1
|
Mastrangelo M, Manti F, Ricciardi G, Cinnante EMC, Cameli N, Beatrice A, Tolve M, Pisani F. The diagnostic and prognostic role of cerebrospinal fluid biomarkers in glucose transporter 1 deficiency: a systematic review. Eur J Pediatr 2024; 183:3665-3678. [PMID: 38954008 PMCID: PMC11322378 DOI: 10.1007/s00431-024-05657-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
The purpose of this study is to investigate the diagnostic and prognostic role of cerebrospinal fluid (CSF) biomarkers in the diagnostic work-up of glucose transporter 1 (GLUT1) deficiency. Reported here is a systematic review according to PRISMA guidelines collecting clinical and biochemical data about all published patients who underwent CSF analysis. Clinical phenotypes were compared between groups defined by the levels of CSF glucose (≤ 2.2 mmol/L versus > 2.2 mmol/L), CSF/blood glucose ratio (≤ 0.45 versus > 0.45), and CSF lactate (≤ 1 mmol/L versus > 1 mmol/L). Five hundred sixty-two patients fulfilled the inclusion criteria with a mean age at the diagnosis of 8.6 ± 6.7 years. Patients with CSF glucose ≤ 2.2 mmol/L and CSF/blood glucose ratio ≤ 0.45 presented with an earlier onset of symptoms (16.4 ± 22.0 versus 54.4 ± 45.9 months, p < 0.01; 15.7 ± 23.8 versus 40.9 ± 38.0 months, p < 0.01) and received an earlier molecular genetic confirmation (92.1 ± 72.8 versus 157.1 ± 106.2 months, p < 0.01). CSF glucose ≤ 2.2 mmol/L was consistently associated with response to ketogenic diet (p = 0.018) and antiseizure medications (p = 0.025). CSF/blood glucose ratio ≤ 0.45 was significantly associated with absence seizures (p = 0.048), paroxysmal exercise-induced dyskinesia (p = 0.046), and intellectual disability (p = 0.016) while CSF lactate > 1 mmol/L was associated with a response to antiseizure medications (p = 0.026) but not to ketogenic diet.Conclusions:This systematic review supported the diagnostic usefulness of lumbar puncture for the early identification of patients with GLUT1 deficiency responsive to treatments especially if they present with co-occurring epilepsy, movement, and neurodevelopmental disorders. What is Known: • Phenotypes of GLUT1 deficiency syndrome range between early epileptic and developmental encephalopathy to paroxysmal movement disorders and developmental impairment What is New: • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with early onset absences • CSF blood/glucose ratio may predict better than CSF glucose the diagnosis in children presenting with paroxysmal exercise induced dyskinesia and intellectual disability. • CSF glucose may predict better than CSF blood/glucose and lactate the response to ketogenic diet and antiseizure medications.
Collapse
Affiliation(s)
- Mario Mastrangelo
- Woman/Child Health and Urological Sciences Department, Sapienza University of Rome, Via dei Sabelli 108, 00185, Rome, Italy.
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy.
| | - Filippo Manti
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | - Noemi Cameli
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Manuela Tolve
- Clinical Pathology Unit, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Francesco Pisani
- Unit of Child Neurology and Psychiatry, Department of Neuroscience/Mental Health, Azienda Ospedaliero Universitaria Policlinico Umberto, Rome, Italy
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Zovi A, Cifani C, Confalonieri C, Lasala R, Sabbatucci M, Vitiello A, Vittori S. Dietary management and access to treatment for patients with glucose deficiency syndrome type 1: an overview review with focus on the European regulatory framework. Eur J Clin Nutr 2024:10.1038/s41430-024-01490-0. [PMID: 39127841 DOI: 10.1038/s41430-024-01490-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Glut-1 deficiency Syndrome (GLUT-1 DS) is a rare disease caused by a mutation in the SLC2A1 gene that codes for the glucose transporter protein GLUT-1 DS. Currently, there is no indicated drug therapy for this condition and ketogenic diet (KD) is the most effective remedy to treat it. OBJECTIVE The objective of this study was to review the published literature that evaluated the effectiveness of KD in the dietary management of GLUT-1 DS syndrome, describing the state-of-the-art the treatment pathway for patients with GLUT-1 DS syndrome in light of the current European regulatory framework within the National Health Services. METHODS The literature search was carried out on September 10, 2023, and all studies conducted in humans diagnosed with GLUT-1 deficiency syndrome and treated with KD were included. RESULTS A total of 156 scientific papers have been extracted. Applying the exclusion criteria, 38 articles have been considered eligible. In 29 out of 38 studies, the main outcome for determining the efficacy of KD was the measurement of the number of epileptic seizures, demonstrating that patients treated with KD experienced improvements with a clear reduction in the number of epileptic attacks. Currently, in the European Union, only one country provides full reimbursement by the national health system for KD. DISCUSSION Although they are crucial for the treatment of GLUT-1 DS, according with current food regulations, KD are not evaluated on the basis of an unambiguous efficacy result, but only on the basis of safety. As a result, it is desirable to carry out clinical studies in the coming years based on the determination of efficacy in target populations, also in view of the marketing of these products on the European market.
Collapse
Affiliation(s)
- Andrea Zovi
- Department of Human Health, Animal Health and Ecosystem (One Health) and International Relations, Ministry of Health, Rome, Italy.
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Carlo Cifani
- School of Pharmacy, University of Camerino, Camerino, Italy
| | | | - Ruggero Lasala
- Hospital Pharmacy of Corato, Local Health Authority of Bari, Corato, Italy
| | - Michela Sabbatucci
- Department Infectious Diseases, Italian National Institute of Health, Rome, Italy
| | - Antonio Vitiello
- Department of Prevention, Research and Health Emergencies, Ministry of Health, Rome, Italy
| | - Sauro Vittori
- School of Pharmacy, University of Camerino, Camerino, Italy
| |
Collapse
|
3
|
Hu Q, Shen Y, Su T, Liu Y, Xu S. Clinical and Genetic Characteristics of Chinese Children With GLUT1 Deficiency Syndrome: Case Report and Literature Review. Front Genet 2021; 12:734481. [PMID: 34880899 PMCID: PMC8645975 DOI: 10.3389/fgene.2021.734481] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022] Open
Abstract
Objective: GLUT1 deficiency syndrome (GLUT1-DS) is a rare, treatable neurometabolic disorder. However, its diagnosis may be challenging due to the various and evolving phenotypes. Here we report the first Chinese familial cases with genetically confirmed GLUT1-DS and analyze the characteristics of Chinese children with GLUT1-DS from clinical, laboratory, and genetic aspects. Methods: We reported a Chinese family with three members affected with GLUT1-DS and searched for relevant articles up to September 2020 from PubMed, WOS, CNKI, and WanFang databases. A total of 30 Chinese patients diagnosed with GLUT1-DS (three newly identified patients in one family and 27 previously reported ones) were included and analyzed in this study. Results: The median age of onset of the 30 patients (male: 18, female: 12) was 8.5 months (range, 33 days to 10 years). Epileptic seizures were found in 25 patients, most with generalized tonic–clonic and focal ones. Movement disorders were found in 20 patients—frequently with ataxia and dystonia, developmental delay in 25 patients, and microcephaly only in six patients. The cerebrospinal fluid (CSF) analysis showed decreased CSF glucose (median: 1.63 mmol/L, range: 1.1–2.6 mmol/L) and glucose ratio of CSF to blood (median: 0.340; range: 0.215–0.484). The genetic testing performed in 28 patients revealed 27 cases with pathogenic variations of the SLC2A1 gene, including 10 missense, nine frameshift, three nonsense, three large fragment deletions, and two splice-site mutations. Most patients had a good response to the treatment of ketogenic diet or regular diet with increased frequency. Although three patients in this Chinese family carried the same pathogenic mutation c.73C > T (p.Q25X) in the SLC2A1 gene, their symptoms and responses to treatment were not exactly the same. Conclusion: The clinical manifestations of GLUT1-DS are heterogeneous, even among family members sharing the same mutation. For children with unexplained epileptic seizures, developmental delay, and complex movement disorders, detection of low CSF glucose or SLC2A1 gene mutations is helpful for the diagnosis of GLUT1-DS. Early initiation of ketogenic diet treatment significantly improves the symptoms and prognosis of GLUT1-DS.
Collapse
Affiliation(s)
- Qingqing Hu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pediatrics, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuechi Shen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tangfeng Su
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sanqing Xu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, Xiromerisiou G, Stamelou M, Walker M, Kullmann D, Warner T, Jarman P, Hanna M, Kurian MA, Bhatia KP, Houlden H. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain 2015; 138:3567-80. [PMID: 26598494 PMCID: PMC4655345 DOI: 10.1093/brain/awv310] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/21/2022] Open
Abstract
The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms. Paroxysmal dyskinesia can be subdivided into three clinical syndromes: paroxysmal kinesigenic dyskinesia or choreoathetosis, paroxysmal exercise-induced dyskinesia, and paroxysmal non-kinesigenic dyskinesia. Each subtype is associated with the known causative genes PRRT2, SLC2A1 and PNKD, respectively. Although separate screening studies have been carried out on each of the paroxysmal dyskinesia genes, to date there has been no large study across all genes in these disorders and little is known about the pathogenic mechanisms. We analysed all three genes (the whole coding regions of SLC2A1 and PRRT2 and exons one and two of PNKD) in a series of 145 families with paroxysmal dyskinesias as well as in a series of 53 patients with familial episodic ataxia and hemiplegic migraine to investigate the mutation frequency and type and the genetic and phenotypic spectrum. We examined the mRNA expression in brain regions to investigate how selective vulnerability could help explain the phenotypes and analysed the effect of mutations on patient-derived mRNA. Mutations in the PRRT2, SLC2A1 and PNKD genes were identified in 72 families in the entire study. In patients with paroxysmal movement disorders 68 families had mutations (47%) out of 145 patients. PRRT2 mutations were identified in 35% of patients, SLC2A1 mutations in 10%, PNKD in 2%. Two PRRT2 mutations were in familial hemiplegic migraine or episodic ataxia, one SLC2A1 family had episodic ataxia and one PNKD family had familial hemiplegic migraine alone. Several previously unreported mutations were identified. The phenotypes associated with PRRT2 mutations included a high frequency of migraine and hemiplegic migraine. SLC2A1 mutations were associated with variable phenotypes including paroxysmal kinesigenic dyskinesia, paroxysmal non-kinesigenic dyskinesia, episodic ataxia and myotonia and we identified a novel PNKD gene deletion in familial hemiplegic migraine. We found that some PRRT2 loss-of-function mutations cause nonsense mediated decay, except when in the last exon, whereas missense mutations do not affect mRNA. In the PNKD family with a novel deletion, mRNA was truncated losing the C-terminus of PNKD-L and still likely loss-of-function, leading to a reduction of the inhibition of exocytosis, and similar to PRRT2, an increase in vesicle release. This study highlights the frequency, novel mutations and clinical and molecular spectrum of PRRT2, SLC2A1 and PNKD mutations as well as the phenotype–genotype overlap among these paroxysmal movement disorders. The investigation of paroxysmal movement disorders should always include the analysis of all three genes, but around half of our paroxysmal series remain genetically undefined implying that additional genes are yet to be identified. The contributions of different genes to inherited paroxysmal movement disorders are incompletely understood. Gardiner et al. identify mutations in 47% of 145 individuals with paroxysmal dyskinesias, with PRRT2 mutations in 35%, SLC2A1 in 10% and PNKD in 2%. New mutations expand the associated phenotypes and implicate overlapping mechanisms.
Collapse
Affiliation(s)
- Alice R Gardiner
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Fatima Jaffer
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Russell C Dale
- 3 Paediatrics and Child Health, Children's Hospital, Westmead, University of Sydney, Australia
| | - Robyn Labrum
- 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Roberto Erro
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Esther Meyer
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK
| | - Georgia Xiromerisiou
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 7 Department of Neurology, Papageorgiou Hospital, Thessaloniki University of Athens, Greece
| | - Maria Stamelou
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 8 Department of Neurology University of Athens, Greece 9 Department of Neurology, Philipps University, Marburg, Germany
| | - Matthew Walker
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Dimitri Kullmann
- 10 Department of Experimental Epilepsy, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tom Warner
- 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Paul Jarman
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Mike Hanna
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Manju A Kurian
- 6 Developmental Neurosciences, UCL Institute of Child Health, London WC1N 3JH, UK 11 Department of Neurology, Great Ormond Street Hospital, London WC1N, UK
| | - Kailash P Bhatia
- 5 Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henry Houlden
- 1 MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 2 Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK 4 Neurogenetics Laboratory, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
5
|
Cunningham P, Naftalin RJ. Implications of aberrant temperature-sensitive glucose transport via the glucose transporter deficiency mutant (GLUT1DS) T295M for the alternate-access and fixed-site transport models. J Membr Biol 2013; 246:495-511. [PMID: 23740044 DOI: 10.1007/s00232-013-9564-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/15/2013] [Indexed: 12/27/2022]
Abstract
In silico glucose docking to the transporter GLUT1 templated to the crystal structure of Escherichia coli XylE, a bacterial homolog of GLUT1-4 (4GBZ.pdb), reveals multiple docking sites. One site in the external vestibule in the exofacial linker between TM7 and -8 is adjacent to a missense T295M and a 4-mer insertion mutation. Glucose docking to the adjacent site is occluded in these mutants. These mutants cause an atypical form of glucose transport deficiency syndrome (GLUT1DS), where transport into the brain is deficient, although unusually transport into erythrocytes at 4 °C appears normal. A model in which glucose traverses the transporter via a network of saturable fixed sites simulates the temperature sensitivity of normal and mutant glucose influx and the mutation-dependent alterations of influx and efflux asymmetry when expressed in Xenopus oocytes at 37 °C. The explanation for the temperature sensitivity is that at 4 °C glucose influx between the external and internal vestibules is slow and causes glucose to accumulate in the external vestibule. This retards net glucose uptake from the external solution via two parallel sites into the external vestibule, consequently masking any transport defect at either one of these sites. At 37 °C glucose transit between the external and internal vestibules is rapid, with no significant glucose buildup in the external vestibule, and thereby unmasks any transport defect at one of the parallel input sites. Monitoring glucose transport in patients' erythrocytes at higher temperatures may improve the diagnostic accuracy of the functional test of GLUT1DS.
Collapse
Affiliation(s)
- Philip Cunningham
- Bioinformatics Division, School of Medicine, King's College London, Franklin-Wilkins Building, Waterloo Campus, London SE1 9HN, UK
| | | |
Collapse
|
6
|
First report of glucose transporter 1 deficiency syndrome in Korea with a novel splice site mutation. Gene 2012; 506:380-2. [DOI: 10.1016/j.gene.2012.06.095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 06/19/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
|
7
|
Stomatin-deficient cryohydrocytosis results from mutations in SLC2A1: a novel form of GLUT1 deficiency syndrome. Blood 2011; 118:5267-77. [DOI: 10.1182/blood-2010-12-326645] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The hereditary stomatocytoses are a series of dominantly inherited hemolytic anemias in which the permeability of the erythrocyte membrane to monovalent cations is pathologically increased. The causative mutations for some forms of hereditary stomatocytosis have been found in the transporter protein genes, RHAG and SLC4A1. Glucose transporter 1 (glut1) deficiency syndromes (glut1DSs) result from mutations in SLC2A1, encoding glut1. Glut1 is the main glucose transporter in the mammalian blood-brain barrier, and glut1DSs are manifested by an array of neurologic symptoms. We have previously reported 2 cases of stomatin-deficient cryohydrocytosis (sdCHC), a rare form of stomatocytosis associated with a cold-induced cation leak, hemolytic anemia, and hepatosplenomegaly but also with cataracts, seizures, mental retardation, and movement disorder. We now show that sdCHC is associated with mutations in SLC2A1 that cause both loss of glucose transport and a cation leak, as shown by expression studies in Xenopus oocytes. On the basis of a 3-dimensional model of glut1, we propose potential mechanisms underlying the phenotypes of the 2 mutations found. We investigated the loss of stomatin during erythropoiesis and find this occurs during reticulocyte maturation and involves endocytosis. The molecular basis of the glut1DS, paroxysmal exercise-induced dyskinesia, and sdCHC phenotypes are compared and discussed.
Collapse
|