1
|
Is the ZIKV Congenital Syndrome and Microcephaly Due to Syndemism with Latent Virus Coinfection? Viruses 2021; 13:v13040669. [PMID: 33924398 PMCID: PMC8069280 DOI: 10.3390/v13040669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/10/2021] [Indexed: 01/04/2023] Open
Abstract
The emergence of the Zika virus (ZIKV) mirrors its evolutionary nature and, thus, its ability to grow in diversity or complexity (i.e., related to genome, host response, environment changes, tropism, and pathogenicity), leading to it recently joining the circle of closed congenital pathogens. The causal relation of ZIKV to microcephaly is still a much-debated issue. The identification of outbreak foci being in certain endemic urban areas characterized by a high-density population emphasizes that mixed infections might spearhead the recent appearance of a wide range of diseases that were initially attributed to ZIKV. Globally, such coinfections may have both positive and negative effects on viral replication, tropism, host response, and the viral genome. In other words, the possibility of coinfection may necessitate revisiting what is considered to be known regarding the pathogenesis and epidemiology of ZIKV diseases. ZIKV viral coinfections are already being reported with other arboviruses (e.g., chikungunya virus (CHIKV) and dengue virus (DENV)) as well as congenital pathogens (e.g., human immunodeficiency virus (HIV) and cytomegalovirus (HCMV)). However, descriptions of human latent viruses and their impacts on ZIKV disease outcomes in hosts are currently lacking. This review proposes to select some interesting human latent viruses (i.e., herpes simplex virus 2 (HSV-2), Epstein-Barr virus (EBV), human herpesvirus 6 (HHV-6), human parvovirus B19 (B19V), and human papillomavirus (HPV)), whose virological features and co-exposition with ZIKV may provide evidence of the syndemism process, shedding some light on the emergence of the ZIKV-induced global congenital syndrome in South America.
Collapse
|
2
|
Liu J, Li Q, Li X, Qiu Z, Li A, Liang W, Chen H, Cai X, Chen X, Duan X, Li J, Wu W, Xu M, Mao Y, Chen H, Li J, Gu W, Li H. Zika Virus Envelope Protein induces G2/M Cell Cycle Arrest and Apoptosis via an Intrinsic Cell Death Signaling Pathway in Neuroendocrine PC12 Cells. Int J Biol Sci 2018; 14:1099-1108. [PMID: 29989100 PMCID: PMC6036729 DOI: 10.7150/ijbs.26400] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022] Open
Abstract
Clinical evidence suggests that there exists a strong correlation between Zika virus (ZIKV) infection and abnormal development of the nervous system. However, the underlying mechanisms remain to be elusive. In this study, recombinant lentiviral vectors coding for ZIKV structural proteins and truncations (prM-Env, M-Env and Env) were transduced into PC12 cells. Envelope (Env) overexpression induced significant inhibition of proliferation and triggered G2/M cell cycle arrest and apoptosis in PC12 cells. Flow cytometry and western blot analysis showed that the apoptosis was associated with up-regulation of both p53 and p21Cip1/Waf1 and down-regulation of cyclin B1. Presence of aberrant nuclei clusters were confirmed by immunofluorescence staining analysis. The data indicate that overexpression of prM-Env, M-Env or Env led to apoptosis via an intrinsic cell death signaling pathway that is dependent on the activation of caspase-9 and caspase-3 and accompanied by an increased ratio of Bax to Bcl-2 in transduced PC12 cells. In summary, our results suggest that ZIKV Env protein causes apoptosis in PC12 cells via an intrinsic cell death signaling pathway, which may contribute to ZIKV-induced abnormal development of the nervous system.
Collapse
Affiliation(s)
- Jun Liu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, China
- Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Qingqing Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaoxin Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhenzhen Qiu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Guangzhou Bioneeds Biotechnology Co., Ltd, Guangzhou, China
| | - Andrew Li
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, USA
| | - Wenhan Liang
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huangyao Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiangsheng Cai
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinglu Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Clinical Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Xinyue Duan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jingjing Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Wangsheng Wu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Animal Science and Technology College, Jilin Agricultural University, Changchun, China
| | - Mingyu Xu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yingying Mao
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Huiying Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jinlong Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Weiwang Gu
- Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, Guangzhou, China
- Pearl Lab Animal Science and Technology Co. Ltd, Dongguang, China
- School of Chemical and Environmental Engineering, Wuyi University, Jiangmen, China
- International Healthcare Innovation Institute, Jiangmen, China
- ✉ Corresponding authors: Weiwang Gu, MS, Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong 510515, China. Phone: 86-20-61648043; Fax: 86-20-61648043; E-mail: ; Hongwei Li, Ph.D., School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong 510515, China. Phone: 86-20-61648555; Fax: 86-20-61648555; E-mail:
| | - Hongwei Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- ✉ Corresponding authors: Weiwang Gu, MS, Institute of Comparative Medicine and Center of Laboratory Animals, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong 510515, China. Phone: 86-20-61648043; Fax: 86-20-61648043; E-mail: ; Hongwei Li, Ph.D., School of Laboratory Medicine and Biotechnology, Southern Medical University, 1023 South Shatai Road, Guangzhou, Guangdong 510515, China. Phone: 86-20-61648555; Fax: 86-20-61648555; E-mail:
| |
Collapse
|
3
|
Increased activity of unlinked Zika virus NS2B/NS3 protease compared to linked Zika virus protease. Biochem Biophys Res Commun 2017; 492:668-673. [PMID: 28342876 DOI: 10.1016/j.bbrc.2017.03.108] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 11/22/2022]
Abstract
Zika virus (ZIKV) is a flavivirus spread by daytime-active Aedes spp. mosquitoes such as A. aegypti and A. albopictus. Previously thought to be a mild infection, the latest ZIKV outbreak in the Americas is causally associated with more severe symptoms as well as severe birth defects, such as microcephaly. Currently no vaccine or antiviral exists. However, recent progress has demonstrated the viral NS2B/NS3 protease may be a suitable target for the development of small-molecule antiviral agents. To better understand the ZIKV protease, we expressed, purified, and characterized unlinked and linked NS2B/NS3 protease corresponding to an isolate from the recent outbreak in Puerto Rico. Unlinked ZIKV protease is more active and binds substrate with greater affinity than linked ZIKV protease. Therefore, we propose that unlinked ZIKV protease be used when evaluating or designing ZIKV protease inhibitors. Additionally, potent inhibitors of related viral proteases, like West Nile Virus and Dengue virus, may serve as advanced starting points to identify and develop ZIKV protease inhibitors.
Collapse
|
4
|
Sulfated Glycans and Related Digestive Enzymes in the Zika Virus Infectivity: Potential Mechanisms of Virus-Host Interaction and Perspectives in Drug Discovery. Interdiscip Perspect Infect Dis 2017; 2017:4894598. [PMID: 28203251 PMCID: PMC5288528 DOI: 10.1155/2017/4894598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 12/23/2022] Open
Abstract
As broadly reported, there is an ongoing Zika virus (ZIKV) outbreak in countries of Latin America. Recent findings have demonstrated that ZIKV causes severe defects on the neural development in fetuses in utero and newborns. Very little is known about the molecular mechanisms involved in the ZIKV infectivity. Potential therapeutic agents are also under investigation. In this report, the possible mechanisms of action played by glycosaminoglycans (GAGs) displayed at the surface proteoglycans of host cells, and likely in charge of interactions with surface proteins of the ZIKV, are highlighted. As is common for the most viruses, these sulfated glycans serve as receptors for virus attachment onto the host cells and consequential entry during infection. The applications of (1) exogenous sulfated glycans of different origins and chemical structures capable of competing with the virus attachment receptors (supposedly GAGs) and (2) GAG-degrading enzymes able to digest the virus attachment receptors on the cells may be therapeutically beneficial as anti-ZIKV. This communication attempts, therefore, to offer some guidance for the future research programs aimed to unveil the molecular mechanisms underlying the ZIKV infectivity and to develop therapeutics capable of decreasing the devastating consequences caused by ZIKV outbreak in the Americas.
Collapse
|