1
|
Yang Q, Ye W, Luo D, Xing J, Xiao Q, Wu H, Yao Y, Wang G, Yang L, Guo D, Wang K, He Y, Ye X, Zhang J, Jin Z, Fan Z, Wen X, Mao J, Chen X, Zhao Q. Neuroprotective effects of anti-TRAIL-ICG nanoagent and its multimodal imaging evaluation in cerebral ischemia-reperfusion injury. Mater Today Bio 2024; 26:101094. [PMID: 38854952 PMCID: PMC11157279 DOI: 10.1016/j.mtbio.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/08/2024] [Accepted: 05/19/2024] [Indexed: 06/11/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) is a major challenge to neuronal survival in acute ischemic stroke (AIS). However, effective neuroprotective agents remain to be developed for the treatment of CIRI. In this work, we have developed an Anti-TRAIL protein-modified and indocyanine green (ICG)-responsive nanoagent (Anti-TRAIL-ICG) to target ischemic areas and then reduce CIRI and rescue the ischemic penumbra. In vitro and in vivo experiments have demonstrated that the carrier-free nanoagent can enhance drug transport across the blood-brain barrier (BBB) in stroke mice, exhibiting high targeting ability and good biocompatibility. Anti-TRAIL-ICG nanoagent played a better neuroprotective role by reducing apoptosis and ferroptosis, and significantly improved ischemia-reperfusion injury. Moreover, the multimodal imaging platform enables the dynamic in vivo examination of multiple morphofunctional information, so that the dynamic molecular events of nanoagent can be detected continuously and in real time for early treatment in transient middle cerebral artery occlusion (tMCAO) models. Furthermore, it has been found that Anti-TRAIL-ICG has great potential in the functional reconstruction of neurovascular networks through optical coherence tomography angiography (OCTA). Taken together, our work effectively alleviates CIRI after stoke by blocking multiple cell death pathways, which offers an innovative strategy for harnessing the apoptosis and ferroptosis against CIRI.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Wenxuan Ye
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Doudou Luo
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jiwei Xing
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qingqing Xiao
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Huiling Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Youliang Yao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Guangxing Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Luyao Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dongbei Guo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Kun Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, 350117, China
| | - Yaqin He
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Xiaofeng Ye
- Department of Oncology Surgery, General Hospital of Ningxia Medical University, Yinchuan, 750004, China
| | - Jinde Zhang
- Institute of Advanced Science Facilities, Shenzhen, Guangdong, 518107, China
| | - Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou, 511436, China
| | - Zhongxiong Fan
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Xiaofei Wen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jingsong Mao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- Department of Vascular Intervention, Guilin Medical College Affiliated Hospital, Guilin Medical College, Guilin, 541000, China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Qingliang Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Center for Molecular Imaging and Translational Medicine, Department of Vascular & Tumor Interventional Radiology, The First Affiliated Hospital of Xiamen University, School of Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
2
|
Wu J, Jia J, Ji D, Jiao W, Huang Z, Zhang Y. Advances in nitric oxide regulators for the treatment of ischemic stroke. Eur J Med Chem 2023; 262:115912. [PMID: 37931330 DOI: 10.1016/j.ejmech.2023.115912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023]
Abstract
Ischemic stroke (IS) is a life-threatening disease worldwide. Nitric oxide (NO) derived from l-arginine catalyzed by NO synthase (NOS) is closely associated with IS. Three isomers of NOS (nNOS, eNOS and iNOS) produce different concentrations of NO, resulting in quite unlike effects during IS. Of them, n/iNOSs generate high levels of NO, detrimental to brain by causing nerve cell apoptosis and/or necrosis, whereas eNOS releases small amounts of NO, beneficial to the brain via increasing cerebral blood flow and improving nerve function. As a result, a large variety of NO regulators (NO donors or n/iNOS inhibitors) have been developed for fighting IS. Regrettably, up to now, no review systematically introduces the progresses in this area. This article first outlines dynamic variation rule of NOS/NO in IS, subsequently highlights advances in NO regulators against IS, and finally presents perspectives based on concentration-, site- and timing-effects of NO production to promote this field forward.
Collapse
Affiliation(s)
- Jianbing Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Jia
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China; Novel Technology Center of Pharmaceutical Chemistry, Shanghai Institute of Pharmaceutical Industry Co., Ltd., China State Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Duorui Ji
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Weijie Jiao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhangjian Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yihua Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Zhao Y, Zhang X, Chen X, Wei Y. Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 2021; 49:15. [PMID: 34878154 PMCID: PMC8711586 DOI: 10.3892/ijmm.2021.5070] [Citation(s) in RCA: 167] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/13/2021] [Indexed: 11/10/2022] Open
Abstract
Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up-to-date treatments that have been applied to stroke and brain infarcts.
Collapse
Affiliation(s)
- Yunfei Zhao
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Xiaojing Zhang
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Xinye Chen
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| | - Yun Wei
- Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
| |
Collapse
|
4
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
5
|
Dao VTV, Elbatreek MH, Fuchß T, Grädler U, Schmidt HHHW, Shah AM, Wallace A, Knowles R. Nitric Oxide Synthase Inhibitors into the Clinic at Last. Handb Exp Pharmacol 2021; 264:169-204. [PMID: 32797331 DOI: 10.1007/164_2020_382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The 1998 Nobel Prize in Medicine and Physiology for the discovery of nitric oxide, a nitrogen containing reactive oxygen species (also termed reactive nitrogen or reactive nitrogen/oxygen species) stirred great hopes. Clinical applications, however, have so far pertained exclusively to the downstream signaling of cGMP enhancing drugs such as phosphodiesterase inhibitors and soluble guanylate cyclase stimulators. All clinical attempts, so far, to inhibit NOS have failed even though preclinical models were strikingly positive and clinical biomarkers correlated perfectly. This rather casts doubt on our current way of target identification in drug discovery in general and our way of patient stratification based on correlating but not causal biomarkers or symptoms. The opposite, NO donors, nitrite and enhancing NO synthesis by eNOS/NOS3 recoupling in situations of NO deficiency, are rapidly declining in clinical relevance or hold promise but need yet to enter formal therapeutic guidelines, respectively. Nevertheless, NOS inhibition in situations of NO overproduction often jointly with enhanced superoxide (or hydrogen peroxide production) still holds promise, but most likely only in acute conditions such as neurotrauma (Stover et al., J Neurotrauma 31(19):1599-1606, 2014) and stroke (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019). Conversely, in chronic conditions, long-term inhibition of NOS might be too risky because of off-target effects on eNOS/NOS3 in particular for patients with cardiovascular risks or metabolic and renal diseases. Nitric oxide synthases (NOS) and their role in health (green) and disease (red). Only neuronal/type 1 NOS (NOS1) has a high degree of clinical validation and is in late stage development for traumatic brain injury, followed by a phase II safety/efficacy trial in ischemic stroke. The pathophysiology of NOS1 (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016) is likely to be related to parallel superoxide or hydrogen peroxide formation (Kleinschnitz et al., J Cereb Blood Flow Metab 1508-1512, 2016; Casas et al., Proc Natl Acad Sci U S A 114(46):12315-12320, 2017; Casas et al., Proc Natl Acad Sci U S A 116(14):7129-7136, 2019) leading to peroxynitrite and protein nitration, etc. Endothelial/type 3 NOS (NOS3) is considered protective only and its inhibition should be avoided. The preclinical evidence for a role of high-output inducible/type 2 NOS (NOS2) isoform in sepsis, asthma, rheumatic arthritis, etc. was high, but all clinical development trials in these indications were neutral despite target engagement being validated. This casts doubt on the role of NOS2 in humans in health and disease (hence the neutral, black coloring).
Collapse
Affiliation(s)
- Vu Thao-Vi Dao
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Thomas Fuchß
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Ulrich Grädler
- Takeda GmbH (former Nycomed/Altana Pharma), Konstanz, Germany
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, FHML, Maastricht, The Netherlands
| | - Ajay M Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK
| | - Alan Wallace
- Health and Life Sciences, Coventry University, Coventry, UK
| | - Richard Knowles
- Knowles Consulting Ltd., The Stevenage Bioscience Catalyst, Stevenage, UK.
| |
Collapse
|
6
|
Niu B, Zhang H, Li C, Yan F, Song Y, Hai G, Jiao Y, Feng Y. Network pharmacology study on the active components of Pterocypsela elata and the mechanism of their effect against cerebral ischemia. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3009-3019. [PMID: 31564827 PMCID: PMC6733351 DOI: 10.2147/dddt.s207955] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/18/2019] [Indexed: 01/19/2023]
Abstract
Objective The aim of this study was to identify the active anti-ischemic components of Pterocypsela elata (P. elata) using a network pharmacology approach to construct an effective component anti-cerebral ischemic target network and systematically analyze this medicinal material. Methods Pharmacological studies have shown that P. elata has an obvious effect against cerebral ischemia. To identify the potential targets, 14 components of P. elata were docked to each structural element of the targets in the DRAR-CPI database by reverse docking technology. We then compared the identified potential targets with FDA-approved targets for stroke/cerebral infarction treatment in the DrugBank database and identified the active components of P. elata and their potential targets for stroke/cerebral infarction treatment. The active component-target networks were constructed using Cytoscape 3.5.1 software. The target protein-protein interactions were analyzed using the STRING database. KEGG pathway analysis and gene ontology (GO) enrichment analysis were performed through the Database for Annotation, Visualization and Integrated Discovery (DAVID). Results There were 14 active components identified from P. elata and 21 potential targets identified for cerebral ischemia treatment, including carbonic anhydrase 2, ribosyldihydronicotinamide dehydrogenase, cholinesterase, and glutathione S-transferase P. The main involved pathways include metabolic pathways, complement and coagulation cascades and steroid hormone biosynthesis. Conclusion Through a network pharmacology approach, we predicted the active components of P. elata and their potential targets for cerebral ischemia treatment. Our results provide new perspectives and clues for further studies on the anti-cerebral ischemia mechanism of P. elata.
Collapse
Affiliation(s)
- Bingxuan Niu
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Hui Zhang
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Chunyan Li
- Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453002, People's Republic of China
| | - Fulin Yan
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China.,Sanquan College of Xinxiang Medical University, Xinxiang, Henan Province 453002, People's Republic of China
| | - Yu Song
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Guangfan Hai
- College of Pharmacy, Xinxiang Medical University, Xingxiang, Henan Province 453003, People's Republic of China
| | - Yunjuan Jiao
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| | - Yansheng Feng
- Basic Medical College, Xinxiang Medical University, Xinxiang, Henan Province 453003, People's Republic of China
| |
Collapse
|
7
|
Characterisation of the antidepressant properties of nitric oxide synthase inhibitors in the olfactory bulbectomised rat model of depression. Eur Neuropsychopharmacol 2014; 24:1349-61. [PMID: 24931298 DOI: 10.1016/j.euroneuro.2014.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 04/11/2014] [Accepted: 05/09/2014] [Indexed: 02/05/2023]
Abstract
Nitric oxide synthase (NOS) inhibitors possess antidepressant-like properties in preclinical tests and in the current investigation the brain penetrant NOS inhibitor N(ω)-nitro-L-arginine (l-NA) and the preferential inhibitor of neuronal NOS (nNOS) 1-(2-trifluoromethylphenyl) imidazole (TRIM) were assessed in the olfactory bulbectomised (OB) rat, a well-established animal model of depression. Magnetic resonance imaging (MRI) was employed to assess regional brain volumes, blood perfusion and T1 and T2 relaxometry times both with and without drug treatment. l-NA (10 mg/kg, once daily p.o. for 10 days) attenuated OB-related hyperactivity in the "open field" test in a comparable fashion to the tricyclic antidepressant imipramine (20 mg/kg, once daily p.o. for 14 days) indicative of an antidepressant-like response in the model. Treatment with TRIM (50 mg/kg, once daily s.c.) attenuated OB-related hyperactivity following 7 days of treatment when compared to vehicle treated controls. OB is associated with enlarged ventricular volume, increased periventicular perfusion and a decrease in T2 relaxation times in cortical and hippocampal regions, with enhanced perfusion and reduced T2 times attenuated by L-NA treatment. L-NA treatment was also associated with an increase in T1 relaxation times in limbic and cortical regions and found to reduce resting state hippocampal blood perfusion in OB animals. Behavioural observations are consistent with an antidepressant action of NOS inhibitors where associated changes in perfusion and T2 relaxation times may be related to the antidepressant action of L-NA in the model.
Collapse
|
8
|
Borsani E, Albertini R, Labanca M, Lonati C, Rezzani R, Rodella LF. Peripheral purinergic receptor modulation influences the trigeminal ganglia nitroxidergic system in an experimental murine model of inflammatory orofacial pain. J Neurosci Res 2011; 88:2715-26. [PMID: 20648657 DOI: 10.1002/jnr.22420] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ATP plays an important role as an endogenous pain mediator generating and/or modulating pain signaling from the periphery to the central nervous system. The aim of this study was to analyze the role of peripheral purinergic receptors in modulation of the nitroxidergic system at a trigeminal ganglia level by monitoring changes in nitric oxide synthase isoforms. We also evaluated Fos-positive neurons in brainstem (spinal trigeminal nucleus) and pain-related behavior. We found that local administration of the P2 purinergic receptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS) decreased face-rubbing activity, nitric oxide synthase isoform expression in trigeminal ganglia, and Fos expression in spinal trigeminal nucleus after subcutaneous injection of formalin. These results suggest a role for peripheral P2 purinergic receptors in orofacial pain transmission through modulation of the nitroxidergic system. .
Collapse
Affiliation(s)
- Elisa Borsani
- Division of Human Anatomy, Department of Biomedical Sciences and Biotechnologies, Brescia University, 25123 Brescia, Italy
| | | | | | | | | | | |
Collapse
|
9
|
Han RZ, Hu JJ, Weng YC, Li DF, Huang Y. NMDA receptor antagonist MK-801 reduces neuronal damage and preserves learning and memory in a rat model of traumatic brain injury. Neurosci Bull 2010; 25:367-75. [PMID: 19927173 DOI: 10.1007/s12264-009-0608-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE NMDA receptor channel plays an important role in the pathophysiological process of traumatic brain injury (TBI). The present study aims to study the pathological mechanism of TBI and the impairment of learning and memory after TBI, and to investigate the mechanism of the protective effect of NMDA receptor antagonist MK-801 on learning and memory disorder after TBI. METHODS Forty Sprague-Dawley rats (weighing approximately 200 g) were randomized into 5 groups (n = 8 in each group): control group, model group, low-dose group (MK-801 0.5 mg/kg), middle-dose group (MK-801 2 mg/kg), and high-dose group (MK-801 10 mg/kg). TBI model was established using a weight-drop head injury mode. After 2-month drug treatment, learning and memory ability was evaluated by using Morris water maze test. Then the animals were sacrificed, and brain tissues were taken out for morphological and immunohistochemical assays. RESULTS The ability of learning and memory was significantly impaired in the TBI model animals. Besides, the neuronal caspase-3 expression, neuronal nitric oxide synthase (nNOS)-positive neurons and OX-42-positive microglia were all increased in TBI animals. Meanwhile, the number of neuron synapses was decreased, and vacuoles degeneration could be observed in mitochondria. After MK-801 treatment at 3 different dosages, the ability of learning and memory was markedly improved, as compared to that of the TBI model animals. Moreover, neuronal caspase-3 expression, OX-42-positive microglia and nNOS-positive neurons were all significantly decreased. Meanwhile, the mitochondria degeneration was greatly inhibited. CONCLUSION MK-801 could significantly inhibit the degeneration and apoptosis of neurons in damaged brain areas. It could also inhibit TBI-induced increase in nNOS-positive neurons and OX-42-positive microglia. Impairment in learning and memory in TBI animals could be repaired by treatment with MK-801.
Collapse
Affiliation(s)
- Rui-Zhang Han
- Medical College of Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
10
|
Tummala SR, Benac S, Tran H, Vankawala A, Zayas-Santiago A, Appel A, Kang Derwent JJ. Effects of inhibition of neuronal nitric oxide synthase on basal retinal blood flow regulation. Exp Eye Res 2009; 89:801-9. [DOI: 10.1016/j.exer.2009.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 07/08/2009] [Accepted: 07/12/2009] [Indexed: 12/16/2022]
|
11
|
Pamenter ME, Hogg DW, Buck LT. Endogenous reductions inN-methyl-d-aspartate receptor activity inhibit nitric oxide production in the anoxic freshwater turtle cortex. FEBS Lett 2008; 582:1738-42. [DOI: 10.1016/j.febslet.2008.04.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/21/2008] [Accepted: 04/23/2008] [Indexed: 11/15/2022]
|
12
|
Ji HJ, Chai HY, Nahm SS, Lee J, Bae GW, Nho K, Kim YB, Kang JK. Neuroprotective effects of the novel polyethylene glycol-hemoglobin conjugate SB1 on experimental cerebral thromboembolism in rats. Eur J Pharmacol 2007; 566:83-7. [PMID: 17397828 DOI: 10.1016/j.ejphar.2007.02.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/25/2007] [Accepted: 02/28/2007] [Indexed: 11/16/2022]
Abstract
SunBio1 (SB1) is a novel polyethylene glycol-bovine hemoglobin conjugate. It is a small molecule that shows high oxygen-delivery capacity, and exhibits extended plasma half-life compared to hemoglobin alone, thus reducing renal toxicity. The aim of the present study was to evaluate potential neuroprotective effects of SB1 using a rat middle cerebral artery occlusion model. The middle cerebral artery of male Sprague-Dawley rats was occluded with a thrombotic blood clot and SB1 was administered via intra-arterial infusion 5 min after the operation. Brain tissue was harvested after 2 h, and cerebral infarct volumes were calculated from coronal sections stained with 2,3,5-triphenyltetrazolium chloride. Three to 6 days after the procedure, sub-groups of animals were subjected to an open field test and the Morris water maze to assess locomotor activity and learning/memory function. Thrombotic blood clots induced extensive brain infarction and edema; however, these were significantly reduced in SB1 treated animals. In addition, SB1 treatment increased locomotor activity in open field tests, and improved the learning/memory deficits caused by the thromboembolism. These results suggest that SB1 has neuroprotective effects against ischemic brain injury caused by thromboembolism.
Collapse
Affiliation(s)
- Hyeong-Jin Ji
- College of Veterinary Medicine, Chungbuk National University, 12 Gaeshin-dong, Cheongju, Chungbuk 361-763, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Martínez-Murillo R, Fernández AP, Serrano J, Rodrigo J, Salas E, Mourelle M, Martínez A. The nitric oxide donor LA 419 decreases brain damage in a focal ischemia model. Neurosci Lett 2007; 415:149-53. [PMID: 17239538 DOI: 10.1016/j.neulet.2007.01.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Revised: 01/04/2007] [Accepted: 01/04/2007] [Indexed: 01/09/2023]
Abstract
Stroke affects a large number of people, especially in developed countries, but treatment options are limited. Over the years, it has become clear that nitric oxide (NO) plays a major role in this pathology and that treatments that either reduce or increase NO presence may provide an alternative route for reducing the sequelae of brain ischemia. The NO donor LA 419 previously has been shown to protect the brain tissue from ischemic damage in an experimental model of global brain ischemia. Here we study whether this holds true for focal ischemia, a condition closer to the more common form of human stroke. Ischemia was induced in rats by a stereotaxic injection of endothelin-1, a potent vasoconstrictor, in the striatum. Seven days after the injection, magnetic resonance imaging (MRI) found a significant elevation in apparent diffusion coefficient (ADC) in the injected striatum of untreated rats, due to ischemia-induced vascular edema. Animals that received LA 419 prior to injection with endothelin-1 showed an ADC undistinguishable from the contralateral striatum or from the striatum of rats not treated with LA 419. In addition, immunohistochemistry with antibodies against neuronal nitric oxide synthase (nNOS), inducible NOS (iNOS), and nitrotyrosine showed a marked increase in the expression of these markers of NO production following ischemic treatment that was dampened by treatment with LA 419. In summary, our results clearly show that the NO donor LA 419 may be a useful compound for the prevention and/or treatment of focal brain ischemia.
Collapse
Affiliation(s)
- Ricardo Martínez-Murillo
- Department of Neuroanatomy and Cell Biology, Instituto Cajal, CSIC, Avenida del Doctor Arce 37, 28002 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
McMahon AC, Duong TTH, Brieger D, Witting PK. Is there potential for antioxidants to enhance thrombolysis therapy in patients with ischemic stroke? Future Cardiol 2006; 2:659-65. [DOI: 10.2217/14796678.2.6.659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The medical and socio–economic burden of ischemic stroke is vast. Current thrombolytic therapies have a time-limited therapeutic window and do not provide significant benefits beyond tissue reperfusion. The detrimental effect of oxidative stress caused by excessive oxidant production due to cerebral reperfusion injury is a neglected consequence of ischemic stroke and warrants special consideration. Strategies directed at preventing or reducing oxidative damage in the brain post-ischemic stroke have the potential to improve neurological outcome and reduce morbidity and mortality from this common disease. Significantly, the prospect of increasing the size of the treatment window for thrombolytic therapies, perhaps by synergistic effects with other medications given in parallel, is also an avenue worthy of further investigation. This perspective outlines the current status of thrombolytic therapy for the treatment of ischemic stroke and explores the possibility of improving and expanding this potential therapy. Furthermore, the implications of directly treating damage caused by oxidative stress with novel antioxidant therapy are discussed.
Collapse
Affiliation(s)
- Aisling Clare McMahon
- ANZAC Research Institute, Vascular Biology Group, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - Thi Thuy Hong Duong
- ANZAC Research Institute, Vascular Biology Group, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| | - David Brieger
- Concord Repatriation General Hospital, Cardiology Department, Concord, NSW 2139, Australia
| | - Paul Kenneth Witting
- ANZAC Research Institute, Vascular Biology Group, Concord Repatriation General Hospital, Concord, NSW 2139, Australia
| |
Collapse
|
15
|
Abstract
Many illnesses that affect the peripheral nervous system (PNS) lead to distal axonal degeneration rather than loss of neuronal cell bodies. Strategies aimed at promoting survival of injured neurons (i.e., preventing cell death) may not be applicable to many PNS illnesses. We have developed in vitro and in vivo animal models to study mechanisms of acquired peripheral neuropathies and used these models to evaluate the therapeutic potential of novel compounds. In recent years, erythropoietin (EPO) has been recognized as a novel neuroprotectant in the central nervous system. In the PNS, we recently showed that Schwann cell-derived EPO acts as an endogenous neuroprotectant and that it is most effective in preventing distal axonal degeneration seen in models of peripheral neuropathy. Similarly, we showed that immunophilin ligands are also neuroprotective in the PNS and prevent axonal degeneration seen in models of peripheral neuropathies. Both EPO and non-immunosuppressive immunophilin ligands are in early clinical development for the treatment of acquired peripheral neuropathies.
Collapse
Affiliation(s)
- Ahmet Höke
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Path 509, Baltimore, Maryland 21287, USA.
| | | |
Collapse
|
16
|
Richards EM, Rosenthal RE, Kristian T, Fiskum G. Postischemic hyperoxia reduces hippocampal pyruvate dehydrogenase activity. Free Radic Biol Med 2006; 40:1960-70. [PMID: 16716897 PMCID: PMC2570699 DOI: 10.1016/j.freeradbiomed.2006.01.022] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 01/20/2006] [Accepted: 01/23/2006] [Indexed: 01/04/2023]
Abstract
The pyruvate dehydrogenase complex (PDHC) is a mitochondrial matrix enzyme that catalyzes the oxidative decarboxylation of pyruvate and represents the sole bridge between anaerobic and aerobic cerebral energy metabolism. Previous studies demonstrating loss of PDHC enzyme activity and immunoreactivity during reperfusion after cerebral ischemia suggest that oxidative modifications are involved. This study tested the hypothesis that hyperoxic reperfusion exacerbates loss of PDHC enzyme activity, possibly due to tyrosine nitration or S-nitrosation. We used a clinically relevant canine ventricular fibrillation cardiac arrest model in which, after resuscitation and ventilation on either 100% O2 (hyperoxic) or 21-30% O2 (normoxic), animals were sacrificed at 2 h reperfusion and the brains removed for enzyme activity and immunoreactivity measurements. Animals resuscitated under hyperoxic conditions exhibited decreased PDHC activity and elevated 3-nitrotyrosine immunoreactivity in the hippocampus but not the cortex, compared to nonischemic controls. These measures were unchanged in normoxic animals. In vitro exposure of purified PDHC to peroxynitrite resulted in a dose-dependent loss of activity and increased nitrotyrosine immunoreactivity. These results support the hypothesis that oxidative stress contributes to loss of hippocampal PDHC activity during cerebral ischemia and reperfusion and suggest that PDHC is a target of peroxynitrite.
Collapse
Affiliation(s)
- Erica M. Richards
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Robert E. Rosenthal
- Program in Trauma, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Tibor Kristian
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
| | - Gary Fiskum
- Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
- Corresponding author. Department of Anesthesiology, University of Maryland, Baltimore, MD 21201, USA. Fax: +1 410 706 2550. E-mail address: (G. Fiskum)
| |
Collapse
|
17
|
Shirakura T, Han F, Shiota N, Moriguchi S, Kasahara J, Sato T, Shirasaki Y, Fukunaga K. Inhibition of nitric oxide production and protein tyrosine nitration contribute to neuroprotection by a novel calmodulin antagonist, DY-9760e, in the rat microsphere embolism. Biol Pharm Bull 2005; 28:1658-61. [PMID: 16141535 DOI: 10.1248/bpb.28.1658] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Microsphere embolism (ME)-induced ischemia model in rat resembles to multiple brain embolism in human with several clinical features. We here tested whether nitric oxide (NO) production contributes to the neuronal injury in the ME model. A novel calmodulin antagonist, DY-9760e, having a potent inhibitory effect on neuronal nitric oxide synthase (nNOS), reduced brain infarct size in the ME-induced brain ischemia. Consistent with our previous observation with gerbil ischemia/reperfusion model, DY-9760e completely inhibited NO production immediately after and 24 or 48 h after ME. Unlike the gerbil ischemia/reperfusion model, protein tyrosine nitration markedly increased 6-48 h after ME. DY-9760e treatment completely inhibited the marked increase in the protein tyrosine nitration at 24 h after ME. These results suggest that the inhibition of NO production and protein tyrosine nitration by DY-9760e contribute to its neuroprotective action in the ME-induced brain damage.
Collapse
Affiliation(s)
- Takashi Shirakura
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, Zhou C, Jack C, Leitz GJ, Hoke A. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 2005; 56:815-26. [PMID: 15470751 DOI: 10.1002/ana.20285] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clinically relevant peripheral neuropathies (such as diabetic and human immunodeficiency virus sensory neuropathies) are characterized by distal axonal degeneration, rather than neuronal death. Here, we describe a novel, endogenous pathway that prevents axonal degeneration. We show that in response to axonal injury, periaxonal Schwann cells release erythropoietin (EPO), which via EPO receptor binding on neurons, prevents axonal degeneration. We demonstrate that the relevant axonal injury signal that stimulates EPO production from surrounding glial cells is nitric oxide. In addition, we show that this endogenous pathway can be therapeutically exploited by administering exogenous EPO. In an animal model of distal axonopathy, systemic EPO administration prevents axonal degeneration, and this is associated with a reduction in limb weakness and neuropathic pain behavior. Our in vivo and in vitro data suggest that EPO prevents axonal degeneration and therefore may be therapeutically useful in a wide variety of human neurological diseases characterized by axonopathy.
Collapse
Affiliation(s)
- Sanjay C Keswani
- Department of Neurology, The Johns Hopkins Hospital, Baltimore, MD, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Li RC, Row BW, Kheirandish L, Brittian KR, Gozal E, Guo SZ, Sachleben LR, Gozal D. Nitric oxide synthase and intermittent hypoxia-induced spatial learning deficits in the rat. Neurobiol Dis 2004; 17:44-53. [PMID: 15350964 DOI: 10.1016/j.nbd.2004.05.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 03/18/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023] Open
Abstract
Intermittent hypoxia (IH) during sleep induces significant neurobehavioral deficits in the rat. Since nitric oxide (NO) has been implicated in ischemia-reperfusion-related pathophysiological consequences, the temporal effects of IH (alternating 21% and 10% O(2) every 90 s) and sustained hypoxia (SH; 10% O(2)) during sleep for up to 14 days on the induction of nitric oxide synthase (NOS) isoforms in the brain were examined in the cortex of Sprague-Dawley rats. No significant changes of endothelial NOS (eNOS) and neuronal NOS (nNOS) occurred over time with either IH or SH. Similarly, inducible NOS (iNOS) was not affected by SH. However, increased expression and activity of iNOS were observed on days 1 and 3 of IH (P < 0.01 vs. control; n = 12/group) and were followed by a return to basal levels on days 7 and 14. Furthermore, IH-mediated neurobehavioral deficits in the water maze were significantly attenuated in iNOS knockout mice. We conclude that IH is associated with a time-dependent induction of iNOS and that the increased expression of iNOS may play a critical role in the early pathophysiological events leading to IH-mediated neurobehavioral deficits.
Collapse
Affiliation(s)
- Richard C Li
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|