1
|
Zamanian A, Ahmidi N, Drton M. Assessable and interpretable sensitivity analysis in the pattern graph framework for nonignorable missingness mechanisms. Stat Med 2023; 42:5419-5450. [PMID: 37759370 DOI: 10.1002/sim.9920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
The pattern graph framework solves a wide range of missing data problems with nonignorable mechanisms. However, it faces two challenges of assessability and interpretability, particularly important in safety-critical problems such as clinical diagnosis: (i) How can one assess the validity of the framework's a priori assumption and make necessary adjustments to accommodate known information about the problem? (ii) How can one interpret the process of exponential tilting used for sensitivity analysis in the pattern graph framework and choose the tilt perturbations based on meaningful real-world quantities? In this paper, we introduce Informed Sensitivity Analysis, an extension of the pattern graph framework that enables us to incorporate substantive knowledge about the missingness mechanism into the pattern graph framework. Our extension allows us to examine the validity of assumptions underlying pattern graphs and interpret sensitivity analysis results in terms of realistic problem characteristics. We apply our method to a prevalent nonignorable missing data scenario in clinical research. We validate and compare our method's results of our method with a number of widely-used missing data methods, including Unweighted CCA, KNN Imputer, MICE, and MissForest. The validation is done using both boot-strapped simulated experiments as well as real-world clinical observations in the MIMIC-III public dataset.
Collapse
Affiliation(s)
- Alireza Zamanian
- TUM School of Computation, Information and Technology, Department of Computer Science, Technical University of Munich, Munich, Germany
- Department of Reasoned AI Decisions, Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany
| | - Narges Ahmidi
- Department of Reasoned AI Decisions, Fraunhofer Institute for Cognitive Systems IKS, Munich, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
| | - Mathias Drton
- TUM School of Computation, Information and Technology, Department of Mathematics, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Takashima S, Fujita H, Toyoshi K, Ohba A, Hirata Y, Shimozawa N, Oh-Hashi K. Hypomorphic mutation of PEX3 with peroxisomal mosaicism reveals the oscillating nature of peroxisome biogenesis coupled with differential metabolic activities. Mol Genet Metab 2022; 137:68-80. [PMID: 35932552 DOI: 10.1016/j.ymgme.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/18/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022]
Abstract
Impaired peroxisome assembly caused by mutations in PEX genes results in a human congenital metabolic disease called Zellweger spectrum disorder (ZSD), which impacts the development and physiological function of multiple organs. In this study, we revealed a long-standing problem of heterogeneous peroxisome distribution among cell population, so called "peroxisomal mosaicism", which appears in patients with mild form of ZSD. We mutated PEX3 gene in HEK293 cells and obtained a mutant clone with peroxisomal mosaicism. We found that peroxisomal mosaicism can be reproducibly arise from a single cell, even if the cell has many or no peroxisomes. Using time-lapse imaging and a long-term culture experiment, we revealed that peroxisome biogenesis oscillates over a span of days; this was also confirmed in the patient's fibroblasts. During the oscillation, the metabolic activity of peroxisomes was maintained in the cells with many peroxisomes while depleted in the cells without peroxisomes. Our results indicate that ZSD patients with peroxisomal mosaicism have a cell population whose number and metabolic activities of peroxisomes can be recovered. This finding opens the way to develop novel treatment strategy for ZSD patients with peroxisomal mosaicism, who currently have very limited treatment options.
Collapse
Affiliation(s)
- Shigeo Takashima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| | - Haruka Fujita
- Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Kayoko Toyoshi
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Akiko Ohba
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Yoko Hirata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan
| | - Nobuyuki Shimozawa
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan; Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan
| | - Kentaro Oh-Hashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan; Graduate School of Natural Science and Technology, Gifu University, Gifu, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
| |
Collapse
|
3
|
Shimozawa N, Takashima S, Kawai H, Kubota K, Sasai H, Orii K, Ogawa M, Ohnishi H. Advanced Diagnostic System and Introduction of Newborn Screening of Adrenoleukodystrophy and Peroxisomal Disorders in Japan. Int J Neonatal Screen 2021; 7:ijns7030058. [PMID: 34449525 PMCID: PMC8395936 DOI: 10.3390/ijns7030058] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 12/19/2022] Open
Abstract
We established a diagnostic system for adrenoleukodystrophy (ALD) and peroxisomal disorders (PD) over 35 years ago in Japan, and have diagnosed 237 families with ALD and more than 100 cases of PD other than ALD using biochemical and molecular analyses. In particular, since the only treatment for the cerebral form of ALD is hematopoietic stem cell transplantation at an early stage of onset, we have developed a protocol for the rapid diagnosis of ALD that can provide the measurements of the levels of very-long-chain fatty acids in the serum and genetic analysis within a few days. In addition, to improve the prognosis of patients with ALD, we are working on the detection of pre-symptomatic patients by familial analysis from the proband, and the introduction of newborn screening. In this review, we introduce the diagnostic and newborn screening approaches for ALD and PD in Japan.
Collapse
Affiliation(s)
- Nobuyuki Shimozawa
- Life Science Research Center, Division of Genomics Research, Gifu University, Gifu 501-1193, Japan; (S.T.); (H.K.)
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
- Clinical Genetics Center, Gifu University Hospital, Gifu 501-1194, Japan
- Correspondence: ; Tel.: +81-58-293-3170
| | - Shigeo Takashima
- Life Science Research Center, Division of Genomics Research, Gifu University, Gifu 501-1193, Japan; (S.T.); (H.K.)
| | - Hiroki Kawai
- Life Science Research Center, Division of Genomics Research, Gifu University, Gifu 501-1193, Japan; (S.T.); (H.K.)
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
| | - Kazuo Kubota
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
- Clinical Genetics Center, Gifu University Hospital, Gifu 501-1194, Japan
| | - Hideo Sasai
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
- Clinical Genetics Center, Gifu University Hospital, Gifu 501-1194, Japan
| | - Kenji Orii
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
| | - Megumi Ogawa
- Gifu Research Center for Public Health, Gifu 500-8148, Japan;
| | - Hidenori Ohnishi
- Department of Pediatrics, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan; (K.K.); (H.S.); (K.O.); (H.O.)
- Clinical Genetics Center, Gifu University Hospital, Gifu 501-1194, Japan
| |
Collapse
|
4
|
Wang D, Yu S, Zhang Y, Yin Y, Cheng Q, Xie S, Yu J, Li H, Cheng X, Qiu L. Rapid liquid chromatography-tandem mass spectrometry to determine very-long-chain fatty acids in human and to establish reference intervals for the Chinese population. Clin Chim Acta 2019; 495:185-190. [PMID: 30978326 DOI: 10.1016/j.cca.2019.04.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/16/2019] [Accepted: 04/08/2019] [Indexed: 12/30/2022]
Abstract
Very-long-chain fatty acids (VLCFAs), including hexacosanoic, tetracosanoic, and docosanoic acids, are peroxisomal disease markers, whose abnormal accumulation warrants prompt detection for timely, effective treatment. This study aimed to establish and validate a robust liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based method to simultaneously quantify VLCFAs and provide reference intervals among Chinese individuals, quantify VLCFAs in pregnancy, and explore potential associations between plasma and amniotic fluid. Analytes were extracted via water-bath incubation with HCl and liquid-liquid extraction. Method linearity, limit of detection/quantitation, precision, carryover, and recovery were evaluated according to Clinical and Laboratory Standard Institute (CLSI) guidelines. VLCFAs showed good reproducibility based on low within-run coefficient variations (CVs) and total CVs, and correlation coefficients of linearity were > 0.99. The reference interval of C22:0, C24:0, and C26:0 were 32.0-73.4 μmol/L, 30.3-72.0 μmol/L, and 0.20-0.71 μmol/L, respectively; C24:0/C22:0 and C26:0/C22:0 ratios were 0.75-1.28 and 0.005-0.0139, respectively. Plasma and amniotic fluid of the same pregnant women displayed no significant correlation in the second trimester. This study presents the simple, efficient, accurate, and robust LC-MS/MS method to simultaneously detect C22:0, C24:0, and C26:0 without derivatization; it can be used to establish reference intervals among Chinese individuals and has diagnostic and other clinical applications.
Collapse
Affiliation(s)
- Danchen Wang
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Songlin Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanyuan Zhang
- Shanghai AB Sciex Analytical Instrument Trading Co., Ltd., Beijing, China
| | - Yicong Yin
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Qian Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Shaowei Xie
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Jialei Yu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Honglei Li
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Xinqi Cheng
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
5
|
Takashima S, Saitsu H, Shimozawa N. Expanding the concept of peroxisomal diseases and efficient diagnostic system in Japan. J Hum Genet 2018; 64:145-152. [PMID: 30237433 DOI: 10.1038/s10038-018-0512-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 01/02/2023]
Abstract
The concept of peroxisomal diseases is expanding because of improvements in diagnostic technology based on advanced biochemical analysis and development of next-generation sequencing. For quicker and more accurate diagnosis of as many patients as possible, we developed a new diagnostic system combining the conventional diagnostic system and comprehensive mutational analysis by whole-exome sequencing in Japan. Adrenoleukodystrophy (ALD) is the most common peroxisomal disease. In the cerebral type of ALD, hematopoietic stem cell transplantation is the only treatment in the early stage, and thus prompt diagnosis will improve the prognosis of affected patients. Furthermore, it is also important to identify pre-symptomatic patients by family analysis of probands by providing appropriate disease information and genetic counseling, which will also lead to early intervention. Here, we summarize current information related to peroxisomal diseases and ALD and introduce our efficient diagnostic system for use in Japan, which resulted in the diagnosis of 73 Japanese patients with peroxisome biogenesis disorders, 16 with impaired β-oxidation of fatty acids, three with impaired etherphospholipid biosynthesis, and 191 Japanese families with ALD so far.
Collapse
Affiliation(s)
- Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan.
| |
Collapse
|
6
|
Chen XF, Tian MX, Sun RQ, Zhang ML, Zhou LS, Jin L, Chen LL, Zhou WJ, Duan KL, Chen YJ, Gao C, Cheng ZL, Wang F, Zhang JY, Sun YP, Yu HX, Zhao YZ, Yang Y, Liu WR, Shi YH, Xiong Y, Guan KL, Ye D. SIRT5 inhibits peroxisomal ACOX1 to prevent oxidative damage and is downregulated in liver cancer. EMBO Rep 2018; 19:embr.201745124. [PMID: 29491006 DOI: 10.15252/embr.201745124] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 12/15/2022] Open
Abstract
Peroxisomes account for ~35% of total H2O2 generation in mammalian tissues. Peroxisomal ACOX1 (acyl-CoA oxidase 1) is the first and rate-limiting enzyme in fatty acid β-oxidation and a major producer of H2O2 ACOX1 dysfunction is linked to peroxisomal disorders and hepatocarcinogenesis. Here, we show that the deacetylase sirtuin 5 (SIRT5) is present in peroxisomes and that ACOX1 is a physiological substrate of SIRT5. Mechanistically, SIRT5-mediated desuccinylation inhibits ACOX1 activity by suppressing its active dimer formation in both cultured cells and mouse livers. Deletion of SIRT5 increases H2O2 production and oxidative DNA damage, which can be alleviated by ACOX1 knockdown. We show that SIRT5 downregulation is associated with increased succinylation and activity of ACOX1 and oxidative DNA damage response in hepatocellular carcinoma (HCC). Our study reveals a novel role of SIRT5 in inhibiting peroxisome-induced oxidative stress, in liver protection, and in suppressing HCC development.
Collapse
Affiliation(s)
- Xiu-Fei Chen
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Meng-Xin Tian
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ren-Qiang Sun
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Meng-Li Zhang
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Li-Sha Zhou
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Lei Jin
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Wen-Jie Zhou
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Kun-Long Duan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Jia Chen
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chao Gao
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Zhou-Li Cheng
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Fang Wang
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jin-Ye Zhang
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yi-Ping Sun
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Hong-Xiu Yu
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu-Zheng Zhao
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Yi Yang
- School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wei-Ren Liu
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.,Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Shanghai, China
| | - Yue Xiong
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Lineberger Comprehensive Cancer Center, Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kun-Liang Guan
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China.,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Dan Ye
- Molecular and Cell Biology Lab, Institute of Biomedical Sciences, Shanghai Medical College, Shanghai, China .,Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Takashima S, Toyoshi K, Itoh T, Kajiwara N, Honda A, Ohba A, Takemoto S, Yoshida S, Shimozawa N. Detection of unusual very-long-chain fatty acid and ether lipid derivatives in the fibroblasts and plasma of patients with peroxisomal diseases using liquid chromatography-mass spectrometry. Mol Genet Metab 2017; 120:255-268. [PMID: 28089346 DOI: 10.1016/j.ymgme.2016.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 12/10/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
Abstract
Metabolic changes occur in patients with peroxisomal diseases owing to impairments in the genes involved in peroxisome function. For diagnostic purposes, saturated very-long-chain fatty acids (VLCFAs) such as C24:0 and C26:0, phytanic acid, pristanic acid, and plasmalogens are often measured as metabolic hallmarks. As the direct pathology of peroxisomal disease is yet to be fully elucidated, we sought to explore the fatty acid species that accumulate in patients with peroxisomal diseases. We developed a method for detecting a range of fatty acids implicated in peroxisomal diseases such as Zellweger syndrome (ZS) and X-linked adrenoleukodystrophy (X-ALD). To this end, we employed an ultra-performance liquid chromatography-mass spectrometry (LC-MS) coupled with negatively charged electrospray ionization. Fatty acids from patients and control subjects were extracted from total lipids by acid-hydrolysis and compared. In accordance with previous results, the amounts of VLCFAs, phytanic acid, and pristanic acid differed between the two groups. We identified extremely long and highly polyunsaturated VLCFAs (ultra-VLC-PUFAs) such as C44:12 in ZS samples. Moreover, three unknown molecules were prominent in control samples but scarcely detectable in ZS samples. LC-MS/MS analysis identified these as 1-alkyl-sn-glycerol 3-phosphates derived from ether lipids containing fatty alcohols such as C16:0, C18:0, or C18:1. Our method provides an approach to observing a wide range of lipid-derived fatty acids and related molecules in order to understand the metabolic changes involved in peroxisomal diseases. This technique can therefore be used in identifying metabolic markers and potential clinical targets for future treatment.
Collapse
Affiliation(s)
- Shigeo Takashima
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan.
| | - Kayoko Toyoshi
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Takahiro Itoh
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Japan
| | - Naomi Kajiwara
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Ayako Honda
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Akiko Ohba
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Shoko Takemoto
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| | - Satoshi Yoshida
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Japan
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Japan
| |
Collapse
|
8
|
Yagita Y, Shinohara K, Abe Y, Nakagawa K, Al-Owain M, Alkuraya FS, Fujiki Y. Deficiency of a Retinal Dystrophy Protein, Acyl-CoA Binding Domain-containing 5 (ACBD5), Impairs Peroxisomal β-Oxidation of Very-long-chain Fatty Acids. J Biol Chem 2016; 292:691-705. [PMID: 27899449 DOI: 10.1074/jbc.m116.760090] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/11/2016] [Indexed: 12/22/2022] Open
Abstract
Acyl-CoA binding domain-containing 5 (ACBD5) is a peroxisomal protein that carries an acyl-CoA binding domain (ACBD) at its N-terminal region. The recent identification of a mutation in the ACBD5 gene in patients with a syndromic form of retinal dystrophy highlights the physiological importance of ACBD5 in humans. However, the underlying pathogenic mechanisms and the precise function of ACBD5 remain unclear. We herein report that ACBD5 is a peroxisomal tail-anchored membrane protein exposing its ACBD to the cytosol. Using patient-derived fibroblasts and ACBD5 knock-out HeLa cells generated via genome editing, we demonstrate that ACBD5 deficiency causes a moderate but significant defect in peroxisomal β-oxidation of very-long-chain fatty acids (VLCFAs) and elevates the level of cellular phospholipids containing VLCFAs without affecting peroxisome biogenesis, including the import of membrane and matrix proteins. Both the N-terminal ACBD and peroxisomal localization of ACBD5 are prerequisite for efficient VLCFA β-oxidation in peroxisomes. Furthermore, ACBD5 preferentially binds very-long-chain fatty acyl-CoAs (VLC-CoAs). Together, these results suggest a direct role of ACBD5 in peroxisomal VLCFA β-oxidation. Based on our findings, we propose that ACBD5 captures VLC-CoAs on the cytosolic side of the peroxisomal membrane so that the transport of VLC-CoAs into peroxisomes and subsequent β-oxidation thereof can proceed efficiently. Our study reclassifies ACBD5-related phenotype as a novel peroxisomal disorder.
Collapse
Affiliation(s)
- Yuichi Yagita
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Kyoko Shinohara
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yuichi Abe
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| | - Keiko Nakagawa
- From the Department of Biology and Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Mohammed Al-Owain
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Fowzan S Alkuraya
- the King Faisal Specialist Hospital and Research Center, MBC-03 P. O. Box 3354, Riyadh 11211, Saudi Arabia
| | - Yukio Fujiki
- the Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan, and
| |
Collapse
|
9
|
Matsunami M, Shimozawa N, Fukuda A, Kumagai T, Kubota M, Chong PF, Kasahara M. Living-Donor Liver Transplantation From a Heterozygous Parent for Infantile Refsum Disease. Pediatrics 2016; 137:peds.2015-3102. [PMID: 27221287 DOI: 10.1542/peds.2015-3102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2016] [Indexed: 11/24/2022] Open
Abstract
Infantile Refsum disease (IRD) is a rare autosomal recessive disorder of peroxisome biogenesis characterized by generalized peroxisomal metabolic dysfunction, including accumulation of very long-chain fatty acids (VLCFAs) and phytanic acid (PA), as well as decreased plasmalogen contents (PL). An effective therapy for this intractable disease has not been established, and only supportive management with docosahexaenoic acid supplementation and low PA diet has been reported so far. A boy of 3 years and 8 months presented with facial dysmorphism, transaminitis, and psychomotor retardation. Biochemical analysis showed elevated PA and VLCFAs, with reduced PL in the serum. Immunofluorescence study of fibroblasts from the patient indicated a mosaic pattern of catalase-positive and -negative particles, and molecular analysis revealed compound heterozygous mutations of PEX6 The failure of medical management to prevent the progression of clinical symptoms and abnormal biochemistry prompted us to consider liver transplantation (LT). With the chances of receiving a deceased donor liver being poor, we performed a living-donor LT from the patient's heterozygous mother. At 6-month follow-up, the patient's serum PA levels had normalized. VLCFAs and PL levels had declined and increased, respectively. To the best of our knowledge, this is the second reported case in which IRD was treated by living-donor LT by using a heterozygous donor. Only long-term follow-up will reveal if there is any clinical improvement in the present case. With the liver being a major site for peroxisomal pathways, its replacement by LT may work as a form of partial enzyme therapy for patients with IRD.
Collapse
Affiliation(s)
| | - Nobuyuki Shimozawa
- Division of Genomics Research, Life Science Research Center, Gifu University, Gifu, Japan; and
| | | | - Tadayuki Kumagai
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Pin Fee Chong
- Department of Pediatric Neurology, Fukuoka Children's Hospital, Fukuoka, Japan
| | | |
Collapse
|
10
|
Abe Y, Honsho M, Nakanishi H, Taguchi R, Fujiki Y. Very-long-chain polyunsaturated fatty acids accumulate in phosphatidylcholine of fibroblasts from patients with Zellweger syndrome and acyl-CoA oxidase1 deficiency. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:610-9. [PMID: 24418004 DOI: 10.1016/j.bbalip.2014.01.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/19/2013] [Accepted: 01/02/2014] [Indexed: 10/25/2022]
Abstract
Peroxisomes are subcellular organelles that function in multiple anabolic and catabolic processes, including β-oxidation of very-long-chain fatty acids (VLCFA) and biosynthesis of ether phospholipids. Peroxisomal disorders caused by defects in peroxisome biogenesis or peroxisomal β-oxidation manifest as severe neural disorders of the central nervous system. Abnormal peroxisomal metabolism is thought to be responsible for the clinical symptoms of these diseases, but their molecular pathogenesis remains to be elucidated. We performed lipidomic analysis to identify aberrant metabolites in fibroblasts from patients with Zellweger syndrome (ZS), acyl-CoA oxidase1 (AOx) deficiency, D-bifunctional protein (D-BP) and X-linked adrenoleukodystrophy (X-ALD), as well as in peroxisome-deficient Chinese hamster ovary cell mutants. In cells deficient in peroxisomal biogenesis, plasmenylethanolamine was remarkably reduced and phosphatidylethanolamine was increased. Marked accumulation of very-long-chain saturated fatty acid and monounsaturated fatty acids in phosphatidylcholine was observed in all mutant cells. Very-long-chain polyunsaturated fatty acid (VLC-PUFA) levels were significantly elevated, whilst phospholipids containing docosahexaenoic acid (DHA, C22:6n-3) were reduced in fibroblasts from patients with ZS, AOx deficiency, and D-BP deficiency, but not in fibroblasts from an X-ALD patient. Because patients with AOx deficiency suffer from more severe symptoms than those with X-ALD, accumulation of VLC-PUFA and/or reduction of DHA may be associated with the severity of peroxisomal diseases.
Collapse
Affiliation(s)
- Yuichi Abe
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Masanori Honsho
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan
| | - Hiroki Nakanishi
- Department of Medical Biology, Akita University Graduate School of Medicine, Akita 010-8502, Japan
| | - Ryo Taguchi
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501, Japan
| | - Yukio Fujiki
- Department of Biology, Faculty of Sciences, Kyushu University Graduate School, Fukuoka 812-8581, Japan.
| |
Collapse
|
11
|
Wang B, Van Veldhoven PP, Brees C, Rubio N, Nordgren M, Apanasets O, Kunze M, Baes M, Agostinis P, Fransen M. Mitochondria are targets for peroxisome-derived oxidative stress in cultured mammalian cells. Free Radic Biol Med 2013; 65:882-894. [PMID: 23988789 DOI: 10.1016/j.freeradbiomed.2013.08.173] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 08/13/2013] [Accepted: 08/19/2013] [Indexed: 12/16/2022]
Abstract
Many cellular processes are driven by spatially and temporally regulated redox-dependent signaling events. Although mounting evidence indicates that organelles such as the endoplasmic reticulum and mitochondria can function as signaling platforms for oxidative stress-regulated pathways, little is known about the role of peroxisomes in these processes. In this study, we employ targeted variants of the genetically encoded photosensitizer KillerRed to gain a better insight into the interplay between peroxisomes and cellular oxidative stress. We show that the phototoxic effects of peroxisomal KillerRed induce mitochondria-mediated cell death and that this process can be counteracted by targeted overexpression of a select set of antioxidant enzymes, including peroxisomal glutathione S-transferase kappa 1, superoxide dismutase 1, and mitochondrial catalase. We also present evidence that peroxisomal disease cell lines deficient in plasmalogen biosynthesis or peroxisome assembly are more sensitive to KillerRed-induced oxidative stress than control cells. Collectively, these findings confirm and extend previous observations suggesting that disturbances in peroxisomal redox control and metabolism can sensitize cells to oxidative stress. In addition, they lend strong support to the ideas that peroxisomes and mitochondria share a redox-sensitive relationship and that the redox communication between these organelles is not only mediated by diffusion of reactive oxygen species from one compartment to the other. Finally, these findings indicate that mitochondria may act as dynamic receivers, integrators, and transmitters of peroxisome-derived mediators of oxidative stress, and this may have profound implications for our views on cellular aging and age-related diseases.
Collapse
Affiliation(s)
- Bo Wang
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Chantal Brees
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Noemí Rubio
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marcus Nordgren
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Oksana Apanasets
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Markus Kunze
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research and Therapy, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| | - Marc Fransen
- Laboratory of Lipid Biochemistry and Protein Interactions, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
12
|
Matsui S, Funahashi M, Honda A, Shimozawa N. Newly identified milder phenotype of peroxisome biogenesis disorder caused by mutated PEX3 gene. Brain Dev 2013; 35:842-8. [PMID: 23245813 DOI: 10.1016/j.braindev.2012.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 10/12/2012] [Accepted: 10/30/2012] [Indexed: 11/29/2022]
Abstract
We identified the first patient with infantile Refsum disease (IRD), a milder phenotype of peroxisome biogenesis disorder (PBD) caused by a mutated PEX3, and investigated the clinical, molecular and cellular characterization in this patient. The patient presented psychomotor regression, late-onset leukodystrophy, peripheral neuropathy, hearing impairment, a renal cyst, and renal hypertension and survived until the age of 36. Furthermore, fibroblasts from the patient indicated a mosaic pattern of catalase-positive particles (peroxisomes) and numerous peroxisomal membrane structures. Molecular analysis was homozygous for the D347Y mutation and reduced gene expression of PEX3 which encodes a peroxisomal membrane protein, pex3p, involved in peroxisome assembly at the early stage of peroxisomal membrane vesicle formation, therefore, patients with a mutated PEX3 gene have been reported to have only a severe phenotype of Zellweger syndrome and no or less peroxisomal remnant membrane structure. This is not only a newly identified milder PBD caused by a mutated PEX3 gene but also the first report of a Japanese patient with IRD who had not been diagnosed until over 30years of age, which suggests there must be more variant PBD in patients with degenerative neurologic disorder, and to bring them to light is necessary.
Collapse
Affiliation(s)
- Shuji Matsui
- Tokyo Children's Rehabilitation Hospital, Musashimurayama, Tokyo, Japan
| | | | | | | |
Collapse
|
13
|
Mutowo-Meullenet P, Huntley RP, Dimmer EC, Alam-Faruque Y, Sawford T, Jesus Martin M, O'Donovan C, Apweiler R. Use of Gene Ontology Annotation to understand the peroxisome proteome in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bas062. [PMID: 23327938 PMCID: PMC3548334 DOI: 10.1093/database/bas062] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Gene Ontology (GO) is the de facto standard for the functional description of gene products, providing a consistent, information-rich terminology applicable across species and information repositories. The UniProt Consortium uses both manual and automatic GO annotation approaches to curate UniProt Knowledgebase (UniProtKB) entries. The selection of a protein set prioritized for manual annotation has implications for the characteristics of the information provided to users working in a specific field or interested in particular pathways or processes. In this article, we describe an organelle-focused, manual curation initiative targeting proteins from the human peroxisome. We discuss the steps taken to define the peroxisome proteome and the challenges encountered in defining the boundaries of this protein set. We illustrate with the use of examples how GO annotations now capture cell and tissue type information and the advantages that such an annotation approach provides to users. Database URL:http://www.ebi.ac.uk/GOA/ and http://www.uniprot.org
Collapse
|
14
|
Abstract
Peroxisomes are remarkably versatile cell organelles whose size, shape, number, and protein content can vary greatly depending on the organism, the developmental stage of the organism’s life cycle, and the environment in which the organism lives. The main functions usually associated with peroxisomes include the metabolism of lipids and reactive oxygen species. However, in recent years, it has become clear that these organelles may also act as intracellular signaling platforms that mediate developmental decisions by modulating extraperoxisomal concentrations of several second messengers. To fulfill their functions, peroxisomes physically and functionally interact with other cell organelles, including mitochondria and the endoplasmic reticulum. Defects in peroxisome dynamics can lead to organelle dysfunction and have been associated with various human disorders. The purpose of this paper is to thoroughly summarize and discuss the current concepts underlying peroxisome formation, multiplication, and degradation. In addition, this paper will briefly highlight what is known about the interplay between peroxisomes and other cell organelles and explore the physiological and pathological implications of this interorganellar crosstalk.
Collapse
Affiliation(s)
- Marc Fransen
- Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, P.O. Box 601, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Recent advances in peroxisomal matrix protein import. Curr Opin Cell Biol 2012; 24:484-9. [PMID: 22683191 DOI: 10.1016/j.ceb.2012.05.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Accepted: 05/14/2012] [Indexed: 11/22/2022]
Abstract
Peroxisomes are essential organelles responsible for many metabolic reactions, such as the oxidation of very long chain and branched fatty acids, D-amino acids and polyamines, as well as the production and turnover of hydrogen peroxide. They comprise a class of organelles called microbodies, including glycosomes, glyoxysomes and Woronin bodies. Dysfunction of human peroxisomes causes severe and often fatal peroxisome biogenesis disorders (PBDs). Peroxisomal matrix protein import is mediated by receptors that shuttle between the cytosol and peroxisomal matrix using ubiquitination/deubiquitination reactions and ATP hydrolysis for receptor recycling. We focus on the machinery involved in the peroxisomal matrix protein import cycle, highlighting recent advances in peroxisomal matrix protein import, cargo release and receptor recycling/degradation.
Collapse
|
16
|
Mizumoto H, Akashi R, Hikita N, Kumakura A, Yoshida Y, Honda A, Shimozawa N, Hata D. Mild case of D-bifunctional protein deficiency associated with novel gene mutations. Pediatr Int 2012; 54:303-4. [PMID: 22507161 DOI: 10.1111/j.1442-200x.2012.03562.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Kanzawa N, Shimozawa N, Wanders RJA, Ikeda K, Murakami Y, Waterham HR, Mukai S, Fujita M, Maeda Y, Taguchi R, Fujiki Y, Kinoshita T. Defective lipid remodeling of GPI anchors in peroxisomal disorders, Zellweger syndrome, and rhizomelic chondrodysplasia punctata. J Lipid Res 2012; 53:653-63. [PMID: 22253471 DOI: 10.1194/jlr.m021204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Many cell surface proteins in mammalian cells are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The predominant form of mammalian GPI contains 1-alkyl-2-acyl phosphatidylinositol (PI), which is generated by lipid remodeling from diacyl PI. The conversion of diacyl PI to 1-alkyl-2-acyl PI occurs in the ER at the third intermediate in the GPI biosynthetic pathway. This lipid remodeling requires the alkyl-phospholipid biosynthetic pathway in peroxisome. Indeed, cells defective in dihydroxyacetone phosphate acyltransferase (DHAP-AT) or alkyl-DHAP synthase express only the diacyl form of GPI-anchored proteins. A defect in the alkyl-phospholipid biosynthetic pathway causes a peroxisomal disorder, rhizomelic chondrodysplasia punctata (RCDP), and defective biogenesis of peroxisomes causes Zellweger syndrome, both of which are lethal genetic diseases with multiple clinical phenotypes such as psychomotor defects, mental retardation, and skeletal abnormalities. Here, we report that GPI lipid remodeling is defective in cells from patients with Zellweger syndrome having mutations in the peroxisomal biogenesis factors PEX5, PEX16, and PEX19 and in cells from patients with RCDP types 1, 2, and 3 caused by mutations in PEX7, DHAP-AT, and alkyl-DHAP synthase, respectively. Absence of the 1-alkyl-2-acyl form of GPI-anchored proteins might account for some of the complex phenotypes of these two major peroxisomal disorders.
Collapse
Affiliation(s)
- Noriyuki Kanzawa
- Department of Immunoregulation, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Plasmalogens the neglected regulatory and scavenging lipid species. Chem Phys Lipids 2011; 164:573-89. [PMID: 21723266 DOI: 10.1016/j.chemphyslip.2011.06.008] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 06/08/2011] [Accepted: 06/14/2011] [Indexed: 12/17/2022]
Abstract
Plasmalogens are a class of phospholipids carrying a vinyl ether bond in sn-1 and an ester bond in sn-2 position of the glycerol backbone. Although they are widespread in all tissues and represent up to 18% of the total phospholipid mass in humans, their physiological function is still poorly understood. The aim of this review is to give an overview over the current knowledge in plasmalogen biology and pathology with an emphasis on neglected aspects of their involvement in neurological and metabolic diseases. Furthermore a better understanding of plasmalogen biology in health and disease could also lead to the development of better diagnostic and prognostic biomarkers for vascular and metabolic diseases such as obesity and diabetes mellitus, inflammation, neuro-degeneration and cancer.
Collapse
|
19
|
Mast FD, Li J, Virk MK, Hughes SC, Simmonds AJ, Rachubinski RA. A Drosophila model for the Zellweger spectrum of peroxisome biogenesis disorders. Dis Model Mech 2011; 4:659-72. [PMID: 21669930 PMCID: PMC3180231 DOI: 10.1242/dmm.007419] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human peroxisome biogenesis disorders are lethal genetic diseases in which abnormal peroxisome assembly compromises overall peroxisome and cellular function. Peroxisomes are ubiquitous membrane-bound organelles involved in several important biochemical processes, notably lipid metabolism and the use of reactive oxygen species for detoxification. Using cultured cells, we systematically characterized the peroxisome assembly phenotypes associated with dsRNA-mediated knockdown of 14 predicted Drosophila homologs of PEX genes (encoding peroxins; required for peroxisome assembly and linked to peroxisome biogenesis disorders), and confirmed that at least 13 of them are required for normal peroxisome assembly. We also demonstrate the relevance of Drosophila as a genetic model for the early developmental defects associated with the human peroxisome biogenesis disorders. Mutation of the PEX1 gene is the most common cause of peroxisome biogenesis disorders and is one of the causes of the most severe form of the disease, Zellweger syndrome. Inherited mutations in Drosophila Pex1 correlate with reproducible defects during early development. Notably, Pex1 mutant larvae exhibit abnormalities that are analogous to those exhibited by Zellweger syndrome patients, including developmental delay, poor feeding, severe structural abnormalities in the peripheral and central nervous systems, and early death. Finally, microarray analysis defined several clusters of genes whose expression varied significantly between wild-type and mutant larvae, implicating peroxisomal function in neuronal development, innate immunity, lipid and protein metabolism, gamete formation, and meiosis.
Collapse
Affiliation(s)
- Fred D Mast
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | | | | | |
Collapse
|