1
|
Rahimian E, D'Arco F, Sudhakar S, Tahsini MR, Azin N, Morovvati M, Karimzadeh P, Farahvash MA. The full spectrum of MRI findings in 18 patients with Canavan disease: new insights into the areas of selective susceptibility. Neuroradiology 2024; 66:1829-1835. [PMID: 38880823 DOI: 10.1007/s00234-024-03388-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/30/2024] [Indexed: 06/18/2024]
Abstract
INTRODUCTION Canavan disease (CD) is a rare autosomal recessive neurodegenerative disorder caused by a deficiency of aspartoacylase A, an enzyme that degrades N-acetylaspartate (NAA). The disease is characterized by progressive white matter degeneration, leading to intellectual disability, seizures, and death. This retrospective study aims to describe the full spectrum of magnetic resonance imaging (MRI) findings in a large case series of CD patients. MATERIALS AND METHODS MRI findings in 18 patients with confirmed CD were investigated, and the full spectrum of brain abnormalities was compared with the existing literature to provide new insights regarding the brain MRI findings in these patients. All the cases were proven based on genetic study or NAA evaluation in urine or brain. RESULTS Imaging analysis showed involvement of the deep and subcortical white matter as well as the globus pallidus in all cases, with sparing of the putamen, caudate, and claustrum. The study provides updates on the imaging characteristics of CD and validates some underreported findings such as the involvement of the lateral thalamus with sparing of the pulvinar, involvement of the internal capsules and corpus callosum, and cystic formation during disease progression. CONCLUSION To our knowledge, this is one of the largest case series of patients with CD which includes a detailed description of the brain MRI findings. The study confirmed many of the previously reported MRI findings but also identified abnormalities that were previously rarely or not described. We speculate that areas of ongoing myelination are particularly vulnerable to changes in CD.
Collapse
Affiliation(s)
- Elham Rahimian
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Felice D'Arco
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Sniya Sudhakar
- Radiology Department, Neuroradiology Unit, Great Ormond Street Hospital, London, UK
| | - Majid R Tahsini
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Neda Azin
- Radiology department, school of medicine, Isfahan university of medical sciences, Isfahan, Iran
| | - Mahdis Morovvati
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| | - Parvaneh Karimzadeh
- Department of Pediatric Neurology, School of Medicine, Mofid Children's Hospital, Tehran, Iran
| | - Mohammad Aidin Farahvash
- Haghighat medical imaging research center, Haghighat medical imaging center, E Janbazan St, PFJW+269, Tehran, Iran
| |
Collapse
|
2
|
Bettinger CM, Dulz S, Atiskova Y, Guerreiro H, Schön G, Guder P, Maier SL, Denecke J, Bley AE. Overview of Neuro-Ophthalmic Findings in Leukodystrophies. J Clin Med 2024; 13:5114. [PMID: 39274327 PMCID: PMC11396446 DOI: 10.3390/jcm13175114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024] Open
Abstract
Background: Leukodystrophies are a group of rare genetic diseases that primarily affect the white matter of the central nervous system. The broad spectrum of metabolic and pathological causes leads to manifestations at any age, most often in childhood and adolescence, and a variety of symptoms. Leukodystrophies are usually progressive, resulting in severe disabilities and premature death. Progressive visual impairment is a common symptom. Currently, no overview of the manifold neuro-ophthalmologic manifestations and visual impact of leukodystrophies exists. Methods: Data from 217 patients in the Hamburg leukodystrophy cohort were analyzed retrospectively for neuro-ophthalmologic manifestations, age of disease onset, and magnetic resonance imaging, visual evoked potential, and optical coherence tomography findings and were compared with data from the literature. Results: In total, 68% of the patients suffered from neuro-ophthalmologic symptoms, such as optic atrophy, visual neglect, strabismus, and nystagmus. Depending on the type of leukodystrophy, neuro-ophthalmologic symptoms occurred early or late during the course of the disease. Magnetic resonance imaging scans revealed pathologic alterations in the visual tract that were temporally correlated with symptoms. Conclusions: The first optical coherence tomography findings in Krabbe disease and metachromatic leukodystrophy allow retinal assessments. Comprehensive literature research supports the results of this first overview of neuro-ophthalmologic findings in leukodystrophies.
Collapse
Affiliation(s)
| | - Simon Dulz
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Yevgeniya Atiskova
- Department of Ophthalmology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Helena Guerreiro
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Gerhard Schön
- Center of Experimental Medicine, Institute for Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Philipp Guder
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Sarah Lena Maier
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jonas Denecke
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Annette E Bley
- Children's Hospital, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| |
Collapse
|
3
|
Yalcintepe S, Maras T, Kizilyar I, Sezginer Guler H, Zhuri D, Atli E, Ozen Y, Gurkan H. Homozygous Paternally Inherited ASPA Variant in a Patient with Canavan Disease. Mol Syndromol 2024; 15:284-288. [PMID: 39119446 PMCID: PMC11305664 DOI: 10.1159/000536386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/14/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction Canavan disease is an autosomal recessive disorder that causes accumulation of N-acetyl ASPArtic acid in the brain due to ASPArtoacylase deficiency with homozygous or compound heterozygous pathogenic variants in the ASPA gene located on the short arm of chromosome 17. Clinical findings are hypotonia, progressive macrocephaly, deafness, nystagmus, blindness, and brain atrophy. Case Presentation A one-year-old female case was evaluated in our medical genetics clinic for hypotonia, nystagmus, and strabismus. Chromosome analysis and array-comparative genomic hybridization showed no pathology. Clinical exome sequencing by next-generation sequencing was performed and a homozygous likely pathogenic variant NM_000049.4(ASPA):c.857C > A p.(Ala286Asp) was identified. Sanger sequencing of the parents showed that the index case had a homozygous genotype, the father was heterozygous and the mother had a wild genotype for the identified variant in ASPA. A single nucleotide polymorphism (SNP) array test was planned for the family to explain this homozygosity and a loss of maternal heterozygosity was determined in the 17p13.3-p13.2 region of the ASPA gene. Conclusion In this report, we aimed to present the first case of Canavan disease with maternal loss of heterozygosity in the ASPA gene.
Collapse
Affiliation(s)
- Sinem Yalcintepe
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Tuba Maras
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ilke Kizilyar
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hazal Sezginer Guler
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Drenushe Zhuri
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Engin Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Yasemin Ozen
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
4
|
Nagy A, Eichler F, Bley A, Bredow J, Fay A, Townsend EL, Leiro B, Shaywitz A, Laforet G, Crippen-Harmon D, Williams R. Urine N-Acetylaspartate Distinguishes Phenotypes in Canavan Disease. Hum Gene Ther 2024; 36:45-56. [PMID: 39628365 DOI: 10.1089/hum.2024.168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Canavan disease (CD) is an ultra-rare autosomal recessive leukodystrophy caused by loss-of-function mutations in ASPA, which encodes aspartoacylase (ASPA), leading to accumulation of N-acetylaspartate (NAA). Patients with CD typically present with profound psychomotor deficits within the first 6 months of life and meet few motor milestones. Within CD a subset of patients exhibits a milder phenotype with more milestone acquisition, possibly related to greater residual ASPA activity. An ongoing CD natural history study and a literature search were leveraged to compare urine NAA levels and associated genotypes in patients classified with mild or typical CD, with the hypothesis that urine NAA levels reflect ASPA activity and therefore can distinguish between the two phenotypes. Urine NAA levels were lower, on average (p < 0.0001), in individuals with mild (mean 525.3, range 25.2-1,335 mmol/mol creatinine [Cr]) compared with typical CD (mean 1,369, range 391.7-2,420 mmol/mol Cr). Mutations R71H and Y288C, variants that may harbor residual ASPA activity, were unique to the mild phenotype population (56%, 14/25) and not found in individuals with a typical phenotype (0%, 0/39). In aggregate, urine NAA levels can distinguish between mild and typical CD phenotypes, suggesting the ability to reflect ASPA activity.
Collapse
Affiliation(s)
- Amanda Nagy
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Florian Eichler
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Annette Bley
- University Medical Center Hamburg-Eppendorf, Leukodystrophy Clinic at University Children's Hospital, Hamburg, Germany
| | - Janna Bredow
- University Medical Center Hamburg-Eppendorf, Leukodystrophy Clinic at University Children's Hospital, Hamburg, Germany
| | - Alexander Fay
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Elise L Townsend
- School of Health and Rehabilitation Sciences, MGH Institute of Health Professions, Boston, Massachusetts, USA
| | - Beth Leiro
- BridgeBio Gene Therapy, Palo Alto, California, USA
| | | | | | | | | |
Collapse
|
5
|
Irilouzadian R, Goudarzi A, Hesami H, Sarmadian R, Biglari HN, Gilani A. An unusual case of a toddler with Canavan disease with frequent
intractable seizures: A case report and review of the literature. SAGE Open Med Case Rep 2023; 11:2050313X231160885. [PMID: 36968992 PMCID: PMC10034305 DOI: 10.1177/2050313x231160885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/10/2023] [Indexed: 03/24/2023] Open
Abstract
Canavan disease is a rare fetal inherited leukodystrophy, caused by accumulation
of N-acetyl-aspartate in the brain. Here, we report a child presented with
frequent intractable seizures and visual impairment. A 14-month-old female
infant with a complaint of the absence of neck holding and generalized
tonic-clonic seizures was referred to our hospital. Macrocephaly, setting sun
eyes, tremor, and hypotonia were observed. Funduscopy showed optic atrophy. Our
patient’s flash visual evoked potential showed blindness. Her brain magnetic
resonance imaging showed diffuse white matter in subcortical, basal ganglia, and
dorsal pons. Electroencephalography showed diffuse slow and sharp waves. The
genetic study detected a hemizygous mutation in the aspartoacylase gene. Our
patient was diagnosed with Canavan disease and began anticonvulsant treatment.
However, seizures were not under control. Then, her medications were
discontinued, and clobazam and primidone were administered. In conclusion,
starting clobazam and primidone may help prevent frequently intractable seizures
in Canavan disease patients.
Collapse
Affiliation(s)
- Rana Irilouzadian
- Burn Research Center, Iran University
of Medical Sciences, Tehran, Iran
| | - Ali Goudarzi
- Iranian Center of Neurological
Research, Neuroscience Institute, Tehran University of Medical Sciences, Tehran,
Iran
| | - Hamed Hesami
- School of Medicine, Shahid Beheshti
University of Medical Sciences, Tehran, Iran
| | - Roham Sarmadian
- Infectious Diseases Research Center,
Arak University of Medical Sciences, Arak, Iran
| | - Habibe Nejad Biglari
- Neurosciences Research Center, Kerman
University of Medical Sciences, Kerman, Iran
| | - Abolfazl Gilani
- Sina Trauma and Surgery Research
Center, Tehran University of Medical Sciences, Tehran, Iran
- Abolfazl Gilani, Sina Trauma and Surgery
Research Center, Building 7, Sina Hospital, Hassan-Abad Sq, Tehran 11365-3876,
Iran.
| |
Collapse
|
6
|
Kaur P, do Rosario MC, Hebbar M, Sharma S, Kausthubham N, Nair K, Shrikiran A, Bhat Y R, Lewis LES, Nampoothiri S, Patil SJ, Suresh N, Bijarnia Mahay S, Dua Puri R, Pai S, Kaur A, KC R, Kamath N, Bajaj S, Kumble A, Shetty R, Shenoy R, Kamate M, Shah H, Muranjan MN, BL Y, Avabratha KS, Subramaniam G, Kadavigere R, Bielas S, Girisha KM, Shukla A. Clinical and genetic spectrum of 104 Indian families with central nervous system white matter abnormalities. Clin Genet 2021; 100:542-550. [PMID: 34302356 PMCID: PMC8918360 DOI: 10.1111/cge.14037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/15/2022]
Abstract
Genetic disorders with predominant central nervous system white matter abnormalities (CNS WMAs), also called leukodystrophies, are heterogeneous entities. We ascertained 117 individuals with CNS WMAs from 104 unrelated families. Targeted genetic testing was carried out in 16 families and 13 of them received a diagnosis. Chromosomal microarray (CMA) was performed for three families and one received a diagnosis. Mendeliome sequencing was used for testing 11 families and all received a diagnosis. Whole exome sequencing (WES) was performed in 80 families and was diagnostic in 52 (65%). Singleton WES was diagnostic for 50/75 (66.67%) families. Overall, genetic diagnoses were obtained in 77 families (74.03%). Twenty-two of 47 distinct disorders observed in this cohort have not been reported in Indian individuals previously. Notably, disorders of nuclear mitochondrial pathology were most frequent (9 disorders in 20 families). Thirty-seven of 75 (49.33%) disease-causing variants are novel. To sum up, the present cohort describes the phenotypic and genotypic spectrum of genetic disorders with CNS WMAs in our population. It demonstrates WES, especially singleton WES, as an efficient tool in the diagnosis of these heterogeneous entities. It also highlights possible founder events and recurrent disease-causing variants in our population and their implications on the testing strategy.
Collapse
Affiliation(s)
- Parneet Kaur
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Michelle C do Rosario
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Malavika Hebbar
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Suvasini Sharma
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Neethukrishna Kausthubham
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Karthik Nair
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - A Shrikiran
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Ramesh Bhat Y
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Leslie Edward S Lewis
- Department of Paediatrics, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Sheela Nampoothiri
- Department of Paediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Kochi, India
| | - SJ Patil
- Division of Genetics, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Narayanaswami Suresh
- Department of Paediatrics, Lady Hardinge Medical College and Associated Kalawati Saran Children’s Hospital, New Delhi, India
| | - Sunita Bijarnia Mahay
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Ratna Dua Puri
- Institute of Medical Genetics and Genomics, Sir Ganga Ram Hospital, New Delhi, India
| | - Shivanand Pai
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Anupriya Kaur
- Department of Paediatrics, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rakshith KC
- Department of Neurology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Nutan Kamath
- Department of Paediatrics, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, India
| | - Shruti Bajaj
- Jaslok Hospital and Research Centre, Mumbai, India
| | - Ali Kumble
- Department of Paediatrics, Indiana Hospital and Heart Institute, Mangalore, India
| | | | - Rathika Shenoy
- Department of Paediatrics, K.S. Hegde Medical Academy, NITTE University, Mangalore, India
| | - Mahesh Kamate
- Department of Paediatrics, Jawaharlal Nehru Medical College, Belgaum, India
| | - Hitesh Shah
- Department of Orthopaedics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Mamta N Muranjan
- Department of Pediatrics, Genetics Division, Seth Gordhandas Sunderdas Medical College and King Edward VII Memorial Hospital, Parel, Mumbai, Maharashtra, India
| | - Yatheesha BL
- Dheemahi Child Neurology and Development Center, Shimoga, India
| | | | | | - Rajagopal Kadavigere
- Department of Radiodiagnosis, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Stephanie Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katta Mohan Girisha
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| | - Anju Shukla
- Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
7
|
Gowda VK, Bharathi NK, Bettaiah J, Bhat M, Shivappa SK. Canavan Disease: Clinical and Laboratory Profile from Southern Part of India. Ann Indian Acad Neurol 2021; 24:347-350. [PMID: 34446995 PMCID: PMC8370168 DOI: 10.4103/aian.aian_386_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/21/2020] [Accepted: 06/29/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Canavan disease (CD) is an autosomal recessively inherited leukodystrophy. It affects one in 6,400 to 13,500 people in the Jewish population. However, prevalence and presentation of the disease in India is largely unknown; hence, we are reporting this series. Methods: This is a retrospective chart review in a tertiary care hospital from January 2015 to March 2020. CD was confirmed by elevated N- acetyl aspartate (NAA) levels in urinary gas chromatography and mass spectrometry (GCMS)/increased NAA peak in magnetic resonance spectroscopy (MRS) and/or detection of mutations. The data was extracted in a predesigned proforma and analyzed. Results: We had 12 children with mean age at presentation being 6.8 months (range 3 months to 10 months.). Males were more commonly affected (83.3%, n = 10). Ten children (83.3%) were born out of consanguineous parentage. All of them had visual impairment and pyramidal signs. Seizures were noted in five (42%) children. Normal head size in three (25%) and microcephaly in two (16.66%) cases were noted. Magnetic resonance imaging (MRI) revealed signal changes with bilateral symmetric T2W white matter (WM) hyperintensities in subcortical U fibers in all cases. MRS was done in ten children, all of which showed increased NAA peak. Increased level of NAA in urinary GCMS was noted in six out of eight children. Six cases had homozygous pathogenic variants in ASPA gene. Antenatal diagnosis helped in prevention of recurrence in three families. Conclusion: Urinary NAA and MRS showing NAA peak are useful in diagnosis of CD. Macrocephaly is not a necessary finding to diagnose CD. Early diagnosis helps in genetic counseling and prevention of subsequent conceptions.
Collapse
Affiliation(s)
- Vykuntaraju K Gowda
- Department of Pediatric Neurology Resident, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Narmadham K Bharathi
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Jamunashree Bettaiah
- Department of Pediatric Neurology Resident, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| | - Maya Bhat
- Department of Neuroradiology, National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Sanjay K Shivappa
- Department of Pediatrics, Indira Gandhi Institute of Child Health, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Merrill ST, Nelson GR, Longo N, Bonkowsky JL. Cytotoxic edema and diffusion restriction as an early pathoradiologic marker in canavan disease: case report and review of the literature. Orphanet J Rare Dis 2016; 11:169. [PMID: 27927234 PMCID: PMC5142413 DOI: 10.1186/s13023-016-0549-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022] Open
Abstract
Background Canavan disease is a devastating autosomal recessive leukodystrophy leading to spongiform degeneration of the white matter. There is no cure or treatment for Canavan disease, and disease progression is poorly understood. Results We report a new presentation of a patient found to have Canavan disease; brain magnetic resonance imaging (MRI) revealed white matter cytotoxic edema, indicative of an acute active destructive process. We performed a comprehensive review of published cases of Canavan disease reporting brain MRI findings, and found that cytotoxic brain edema is frequently reported in early Canavan disease. Conclusions Our results and the literature review support the notion of an acute phase in Canavan disease progression. These findings suggest that there is a window available for therapeutic intervention and support the need for early identification of patients with Canavan disease.
Collapse
Affiliation(s)
- Steven T Merrill
- College of Osteopathic Medicine, Touro University Nevada, Henderson, NV, USA
| | - Gary R Nelson
- Division of Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way/Williams Building, 84108, Salt Lake City, UT, USA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA. .,Department of Pediatrics, University of Utah School of Medicine, 295 Chipeta Way/Williams Building, 84108, Salt Lake City, UT, USA.
| |
Collapse
|