provide a better understanding of, and greater appreciation for, the complexities of palatal morphogenesis.
Collapse
Affiliation(s)
- Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Birth Defects Center, ULSD, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
15
|
Paulussen ADC, Schrander-Stumpel CT, Tserpelis DCJ, Spee MKM, Stegmann APA, Mancini GM, Brooks AS, Collée M, Maat-Kievit A, Simon MEH, van Bever Y, Stolte-Dijkstra I, Kerstjens-Frederikse WS, Herkert JC, van Essen AJ, Lichtenbelt KD, van Haeringen A, Kwee ML, Lachmeijer AMA, Tan-Sindhunata GMB, van Maarle MC, Arens YHJM, Smeets EEJGL, de Die-Smulders CE, Engelen JJM, Smeets HJ, Herbergs J. The unfolding clinical spectrum of holoprosencephaly due to mutations in SHH, ZIC2, SIX3 and TGIF genes. Eur J Hum Genet 2010; 18:999-1005. [PMID: 20531442 PMCID: PMC2987413 DOI: 10.1038/ejhg.2010.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/23/2010] [Accepted: 03/25/2010] [Indexed: 11/09/2022] Open
Abstract
Holoprosencephaly is a severe malformation of the brain characterized by abnormal formation and separation of the developing central nervous system. The prevalence is 1:250 during early embryogenesis, the live-born prevalence is 1:16 000. The etiology of HPE is extremely heterogeneous and can be teratogenic or genetic. We screened four known HPE genes in a Dutch cohort of 86 non-syndromic HPE index cases, including 53 family members. We detected 21 mutations (24.4%), 3 in SHH, 9 in ZIC2 and 9 in SIX3. Eight mutations involved amino-acid substitutions, 7 ins/del mutations, 1 frame-shift, 3 identical poly-alanine tract expansions and 2 gene deletions. Pathogenicity of mutations was presumed based on de novo character, predicted non-functionality of mutated proteins, segregation of mutations with affected family-members or combinations of these features. Two mutations were reported previously. SNP array confirmed detected deletions; one spanning the ZIC2/ZIC5 genes (approx. 100 kb) the other a 1.45 Mb deletion including SIX2/SIX3 genes. The mutation percentage (24%) is comparable with previous reports, but we detected significantly less mutations in SHH: 3.5 vs 10.7% (P=0.043) and significantly more in SIX3: 10.5 vs 4.3% (P=0.018). For TGIF1 and ZIC2 mutation the rate was in conformity with earlier reports. About half of the mutations were de novo, one was a germ line mosaic. The familial mutations displayed extensive heterogeneity in clinical manifestation. Of seven familial index patients only two parental carriers showed minor HPE signs, five were completely asymptomatic. Therefore, each novel mutation should be considered as a risk factor for clinically manifest HPE, with the caveat of reduced clinical penetrance.
Collapse
Affiliation(s)
- Aimée D C Paulussen
- Department of Clinical Genetics, School for Oncology & Developmental Biology (GROW), Maastricht UMC, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|