1
|
Della Giustina E, Salviato T, Caramaschi S, Fabbiani L, Reggiani Bonetti L. Cornelia de Lange Syndrome: Expanding the Neuropathological Spectrum and Clinical Correlations. Fetal Pediatr Pathol 2024:1-10. [PMID: 39381974 DOI: 10.1080/15513815.2024.2412847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVES Reporting new neuropathological findings and clinicopathological correlations in Cornelia de Lange syndrome. METHODS AND RESULTS Cornelia de Lange syndrome has received much attention for its genetics, biochemistry, clinical approach and management, but neuropathological studies are extremely rare. Diffuse hypoplasia of the entire brain, mainly affecting the frontal cortex and, less frequently, the cerebellum, has long been the paradigm for neuropathological findings in rare affected patients. This comprehensive neuropathological study of an affected newborn demonstrates nerve cell heterotopies, poor periventricular matrix and significant hypoplasia of both hippocampi, while Golgi staining of cerebellar tissue samples shows features of nerve cell immaturity. CONCLUSIONS The importance of Cornelia de Lange syndrome as a cohesinopathy and some new neuropathological findings provide an opportunity to discuss and establish interesting clinicopathological correlations, especially with regard to the global intellectual disability of these patients.
Collapse
Affiliation(s)
- Elvio Della Giustina
- Pathologic Anatomy Section, Maternal-Pediatric and Adult Department of Clinical and Surgical Sciences, University of Modena & Reggio Emilia (UNIMORE), Modena, Italy
| | - Tiziana Salviato
- Pathologic Anatomy Section, Maternal-Pediatric and Adult Department of Clinical and Surgical Sciences, University of Modena & Reggio Emilia (UNIMORE), Modena, Italy
| | - Stefania Caramaschi
- Pathologic Anatomy Section, Maternal-Pediatric and Adult Department of Clinical and Surgical Sciences, University of Modena & Reggio Emilia (UNIMORE), Modena, Italy
| | - Luca Fabbiani
- Pathologic Anatomy Section, Maternal-Pediatric and Adult Department of Clinical and Surgical Sciences, University of Modena & Reggio Emilia (UNIMORE), Modena, Italy
| | - Luca Reggiani Bonetti
- Pathologic Anatomy Section, Maternal-Pediatric and Adult Department of Clinical and Surgical Sciences, University of Modena & Reggio Emilia (UNIMORE), Modena, Italy
| |
Collapse
|
2
|
Skupien-Jaroszek A, Walczak A, Czaban I, Pels KK, Szczepankiewicz AA, Krawczyk K, Ruszczycki B, Wilczynski GM, Dzwonek J, Magalska A. The interplay of seizures-induced axonal sprouting and transcription-dependent Bdnf repositioning in the model of temporal lobe epilepsy. PLoS One 2021; 16:e0239111. [PMID: 34086671 PMCID: PMC8177504 DOI: 10.1371/journal.pone.0239111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 05/17/2021] [Indexed: 01/19/2023] Open
Abstract
The Brain-Derived Neurotrophic Factor is one of the most important trophic proteins in the brain. The role of this growth factor in neuronal plasticity, in health and disease, has been extensively studied. However, mechanisms of epigenetic regulation of Bdnf gene expression in epilepsy are still elusive. In our previous work, using a rat model of neuronal activation upon kainate-induced seizures, we observed a repositioning of Bdnf alleles from the nuclear periphery towards the nuclear center. This change of Bdnf intranuclear position was associated with transcriptional gene activity. In the present study, using the same neuronal activation model, we analyzed the relation between the percentage of the Bdnf allele at the nuclear periphery and clinical and morphological traits of epilepsy. We observed that the decrease of the percentage of the Bdnf allele at the nuclear periphery correlates with stronger mossy fiber sprouting-an aberrant form of excitatory circuits formation. Moreover, using in vitro hippocampal cultures we showed that Bdnf repositioning is a consequence of transcriptional activity. Inhibition of RNA polymerase II activity in primary cultured neurons with Actinomycin D completely blocked Bdnf gene transcription and repositioning occurring after neuronal excitation. Interestingly, we observed that histone deacetylases inhibition with Trichostatin A induced a slight increase of Bdnf gene transcription and its repositioning even in the absence of neuronal excitation. Presented results provide novel insight into the role of BDNF in epileptogenesis. Moreover, they strengthen the statement that this particular gene is a good candidate to search for a new generation of antiepileptic therapies.
Collapse
Affiliation(s)
- Anna Skupien-Jaroszek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Walczak
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Iwona Czaban
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Karolina Pels
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Andrzej Antoni Szczepankiewicz
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Katarzyna Krawczyk
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Błażej Ruszczycki
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Marek Wilczynski
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Joanna Dzwonek
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| | - Adriana Magalska
- Laboratory of Molecular and Systemic Neuromorphology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- * E-mail: (AM); (JD)
| |
Collapse
|
3
|
Targeted Gene Sequencing, Bone Health, and Body Composition in Cornelia de Lange Syndrome. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The aim of this study was to evaluate bone health and body composition by dual-energy X-ray absorptiometry (DXA) in individuals with Cornelia de Lange Syndrome (CdLS). Overall, nine individuals with CdLS (five females, all Caucasian, aged 5–38 years) were assessed. Total body less head (TBLH) and lumbar spine (LS) scans were performed, and bone serum biomarkers were determined. Molecular analyses were carried out and clinical scores and skeletal features were assessed. Based on deep sequencing of a custom target gene panel, it was discovered that eight of the nine CdLS patients had potentially causative genetic variants in NIPBL. Fat and lean mass indices (FMI and LMI) were 3.4–11.1 and 8.4–17.0 kg/m2, respectively. For TBLH areal bone mineral density (aBMD), after adjusting for height for age Z-score of children and adolescents, two individuals (an adolescent and an adult) had low BMD (aBMD Z-scores less than –2.0 SD). Calcium, phosphorus, 25-OH-vitamin D, parathyroid hormone, and alkaline phosphatase levels were 2.08–2.49 nmol/L, 2.10–3.75 nmol/L, 39.94–78.37 nmol/L, 23.4–80.3 pg/mL, and 43–203 IU/L, respectively. Individuals with CdLS might have normal adiposity and low levels of lean mass measured with DXA. Bone health in this population seems to be less of a concern during childhood and adolescence. However, they might be at risk for impaired bone health due to low aBMD in adulthood.
Collapse
|
4
|
Hirose S, Tanaka Y, Shibata M, Kimura Y, Ishikawa M, Higurashi N, Yamamoto T, Ichise E, Chiyonobu T, Ishii A. Application of induced pluripotent stem cells in epilepsy. Mol Cell Neurosci 2020; 108:103535. [DOI: 10.1016/j.mcn.2020.103535] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/10/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
|
5
|
Liu C, Li X, Cui J, Dong R, Lv Y, Wang D, Zhang H, Li X, Li Z, Ma J, Liu Y, Gai Z. Analysis of clinical and genetic characteristics in 10 Chinese individuals with Cornelia de Lange syndrome and literature review. Mol Genet Genomic Med 2020; 8:e1471. [PMID: 32856424 PMCID: PMC7549606 DOI: 10.1002/mgg3.1471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 01/03/2023] Open
Abstract
Background Cornelia de Lange syndrome (CdLS) is a rare congenital developmental disorder with variable multisystem involvement and genetic heterogeneity. We aimed to analyze the clinical and genetic characteristics of Chinese individuals with CdLS. Methods We collected data regarding the neonatal period, maternal status, clinical manifestation, including facial dimorphisms and development, and follow‐up treatment for individuals diagnosed with CdLS. In individuals with suspected CdLS, high‐throughput sequencing, Sanger sequencing, and real‐time qualitative PCR were used to verify the diagnosis. Results Variants, including six that were novel, were concentrated in the NIPBL (70%), HDAC8 (20%), and SMC3 (10%) genes. We found two nonsense, three splicing, and two deletion variants in NIPBL; a missense variant and an absence variant in HDAC8; and a missense variant in SMC3. Eleven cardinal features of CdLS were present in more than 80% of Chinese individuals. Compared with non‐Chinese individuals of diverse ancestry, there were significant differences in the clinical characteristics of eight of these features. Conclusion Six novel pathological variants were identified; thus, the study expanded the gene variant spectrum. Furthermore, most cardinal features of CdLS found in Chinese individuals were also found in individuals from other countries. However, there were significant differences in eight clinical features.
Collapse
Affiliation(s)
- Chen Liu
- Department of Neonatology, Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neonatology, Pediatric Research Institute, Jinan Children's Hospital, Jinan, China
| | - Xiaoying Li
- Department of Neonatology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jing Cui
- Department of Neonatology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yvqiang Lv
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Dong Wang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Xiaomei Li
- Department of Neonatology, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zilong Li
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Jian Ma
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Jinan, China
| | - Zhongtao Gai
- Department of Neonatology, Pediatric Research Institute, Qilu Children's Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Neonatology, Pediatric Research Institute, Jinan Children's Hospital, Jinan, China
| |
Collapse
|
6
|
Expansion of the phenotypic spectrum of SMC1A nonsense variants: a patient with cerebellar atrophy and review of the literature. Clin Dysmorphol 2020; 29:217-223. [PMID: 32496272 DOI: 10.1097/mcd.0000000000000326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Kline AD, Moss JF, Selicorni A, Bisgaard AM, Deardorff MA, Gillett PM, Ishman SL, Kerr LM, Levin AV, Mulder PA, Ramos FJ, Wierzba J, Ajmone PF, Axtell D, Blagowidow N, Cereda A, Costantino A, Cormier-Daire V, FitzPatrick D, Grados M, Groves L, Guthrie W, Huisman S, Kaiser FJ, Koekkoek G, Levis M, Mariani M, McCleery JP, Menke LA, Metrena A, O'Connor J, Oliver C, Pie J, Piening S, Potter CJ, Quaglio AL, Redeker E, Richman D, Rigamonti C, Shi A, Tümer Z, Van Balkom IDC, Hennekam RC. Diagnosis and management of Cornelia de Lange syndrome: first international consensus statement. Nat Rev Genet 2018; 19:649-666. [PMID: 29995837 PMCID: PMC7136165 DOI: 10.1038/s41576-018-0031-0] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is an archetypical genetic syndrome that is characterized by intellectual disability, well-defined facial features, upper limb anomalies and atypical growth, among numerous other signs and symptoms. It is caused by variants in any one of seven genes, all of which have a structural or regulatory function in the cohesin complex. Although recent advances in next-generation sequencing have improved molecular diagnostics, marked heterogeneity exists in clinical and molecular diagnostic approaches and care practices worldwide. Here, we outline a series of recommendations that document the consensus of a group of international experts on clinical diagnostic criteria, both for classic CdLS and non-classic CdLS phenotypes, molecular investigations, long-term management and care planning.
Collapse
Affiliation(s)
- Antonie D Kline
- Harvey Institute of Human Genetics, Greater Baltimore Medical Centre, Baltimore, MD, USA
| | - Joanna F Moss
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Angelo Selicorni
- Department of Paediatrics, Presidio S. Femro, ASST Lariana, Como, Italy
| | - Anne-Marie Bisgaard
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, and Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Peter M Gillett
- GI Department, Royal Hospital for Sick Children, Edinburgh, Scotland, UK
| | - Stacey L Ishman
- Departments of Otolaryngology and Pulmonary Medicine, Cincinnati Children's Hospital Medical Centre, University of Cincinnati, Cincinnati, OH, USA
| | - Lynne M Kerr
- Division of Pediatric Neurology, Department of Paediatrics, University of Utah Medical Centre, Salt Lake City, UT, USA
| | - Alex V Levin
- Paediatric Ophthalmology and Ocular Genetics, Wills Eye Hospital, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul A Mulder
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Jolanta Wierzba
- Department of Paediatrics, Haematology and Oncology, Department of General Nursery, Medical University of Gdansk, Gdansk, Poland
| | - Paola Francesca Ajmone
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - David Axtell
- CdLS Foundation UK and Ireland, The Tower, North Stifford, Grays, Essex, UK
| | - Natalie Blagowidow
- Harvey Institute of Human Genetics, Greater Baltimore Medical Center, Baltimore, MD, USA
| | - Anna Cereda
- Department of Paediatrics, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Antonella Costantino
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valerie Cormier-Daire
- Department of Genetics, INSERM UMR1163, Université Paris Descartes-Sorbonne Paris Cité, Hôpital Necker-Enfants Malades, Paris, France
| | - David FitzPatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Marco Grados
- Division of Child and Adolescent Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura Groves
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Whitney Guthrie
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sylvia Huisman
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Frank J Kaiser
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | | | - Mary Levis
- Wicomico County Board of Education, Salisbury, MD, USA
| | - Milena Mariani
- Clinical Paediatric Genetics Unit, Paediatrics Clinics, MBBM Foundation, S. Gerardo Hospital, Monza, Italy
| | - Joseph P McCleery
- Centre for Autism Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Leonie A Menke
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | | | - Julia O'Connor
- Kennedy Krieger Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chris Oliver
- Cerebra Centre for Neurodevelopmental Disorders, School of Psychology, University of Birmingham, Birmingham, UK
| | - Juan Pie
- Unit of Clinical Genetics, Paediatrics, University Clinic Hospital 'Lozano Blesa' CIBERER-GCV02 and ISS-Aragón, Department of Pharmacology-Physiology and Paediatrics, School of Medicine, University of Zaragoza, Zaragoza, Spain
| | - Sigrid Piening
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
| | - Carol J Potter
- Department of Gastroenterology, Nationwide Children's, Columbus, OH, USA
| | - Ana L Quaglio
- Genética Médica, Hospital del Este, Eva Perón, Tucumán, Argentina
| | - Egbert Redeker
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - David Richman
- Department of Educational Psychology and Leadership, Texas Tech University, Lubbock, TX, USA
| | - Claudia Rigamonti
- Child and Adolescent Neuropsychiatric Unit, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Angell Shi
- The Sidney Kimmel Medical College of Thomas Jefferson University, Philadelphia, PA, USA
| | - Zeynep Tümer
- Kennedy Centre, Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Glostrup, Denmark
| | - Ingrid D C Van Balkom
- Jonx Department of Youth Mental Health and Autism, Lentis Psychiatric Institute, Groningen, Netherlands
- Rob Giel Research Centre, Department of Psychiatry, University Medical Centre Groningen, Groningen, Netherlands
| | - Raoul C Hennekam
- Department of Paediatrics, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
| |
Collapse
|
8
|
Symonds JD, Joss S, Metcalfe KA, Somarathi S, Cruden J, Devlin AM, Donaldson A, DiDonato N, Fitzpatrick D, Kaiser FJ, Lampe AK, Lees MM, McLellan A, Montgomery T, Mundada V, Nairn L, Sarkar A, Schallner J, Pozojevic J, Parenti I, Tan J, Turnpenny P, Whitehouse WP, Zuberi SM. Heterozygous truncation mutations of the SMC1A gene cause a severe early onset epilepsy with cluster seizures in females: Detailed phenotyping of 10 new cases. Epilepsia 2017; 58:565-575. [PMID: 28166369 DOI: 10.1111/epi.13669] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2016] [Indexed: 12/30/2022]
Abstract
OBJECTIVE The phenotype of seizure clustering with febrile illnesses in infancy/early childhood is well recognized. To date the only genetic epilepsy consistently associated with this phenotype is PCDH19, an X-linked disorder restricted to females, and males with mosaicism. The SMC1A gene, which encodes a structural component of the cohesin complex is also located on the X chromosome. Missense variants and small in-frame deletions of SMC1A cause approximately 5% of Cornelia de Lange Syndrome (CdLS). Recently, protein truncating mutations in SMC1A have been reported in five females, all of whom have been affected by a drug-resistant epilepsy, and severe developmental impairment. Our objective was to further delineate the phenotype of SMC1A truncation. METHOD Female cases with de novo truncation mutations in SMC1A were identified from the Deciphering Developmental Disorders (DDD) study (n = 8), from postmortem testing of an affected twin (n = 1), and from clinical testing with an epilepsy gene panel (n = 1). Detailed information on the phenotype in each case was obtained. RESULTS Ten cases with heterozygous de novo mutations in the SMC1A gene are presented. All 10 mutations identified are predicted to result in premature truncation of the SMC1A protein. All cases are female, and none had a clinical diagnosis of CdLS. They presented with onset of epileptic seizures between <4 weeks and 28 months of age. In the majority of cases, a marked preponderance for seizures to occur in clusters was noted. Seizure clusters were associated with developmental regression. Moderate or severe developmental impairment was apparent in all cases. SIGNIFICANCE Truncation mutations in SMC1A cause a severe epilepsy phenotype with cluster seizures in females. These mutations are likely to be nonviable in males.
Collapse
Affiliation(s)
- Joseph D Symonds
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Shelagh Joss
- West of Scotland Clinical Genetics Service, Glasgow, United Kingdom
| | - Kay A Metcalfe
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester, United Kingdom.,Division of Evolution and Genomic sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Suresh Somarathi
- Manchester Centre for Genomic Medicine, Manchester Academic Health Sciences Centre, Manchester, United Kingdom
| | - Jamie Cruden
- Department of Paediatrics, Victoria Infirmary, Kirkcaldy, United Kingdom
| | - Anita M Devlin
- Paediatric Neurology, Great North Children's Hospital, Newcastle Acute Hospitals NHS Trust, Newcastle-upon-Tyne, United Kingdom
| | | | | | - David Fitzpatrick
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Frank J Kaiser
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Anne K Lampe
- South East Scotland Clinical Genetic Service, Edinburgh, United Kingdom
| | - Melissa M Lees
- Clinical Genetics, Great Ormond Street Hospital, London, United Kingdom
| | - Ailsa McLellan
- Department of Paediatric Neurosciences, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Tara Montgomery
- Institute of Genetic Medicine, Newcastle-upon-Tyne, United Kingdom
| | - Vivek Mundada
- Paediatric Neurology Royal London Hospital, London, United Kingdom
| | - Lesley Nairn
- Department of Paediatrics, Royal Alexandra Hospital, Paisley, United Kingdom
| | - Ajoy Sarkar
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Jens Schallner
- Carl Gustav Carus Hospital, at the TU Dresden, Dresden, Germany
| | - Jelena Pozojevic
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Ilaria Parenti
- Section for Functional Genetics, Institute for Human Genetics, University of Lübeck, Lübeck, Germany
| | - Jeen Tan
- Paediatric Neurology, Royal Manchester Children's Hospital, Manchester, United Kingdom
| | | | - William P Whitehouse
- Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom.,School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | -
- The Deciphering Developmental Disorders study, Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sameer M Zuberi
- The Paediatric Neurosciences Research Group, Royal Hospital for Children, Queen Elizabeth University Hospitals, Glasgow, United Kingdom.,School of Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
9
|
Dillien P, Ferrao Santos S, van Pesch V, Suin V, Lamoral S, Hantson P. New-Onset Refractory Status Epilepticus: More Investigations, More Questions. Case Rep Neurol 2016; 8:127-33. [PMID: 27462243 PMCID: PMC4939680 DOI: 10.1159/000447295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/30/2016] [Indexed: 11/21/2022] Open
Abstract
A 27-year-old previously healthy woman was admitted to the hospital with recurrent seizures. Status epilepticus developed that became refractory to third-line therapy with propofol and barbiturates. The patient had a very extensive diagnostic workup including autoimmune, viral and genetic investigations. A tentative immune therapy was proposed with high doses of steroids and plasma exchanges. Our patient had an inherited heterozygous single nucleotide variant in the sequence c.1280A>G [p.Lys427Arg] of the SMC3 gene that was insufficient to explain the seizures. Surprisingly, IgM antibodies against Japanese encephalitis virus were positive on the serum drawn 11 days after symptom onset, as detected by ELISA and the immunofluorescence antibody (IFA) technique. IgG antibodies were also positive using the IFA technique, but not with ELISA. The same investigations as well as the detection of the viral genome by the q-RT-PCR technique were negative on cerebrospinal fluid. Despite the suspicion of a viral infection, we concluded that our patient had a new-onset refractory status epilepticus of cryptogenic origin. Termination of the status epilepticus was obtained after 47 days, with a possible benefit from the introduction of ketamine.
Collapse
Affiliation(s)
- Philippe Dillien
- Department of Intensive Care, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Susana Ferrao Santos
- Department of Neurology, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium; Laboratory of Neurophysiology, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Vincent van Pesch
- Department of Neurology, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium; Laboratory of Neurophysiology, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Vanessa Suin
- Viral Diseases Unit, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Sophie Lamoral
- Viral Diseases Unit, Scientific Institute of Public Health (WIV-ISP), Brussels, Belgium
| | - Philippe Hantson
- Department of Intensive Care, Cliniques St-Luc, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
10
|
Abstract
Epilepsy and autistic spectrum disorder frequently coexist in the same individual. Electroencephalogram (EEG) epileptiform activity is also present at a substantially higher rate in children with autism than normally developing children. As with epilepsy, there are a multitude of genetic and environmental factors that can result in autistic spectrum disorder. There is growing consensus from both animal and clinical studies that autism is a disorder of aberrant connectivity. As measured with functional magnetic resonance imaging (MRI) and EEG, the brain in autistic spectrum disorder may be under- or overconnected or have a mixture of over- and underconnectivity. In the case of comorbid epilepsy and autism, an imbalance of the excitatory/inhibitory (E/I) ratio in selected regions of the brain may drive overconnectivity. Understanding the mechanism by which altered connectivity in individuals with comorbid epilepsy and autistic spectrum disorder results in the behaviors specific to the autistic spectrum disorder remains a challenge.
Collapse
Affiliation(s)
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont 05405
| |
Collapse
|
11
|
Goldstein JH, Tim-aroon T, Shieh J, Merrill M, Deeb KK, Zhang S, Bass NE, Bedoyan JK. Novel SMC1A frameshift mutations in children with developmental delay and epilepsy. Eur J Med Genet 2015; 58:562-8. [DOI: 10.1016/j.ejmg.2015.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 09/10/2015] [Accepted: 09/15/2015] [Indexed: 11/26/2022]
|
12
|
Pezzani L, Milani D, Tadini G. Intellectual Disability: When the Hypertrichosis Is a Clue. J Pediatr Genet 2015; 4:154-8. [PMID: 27617126 DOI: 10.1055/s-0035-1564442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 06/17/2015] [Indexed: 01/18/2023]
Abstract
The skin and the central and peripheral nervous system both derive from the ectoderm ridge. Therefore, several syndromes characterized by the presence of intellectual disability (ID) can be associated with specific congenital cutaneous manifestations. In this review, we list some of the most frequent diseases characterized by the presence of ID associated with hirsutism, which might be an incentive for the clinicians to pay attention to the ectodermal annexes in patients with ID.
Collapse
Affiliation(s)
- Lidia Pezzani
- Pathology Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Donatella Milani
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Gianluca Tadini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy; Unit of Dermatology, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
13
|
Neuroimaging features of Cornelia de Lange syndrome. Pediatr Radiol 2015; 45:1198-205. [PMID: 25701113 DOI: 10.1007/s00247-015-3300-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/18/2014] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
Abstract
BACKGROUND Cornelia de Lange syndrome is a rare genetic disease characterized by distinctive facial dysmorphia and dwarfism. Multiple organ system involvement is typical. Various central nervous system (CNS) aberrations have been described in the pathology literature; however, the spectrum of neuroimaging manifestations is less well documented. OBJECTIVE To present neuroimaging findings from a series of eight patients with Cornelia de Lange syndrome. MATERIALS AND METHODS The CT/MR database at a single academic children's hospital was searched for the terms "Cornelia," "Brachmann" and "de Lange." The search yielded 18 exams from 16 patients. Two non-CNS and six exams without available images were excluded. Ten exams from eight patients were evaluated by a board-certified neuroradiologist. RESULTS All patients had skull base dysplasia, most with an unusual coronal basioccipital cleft (7/8). All brain MR exams showed microcephaly, volume loss and gyral simplification (5/5). Six patients had an absent massa intermedia. Four patients had small globe anterior segments; three had optic pathway hypoplasia. Basilar artery fenestration was present in two patients; vertebrobasilar hypoplasia was present in one patient. The inner ear vestibules were dysplastic in two patients. One patient had pachymeningeal thickening. Spinal anomalies included scoliosis, segmentation anomalies, endplate irregularities, basilar invagination, foramen magnum stenosis and tethered spinal cord. CONCLUSION Typical imaging manifestations of Cornelia de Lange syndrome include skull base dysplasia with coronal clival cleft, cerebral and brainstem volume loss, and gyral simplification. Membranous labyrinth dysplasia, anterior segment and optic pathway hypoplasia, basilar artery fenestration, absent massa intermedia and spinal anomalies may also be present.
Collapse
|