1
|
Zacky Ariffin M, Yun Ng S, Nadia H, Koh D, Loh N, Michiko N, Khanna S. Neurokinin1 - cholinergic receptor mechanisms in the medial Septum-Dorsal hippocampus axis mediates experimental neuropathic pain. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2024; 16:100162. [PMID: 39224764 PMCID: PMC11367143 DOI: 10.1016/j.ynpai.2024.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The neurokinin-1 receptors (NK1Rs) in the forebrain medial septum (MS) region are localized exclusively on cholinergic neurons that partly project to the hippocampus and the cingulate cortex (Cg), regions implicated in nociception. In the present study, we explored the hypothesis that neurotransmission at septal NK1R and hippocampal cholinergic mechanisms mediate experimental neuropathic pain in the rodent chronic constriction injury model (CCI). Our investigations showed that intraseptal microinjection of substance P (SP) in rat evoked a peripheral hypersensitivity (PH)-like response in uninjured animals that was attenuated by systemic atropine sulphate, a muscarinic-cholinergic receptor antagonist. Conversely, pre-emptive destruction of septal cholinergic neurons attenuated the development of PH in the CCI model that also prevented the expression of cellular markers of nociception in the spinal cord and the forebrain. Likewise, anti-nociception was evoked on intraseptal microinjection of L-733,060, an antagonist at NK1Rs, and on bilateral or unilateral microinjection of the cholinergic receptor antagonists, atropine or mecamylamine, into the different regions of the dorsal hippocampus (dH) or on bilateral microinjection into the Cg. Interestingly, the effect of L-733,060 was accompanied with a widespread decreased in levels of CCI-induced nociceptive cellular markers in forebrain that was not secondary to behaviour, suggesting an active modulation of nociceptive processing by transmission at NK1R in the medial septum. The preceding suggest that the development and maintenance of neuropathic nociception is facilitated by septal NK1R-dH cholinergic mechanisms which co-ordinately affect nociceptive processing in the dH and the Cg. Additionally, the data points to a potential strategy for pain modulation that combines anticholinergics and anti-NKRs.
Collapse
Affiliation(s)
- Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Si Yun Ng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Hamzah Nadia
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Darrel Koh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Natasha Loh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Naomi Michiko
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
2
|
Wang Y, Liu N, Ma L, Yue L, Cui S, Liu FY, Yi M, Wan Y. Ventral Hippocampal CA1 Pyramidal Neurons Encode Nociceptive Information. Neurosci Bull 2024; 40:201-217. [PMID: 37440103 PMCID: PMC10838882 DOI: 10.1007/s12264-023-01086-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/27/2023] [Indexed: 07/14/2023] Open
Abstract
As a main structure of the limbic system, the hippocampus plays a critical role in pain perception and chronicity. The ventral hippocampal CA1 (vCA1) is closely associated with negative emotions such as anxiety, stress, and fear, yet how vCA1 neurons encode nociceptive information remains unclear. Using in vivo electrophysiological recording, we characterized vCA1 pyramidal neuron subpopulations that exhibited inhibitory or excitatory responses to plantar stimuli and were implicated in encoding stimuli modalities in naïve rats. Functional heterogeneity of the vCA1 pyramidal neurons was further identified in neuropathic pain conditions: the proportion and magnitude of the inhibitory response neurons paralleled mechanical allodynia and contributed to the confounded encoding of innocuous and noxious stimuli, whereas the excitatory response neurons were still instrumental in the discrimination of stimulus properties. Increased theta power and theta-spike coupling in vCA1 correlated with nociceptive behaviors. Optogenetic inhibition of vCA1 pyramidal neurons induced mechanical allodynia in naïve rats, whereas chemogenetic reversal of the overall suppressed vCA1 activity had analgesic effects in rats with neuropathic pain. These results provide direct evidence for the representations of nociceptive information in vCA1.
Collapse
Affiliation(s)
- Yue Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Naizheng Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Longyu Ma
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Lupeng Yue
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100083, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
| |
Collapse
|
3
|
Ng SY, Ariffin MZ, Khanna S. Neurokinin receptor mechanisms in forebrain medial septum modulate nociception in the formalin model of inflammatory pain. Sci Rep 2021; 11:24358. [PMID: 34934106 PMCID: PMC8692436 DOI: 10.1038/s41598-021-03661-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 12/07/2021] [Indexed: 12/03/2022] Open
Abstract
The present study has explored the hypothesis that neurokinin1 receptors (NK1Rs) in medial septum (MS) modulate nociception evoked on hind paw injection of formalin. Indeed, the NK1Rs in MS are localized on cholinergic neurons which have been implicated in nociception. In anaesthetized rat, microinjection of L-733,060, an antagonist at NK1Rs, into MS antagonized the suppression of CA1 population spike (PS) evoked on peripheral injection of formalin or on intraseptal microinjection of substance P (SP), an agonist at NK1Rs. The CA1 PS reflects the synaptic excitability of pyramidal cells in the region. Furthermore, microinjection of L-733,060 into MS, but not LS, attenuated formalin-induced theta activation in both anaesthetized and awake rat, where theta reflects an oscillatory information processing by hippocampal neurons. The effects of L-733,060 on microinjection into MS were nociceptive selective as the antagonist did not block septo-hippocampal response to direct MS stimulation by the cholinergic receptor agonist, carbachol, in anaesthetized animal or on exploration in awake animal. Interestingly, microinjection of L-733,060 into both MS and LS attenuated formalin-induced nociceptive flinches. Collectively, the foregoing novel findings highlight that transmission at NK1R provide an affective valence to septo-hippocampal information processing and that peptidergic transmission in the septum modulates nociceptive behaviours.
Collapse
Affiliation(s)
- Si Yun Ng
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Mohammed Zacky Ariffin
- grid.4280.e0000 0001 2180 6431Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593 Singapore ,grid.4280.e0000 0001 2180 6431Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, MD9, 2 Medical Drive, Singapore, 117593, Singapore. .,Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Han B, Cui S, Liu FY, Wan Y, Shi Y, Yi M. Suppression of ventral hippocampal CA1 pyramidal neuronal activities enhances water intake. Am J Physiol Cell Physiol 2021; 321:C992-C999. [PMID: 34705585 DOI: 10.1152/ajpcell.00211.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thirst is an important interoceptive response and drives water consumption. The hippocampus actively modulates food intake and energy metabolism, but direct evidence for the exact role of the hippocampus in modulating drinking behaviors is lacking. We observed decreased number of c-Fos-positive neurons in the ventral hippocampal CA1 (vCA1) after water restriction or hypertonic saline injection in rats. Suppressed vCA1 neuronal activities under the hypertonic state were further confirmed with in vivo electrophysiological recording and the level of suppression paralleled both the duration and the total amount of water consumption. Chemogenetic inhibition of vCA1 pyramidal neurons increased water consumption in rats injected with both normal and hypertonic saline. These findings suggest that suppression of vCA1 pyramidal neuronal activities enhances water intake.
Collapse
Affiliation(s)
- Bingxuan Han
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Shuang Cui
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Feng-Yu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| | - Yan Shi
- School of Automation Science and Electrical Engineering, Beihang University, Beijing, China
| | - Ming Yi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education / National Health Commission, Peking University, Beijing, China
| |
Collapse
|
5
|
Altered nociception in Alzheimer disease is associated with striatal-enriched protein tyrosine phosphatase signaling. Pain 2021; 162:1669-1680. [PMID: 33433143 DOI: 10.1097/j.pain.0000000000002180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/18/2020] [Indexed: 01/16/2023]
Abstract
ABSTRACT Alzheimer disease (AD) is the most common form of dementia, accounting for approximately 60% of cases. In addition to memory loss, changes in pain sensitivity are found in a substantial proportion of patients with AD. However, the mechanism of nociception deficits in AD is still unclear. Here, we hypothesize that the nociception abnormality in AD is due to the aberrant activation of striatal-enriched protein tyrosine phosphatase (STEP) signaling, which modulates proteins related to nociception transduction. Our results indicated that the transgenic mice carrying human amyloid precursor protein (APP) gene had lower sensitivity to mechanical and thermal stimulation than the wild-type group at the ages of 6, 9, and 12 months. These APP mice exhibited elevated STEP activity and decreased phosphorylation of proteins involved in nociception transduction in hippocampi. The pharmacological inhibition of STEP activity using TC-2153 further reversed nociception and cognitive deficits in the APP mice. Moreover, the phosphorylation of nociception-related proteins in the APP mice was also rescued after STEP inhibitor treatment, indicating the key role of STEP in nociception alteration. In summary, this study identifies a mechanism for the reduced nociceptive sensitivity in an AD mouse model that could serve as a therapeutic target to improve the quality of life for patients with AD.
Collapse
|
6
|
Saffarpour S, Nasirinezhad F. The CA1 hippocampal serotonin alterations involved in anxiety-like behavior induced by sciatic nerve injury in rats. Scand J Pain 2020; 21:135-144. [PMID: 32892185 DOI: 10.1515/sjpain-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Several clinical and experimental studies reported the anxiety as one of the neuropathic pain comorbidities; however, the mechanisms involved in this comorbidity are incompletely cleared. The current study investigated the consequence of pain induced by peripheral neuropathy on the serotonin (5-HT) level of the CA1 region of the hippocampus, which is known as a potential reason, for anxiety associated with neuropathic pain. METHODS In this manner, 72 male rats were inconstantly subdivided into three experimental groups as follows: control, sham, and chronic constriction injury (CCI). Neuropathic pain was initiated by the CCI of the sciatic nerve, and then, mechanical allodynia, thermal hyperalgesia, and anxiety-like behavior were evaluated using the von Frey filaments, radiant heat, open field test (OFT), and elevated plus maze (EPM) respectively. To investigate the probable mechanisms, the in vivo extracellular levels of 5-HT were assessed by microdialysis and using reverse-phase high-pressure liquid chromatography (HPLC) in the CA1 region of hippocampus on days 16 and 30 post-CCI. RESULTS Our data suggested that CCI caused anxiety-like behavior in OFT and EPM test. 5-HT concentration in the CA1 region of the hippocampus significantly (F=43.8, p=0.000) reduced in CCI rats, when the pain threshold was minimum. Nevertheless, these alterations reversed while the pain threshold innate increased. CONCLUSIONS Neuropathic pain, initiated by constriction of the sciatic nerve can induce anxiety-like behavior in rats. This effect accompanies the reduction in 5-HT concentration in the CA1 region of the hippocampus. When the pain spontaneously alleviated, 5-HT level increased and anxiety-like behavior relieved.
Collapse
Affiliation(s)
- Sepideh Saffarpour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Physiological Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Miladinovic T, Sharma M, Phan A, Geres H, Ungard RG, Linher-Melville K, Singh G. Activation of hippocampal microglia in a murine model of cancer-induced pain. J Pain Res 2019; 12:1003-1016. [PMID: 30936739 PMCID: PMC6430067 DOI: 10.2147/jpr.s191860] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction Pain is a common and debilitating comorbidity of metastatic breast cancer. The hippocampus has been implicated in nociceptive processing, particularly relating to the subjective aspect of pain. Here, a syngeneic mouse model was used to characterize the effects of peripheral tumors on hippocampal microglial activation in relation to cancer-induced pain (CIP). Materials and methods Mice were systemically treated with the colony-stimulating factor 1 receptor inhibitor Pexidartinib prior to intrafemoral (IF) or subcutaneous 4T1 carcinoma cell inoculation. Spontaneous and evoked nociceptive responses were quantitated throughout tumor development, and contralateral hippocampi were collected via endpoint microdissection for RNA analysis. Additionally, IF tumor-bearing animals were sacrificed on days 5, 10, 15, and 20 post 4T1 cell inoculation, and brain sections were immunofluorescently stained for Iba1, a marker of activated microglia. Results Ablation of these neuroimmune cells with the CSF1R inhibitor Pexidartinib delayed the onset and severity of cancer-induced nociceptive behaviors in IF tumor-bearing animals, adding to the body of literature that demonstrates microglial contribution to the development and maintenance of CIP. Furthermore, in untreated IF tumor-bearing mice, nociceptive behaviors appeared to progress in parallel with microglial activation in hippocampal regions. Immunofluorescent Iba1+ microglia increased in the dentate gyrus and cornu ammonis 1 hippocampal regions in IF tumor-bearing animals over time, which was confirmed at the mRNA level using relevant microglial markers. Conclusion This is the first experimental evidence to demonstrate the effects of peripheral tumor-induced nociception on hippocampal microglial activation. The increase in hippocampal microglia observed in the present study may reflect the emotional and cognitive deficits reported by patients with CIP.
Collapse
Affiliation(s)
- Tanya Miladinovic
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Manu Sharma
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Andy Phan
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Hana Geres
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Robert G Ungard
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Katja Linher-Melville
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| | - Gurmit Singh
- Michael G. DeGroote Institute for Pain Research and Care, Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada, .,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S 4M1, Canada,
| |
Collapse
|
8
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin‐induced pain behaviour in mice. Eur J Pain 2018. [DOI: https://doi.org/10.1002/ejp.1343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy South Dakota State University Brookings South Dakota
| |
Collapse
|
9
|
Alotaibi G, Rahman S. Effects of glial glutamate transporter activator in formalin-induced pain behaviour in mice. Eur J Pain 2018; 23:765-783. [PMID: 30427564 DOI: 10.1002/ejp.1343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 11/02/2018] [Accepted: 11/08/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nociceptive pain remains a prevalent clinical problem and often poorly responsive to the currently available analgesics. Previous studies have shown that astroglial glutamate transporter-1 (GLT-1) in the hippocampus and anterior cingulate cortex (ACC) is critically involved in pain processing and modulation. However, the role of astroglial GLT-1 in nociceptive pain involving the hippocampus and ACC remains unknown. We investigated the role of 3-[[(2-Methylphenyl) methyl]thio]-6-(2-pyridinyl)-pyridazine (LDN-212320), a GLT-1 activator, in nociceptive pain model and hippocampal-dependent behavioural tasks in mice. METHODS We evaluated the effects of LDN-212320 in formalin-induced nociceptive pain model. In addition, formalin-induced impaired hippocampal-dependent behaviours were measured using Y-maze and object recognition test. Furthermore, GLT-1 expression and extracellular signal-regulated kinase phosphorylation (pERK1/2) were measured in the hippocampus and ACC using Western blot analysis and immunohistochemistry. RESULTS The LDN-212320 (10 or 20 mg/kg, i.p) significantly attenuated formalin-evoked nociceptive behaviour. The antinociceptive effects of LDN-212320 were reversed by systemic administration of DHK (10 mg/kg, i.p), a GLT-1 antagonist. Moreover, LDN-212320 (10 or 20 mg/kg, i.p) significantly reversed formalin-induced impaired hippocampal-dependent behaviour. In addition, LDN-212320 (10 or 20 mg/kg, i.p) increased GLT-1 expressions in the hippocampus and ACC. On the other hand, LDN-212320 (20 mg/kg, i.p) significantly reduced formalin induced-ERK phosphorylation, a marker of nociception, in the hippocampus and ACC. CONCLUSION These results suggest that the GLT-1 activator LDN-212320 prevents nociceptive pain by upregulating astroglial GLT-1 expression in the hippocampus and ACC. Therefore, GLT-1 activator could be a novel drug candidate for nociceptive pain. SIGNIFICANCE The present study provides new insights and evaluates the role of GLT-1 activator in the modulation of nociceptive pain involving hippocampus and ACC. Here, we provide evidence that GLT-1 activator could be a potential therapeutic utility for the treatment of nociceptive pain.
Collapse
Affiliation(s)
- Ghallab Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| | - Shafiqur Rahman
- Department of Pharmaceutical Sciences, College of Pharmacy, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
10
|
Forebrain medial septum sustains experimental neuropathic pain. Sci Rep 2018; 8:11892. [PMID: 30089875 PMCID: PMC6082830 DOI: 10.1038/s41598-018-30177-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 07/25/2018] [Indexed: 12/14/2022] Open
Abstract
The present study explored the role of the medial septal region (MS) in experimental neuropathic pain. For the first time, we found that the MS sustains nociceptive behaviors in rodent models of neuropathic pain, especially in the chronic constriction injury (CCI) model and the paclitaxel model of chemotherapy-induced neuropathic pain. For example, inactivation of the MS with intraseptal muscimol (2 μg/μl, 0.5 μl), a GABA mimetic, reversed peripheral hypersensitivity (PH) in the CCI model and induced place preference in a conditioned place preference task, a surrogate measure of spontaneous nociception. The effect of intraseptal muscimol on PH was comparable to that seen with microinjection of the local anesthetic, lidocaine, into rostral ventromedial medulla which is implicated in facilitating experimental chronic nociception. Cellular analysis in the CCI model showed that the MS region sustains nociceptive gain with CCI by facilitating basal nociceptive processing and the amplification of stimulus-evoked neural processing. Indeed, consistent with the idea that excitatory transmission through MS facilitates chronic experimental pain, intraseptal microinjection of antagonists acting at AMPA and NMDA glutamate receptors attenuated CCI-induced PH. We propose that the MS is a central monitor of bodily nociception which sustains molecular plasticity triggered by persistent noxious insult.
Collapse
|
11
|
Ariffin MZ, Low CM, Khanna S. Medial Septum Modulates Cellular Response Induced in Hippocampus on Microinjection of Cholinergic Agonists into Hypothalamic Lateral Supramammillary Nucleus. Front Neuroanat 2017; 11:79. [PMID: 28966579 PMCID: PMC5605574 DOI: 10.3389/fnana.2017.00079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/31/2017] [Indexed: 11/13/2022] Open
Abstract
Cholinergic mechanisms in supramammillary nucleus (SuM), especially the lateral SuM (lSuM) modulates septo-hippocampal neural activity. The lSuM, as compared to the contiguous medial SuM (mSuM) has relatively dense projections to hippocampus and cingulate cortex (Cg). In the present study, we have investigated whether the effects of cholinergic activation of SuM on hippocampal and cortical neural activities involve a cooperative interaction with the medial septum (MS). Microinjection of the broad-spectrum cholinergic agonist, carbachol, or the cholinergic-nicotinic receptor agonist, nicotine, into the lSuM and the mSuM in urethane anesthetized rat evoked a similar pattern of hippocampal theta rhythm. Despite that, only the lSuM microinjections resulted in an increase in expression of c-Fos-like immunoreactivity (c-Fos-ir) in neurons, including interneurons, of the ipsilateral hippocampus with a very dense expression in dentate gyrus. Likewise, a robust induction of c-Fos-ir was also observed in the ipsilateral Cg. Inhibition of the MS with muscimol pre-treatment attenuated both carbachol-evoked c-Fos-ir and theta activation. The findings indicate that cholinergic–nicotinic mechanisms in lSuM evoke not only neural activation via the ascending synchronizing pathway but also an MS-modulated expression of the plasticity-related molecule c-Fos in cortical regions that are strongly innervated by the lSuM.
Collapse
Affiliation(s)
- Mohammed Z Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Chian-Ming Low
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Department of Anesthesia, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore, Singapore.,Neurobiology Program, Life Science Institute, National University of SingaporeSingapore, Singapore
| |
Collapse
|
12
|
Boadas-Vaello P, Homs J, Reina F, Carrera A, Verdú E. Neuroplasticity of Supraspinal Structures Associated with Pathological Pain. Anat Rec (Hoboken) 2017; 300:1481-1501. [PMID: 28263454 DOI: 10.1002/ar.23587] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 09/27/2016] [Accepted: 10/18/2016] [Indexed: 12/19/2022]
Abstract
Peripheral nerve and spinal cord injuries, along with other painful syndromes such as fibromyalgia, diabetic neuropathy, chemotherapeutic neuropathy, trigeminal neuralgia, complex regional pain syndrome, and/or irritable bowel syndrome, cause several neuroplasticity changes in the nervous system along its entire axis affecting the different neuronal nuclei. This paper reviews these changes, focusing on the supraspinal structures that are involved in the modulation and processing of pain, including the periaqueductal gray matter, red nucleus, locus coeruleus, rostral ventromedial medulla, thalamus, hypothalamus, basal ganglia, cerebellum, habenula, primary, and secondary somatosensory cortex, motor cortex, mammillary bodies, hippocampus, septum, amygdala, cingulated, and prefrontal cortex. Hyperexcitability caused by the modification of postsynaptic receptor expression, central sensitization, and potentiation of presynaptic delivery of neurotransmitters, as well as the reduction of inhibitory inputs, changes in dendritic spine, neural circuit remodeling, alteration of gray matter, and upregulation of proinflammatory mediators (e.g., cytokines) by reactivation of astrocytes and microglial cells are the main functional, structural, and molecular neuroplasticity changes observed in the above supraspinal structures, associated with pathological pain. Studying these changes in greater depth may lead to the implementation and improvement of new therapeutic strategies against pathological pain. Anat Rec, 300:1481-1501, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pere Boadas-Vaello
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Judit Homs
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain.,Department of Physical Therapy EUSES-Universitat of Girona, Salt (Girona), Catalonia, 17190, Spain
| | - Francisco Reina
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Ana Carrera
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| | - Enrique Verdú
- Research Group of Clinical Anatomy, Embryology and Neuroscience (NEOMA), Department of Medical Sciences, Faculty of Medicine, Universitat de Girona, Girona, Catalonia, 17003, Spain
| |
Collapse
|
13
|
The Role of Stress Regulation on Neural Plasticity in Pain Chronification. Neural Plast 2016; 2016:6402942. [PMID: 28053788 PMCID: PMC5178373 DOI: 10.1155/2016/6402942] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/02/2016] [Accepted: 11/14/2016] [Indexed: 01/27/2023] Open
Abstract
Pain, especially chronic pain, is one of the most common clinical symptoms and has been considered as a worldwide healthcare problem. The transition from acute to chronic pain is accompanied by a chain of alterations in physiology, pathology, and psychology. Increasing clinical studies and complementary animal models have elucidated effects of stress regulation on the pain chronification via investigating activations of the hypothalamic-pituitary-adrenal (HPA) axis and changes in some crucial brain regions, including the amygdala, prefrontal cortex, and hippocampus. Although individuals suffer from acute pain benefit from such physiological alterations, chronic pain is commonly associated with maladaptive responses, like the HPA dysfunction and abnormal brain plasticity. However, the causal relationship among pain chronification, stress regulation, and brain alterations is rarely discussed. To call for more attention on this issue, we review recent findings obtained from clinical populations and animal models, propose an integrated stress model of pain chronification based on the existing models in perspectives of environmental influences and genetic predispositions, and discuss the significance of investigating the role of stress regulation on brain alteration in pain chronification for various clinical applications.
Collapse
|
14
|
Ang ST, Ariffin MZ, Khanna S. The forebrain medial septal region and nociception. Neurobiol Learn Mem 2016; 138:238-251. [PMID: 27444843 DOI: 10.1016/j.nlm.2016.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/17/2016] [Indexed: 10/21/2022]
Abstract
The forebrain medial septum, which is an integral part of the septo-hippocampal network, is implicated in sensorimotor integration, fear and anxiety, and spatial learning and memory. A body of evidence also suggests that the septal region affects experimental pain. Indeed, some explorations in humans have raised the possibility that the region may modulate clinical pain as well. This review explores the evidence that implicates the medial septum in nociception and suggests that non-overlapping circuits in the region facilitate acute nociceptive behaviors and defensive behaviors that reflect affect and cognitive appraisal, especially in relation to persistent nociception. In line with a role in nociception, the region modulates nociceptive responses in the neuraxis, including the hippocampus and the anterior cingulate cortex. The aforementioned forebrain regions have also been implicated in persistent/long-lasting nociception. The review also weighs the effects of the medial septum on nociception vis-à-vis the known roles of the region and emphasizes the fact that the region is a part of network of forebrain structures which have been long associated with reward, cognition and affect-motivation and are now implicated in persistent/long-lasting nociception.
Collapse
Affiliation(s)
- Seok Ting Ang
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mohammed Zacky Ariffin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sanjay Khanna
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Program, Life Sciences Institute, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Ang ST, Lee ATH, Foo FC, Ng L, Low CM, Khanna S. GABAergic neurons of the medial septum play a nodal role in facilitation of nociception-induced affect. Sci Rep 2015; 5:15419. [PMID: 26487082 PMCID: PMC4614072 DOI: 10.1038/srep15419] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/25/2015] [Indexed: 02/03/2023] Open
Abstract
The present study explored the functional details of the influence of medial septal region (MSDB) on spectrum of nociceptive behaviours by manipulating intraseptal GABAergic mechanisms. Results showed that formalin-induced acute nociception was not affected by intraseptal microinjection of bicuculline, a GABAA receptor antagonist, or on selective lesion of septal GABAergic neurons. Indeed, the acute nociceptive responses were dissociated from the regulation of sensorimotor behaviour and generation of theta-rhythm by the GABAergic mechanisms in MSDB. The GABAergic lesion attenuated formalin-induced unconditioned cellular response in the anterior cingulate cortex (ACC) and blocked formalin-induced conditioned place avoidance (F-CPA), and as well as the contextual fear induced on conditioning with brief footshock. The effects of lesion on nociceptive-conditioned cellular responses were, however, variable. Interestingly, the lesion attenuated the conditioned representation of experimental context in dorsal hippocampus field CA1 in the F-CPA task. Collectively, the preceding suggests that the MSDB is a nodal centre wherein the GABAergic neurons mediate nociceptive affect-motivation by regulating cellular mechanisms in ACC that confer an aversive value to the noxious stimulus. Further, in conjunction with a modulatory influence on hippocampal contextual processing, MSDB may integrate affect with context as part of associative learning in the F-CPA task.
Collapse
Affiliation(s)
- Seok Ting Ang
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Andy Thiam Huat Lee
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Fang Chee Foo
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Lynn Ng
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
| | - Chian-Ming Low
- Departments of Pharmacology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Departments of Anaesthesia, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| | - Sanjay Khanna
- Departments of Physiology, Yong Loo Lin School of Medicine, 10 Medical Dr, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, 21 Lower Kent Ridge Rd, Singapore
| |
Collapse
|
16
|
Rosa SG, Quines CB, da Rocha JT, Bortolatto CF, Duarte T, Nogueira CW. Antinociceptive action of diphenyl diselenide in the nociception induced by neonatal administration of monosodium glutamate in rats. Eur J Pharmacol 2015; 758:64-71. [DOI: 10.1016/j.ejphar.2015.03.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/13/2015] [Accepted: 03/14/2015] [Indexed: 12/21/2022]
|
17
|
Reisi Z, Haghparast A, Pahlevani P, Shamsizadeh A, Haghparast A. Interaction between the dopaminergic and opioidergic systems in dorsal hippocampus in modulation of formalin-induced orofacial pain in rats. Pharmacol Biochem Behav 2014; 124:220-5. [PMID: 24955867 DOI: 10.1016/j.pbb.2014.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/13/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022]
Abstract
The hippocampus is a region of the brain that serves several functions. The dopaminergic system acts through D1- and D2-like receptors to interfere in pain modulation and the opioid receptors play major roles in analgesic processes and there are obvious overlaps between these two systems. The present study investigated the interaction between the opioidergic and dopaminergic systems in the dorsal hippocampus (CA1) region for formalin-induced orofacial pain. Two guide cannulae were stereotaxically implanted in the CA1 region and morphine (0.5, 1, 2 and 4 μg/0.5 μl saline) and naloxone (0.3, 1 and 3 μg/0.5 μl saline) were used as the opioid receptor agonist and antagonist, respectively. SKF-38393 (1 μg/0.5 μl saline) was used as a D1-like receptor agonist, quinpirole (2 μg/0.5 μl saline) as a D2-like receptor agonist, SCH-23390 (0.5 μg/0.5 μl saline) as a D1-like receptor antagonist and sulpiride (3 μg/0.5 μl DMSO) as a D2-like receptor antagonist. To induce orofacial pain, 50 μl of 1% formalin was subcutaneously injected into the left side of the upper lip. Our results showed that different doses of morphine significantly reduced orofacial pain in both phases induced by formalin. Naloxone (1 and 3 μg) reversed morphine induced analgesia in CA1. SKF-38393 and quinpirole with naloxone (1 μg) significantly decreased formalin-induced orofacial pain in both phases. SCH-23390 had no effect on the antinociceptive response of morphine in both phases of orofacial pain. Sulpiride reversed the antinociceptive effects of morphine only in the first phase, but this result was not significant. Our findings suggest that there is cross-talk between the opioidergic and dopaminergic systems. Opioidergic neurons also exerted antinociceptive effects by modulation of the dopaminergic system in the CA1 region of the brain.
Collapse
Affiliation(s)
- Zahra Reisi
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran; Faculty of Dentistry, International Branch of Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Pouyan Pahlevani
- School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, PO Box 19615-1178, Tehran, Iran.
| |
Collapse
|
18
|
Ralya A, McCarson KE. Acute estrogen surge enhances inflammatory nociception without altering spinal Fos expression. Neurosci Lett 2014; 575:91-5. [PMID: 24861514 DOI: 10.1016/j.neulet.2014.05.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 05/09/2014] [Accepted: 05/13/2014] [Indexed: 11/26/2022]
Abstract
Chronic pain is a major neurological disorder that can manifest differently between genders or sexes. The complex actions of sex hormones may underlie these differences; previous studies have suggested that elevated estrogen levels can enhance pain perception. The purpose of this study was to investigate the hypothesis that acute, activational effects of estradiol (E2) increase persistent inflammatory nociception, and anatomically where this modulation occurs. Spinal expression of Fos is widely used as a marker of nociceptive activation. This study used formalin-evoked nociception in ovariectomized (OVX) adult female rats and measured late-phase hindlimb flinching and Fos expression in the spinal cord, and their modification by acute estrogen supplementation similar to a proestrus surge. Six days after ovariectomy, female rats were injected subcutaneously (s.c.) with 10μg/kg E2 or vehicle. Twenty-four hours later, 50μL of 1.25% or 100μL of 5% formalin was injected into the right hindpaw; hindlimb flinches were counted, and spinal cords removed 2h after formalin injection. The numbers of Fos-expressing neurons in sections of the lumbar spinal cord were analyzed using immunohistochemistry. Formalin-induced inflammation produced a dose-dependent increase in late-phase hindlimb flinching, and E2 pretreatment increased flinching following 5%, but not 1.25% formalin injection. Despite the modification of behavior by E2, the number of spinal Fos-positive neurons was not altered by E2 pretreatment. These findings demonstrate that an acute proestrus-like surge in serum estrogen can produce a stimulus-intensity-dependent increase in inflammation-evoked nociceptive behavior. However, the lack of effect on spinal Fos expression suggests that this enhancement of nociceptive signaling by estrogen is independent of changes in peripheral activation of, expression of the immediate early gene Fos by, or signal throughput of spinal nociceptive neurons.
Collapse
Affiliation(s)
- Andrew Ralya
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS 66160, United States.
| | - Kenneth E McCarson
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Boulevard, MS 1018, Kansas City, KS 66160, United States.
| |
Collapse
|
19
|
Zhang Y, Liu FY, Liao FF, Wan Y, Yi M. Exacerbation of tonic but not phasic pain by entorhinal cortex lesions. Neurosci Lett 2014; 581:137-42. [PMID: 24840135 DOI: 10.1016/j.neulet.2014.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/07/2014] [Accepted: 05/09/2014] [Indexed: 01/21/2023]
Abstract
The hippocampus is actively involved in pain modulation. Previous studies have shown that inhibition, resection or pharmacological interference of the hippocampus or its subcortical afferent sources such as the medial septum and amygdala produce anti-nociceptive effects. But how the cortical connections of the hippocampus modulate pain remains unexplored. The entorhinal cortex (EC) constitutes the major gateway between the hippocampus and the neocortex. In the present study, rats with medial (MEC), lateral (LEC) or sham EC lesions and received the hot plate and the intra-plantar formalin injection tests. Neither MEC nor LEC lesions affected the hot plate test and the first phase of the formalin test. In contrast, paw licking responses in the second phase of the formalin test significantly increased with both MEC and LEC lesions. These results suggested that that the hippocampal-cortical interactions channeled by the EC were involved in tonic but not phasic pain conditions, and that cortical and sub-cortical connections of the hippocampus played independent roles in pain modulation.
Collapse
Affiliation(s)
- Yu Zhang
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China
| | - Feng-Yu Liu
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China
| | - Fei-Fei Liao
- Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, 38 Xueyuan Road, Beijing 100191, PR China
| | - You Wan
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China; Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, 38 Xueyuan Road, Beijing 100191, PR China; Department of Neurobiology, Peking University, 38 Xueyuan Road, Beijing 100191, PR China
| | - Ming Yi
- Neuroscience Research Institute, Peking University , 38 Xueyuan Road, Beijing 100191, PR China.
| |
Collapse
|
20
|
Involvement of dopamine receptors within the dorsal hippocampus in suppression of the formalin-induced orofacial pain. Pharmacol Biochem Behav 2013; 114-115:37-42. [DOI: 10.1016/j.pbb.2013.10.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 10/19/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022]
|
21
|
Hafeshjani ZK, Karami M, Biglarnia M. Nitric oxide in the hippocampal cortical area interacts with naloxone in inducing pain. Indian J Pharmacol 2013; 44:443-7. [PMID: 23087502 PMCID: PMC3469944 DOI: 10.4103/0253-7613.99299] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/21/2012] [Accepted: 04/30/2012] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Role of nitric oxide (NO) in reversing morphine anti-nociception has been shown. However, the interaction between NO and naloxone-induced pain in the hippocampus is unknown. The present study aimed to investigate the involvement of molecule NO in naloxone-induced pain and its possible interaction with naloxone into cortical area 1 (CA1) of hippocampus. MATERIALS AND METHODS Male Wistar rats (250-350 g), provided by Pasteur Institute of Iran, were housed two per cage with food and water ad libitum. The animals' skulls were cannulated bilaterally at coordinates adjusted for CA1 of hippocampus (AP: -3.8; L: ±1.8- 2.2: V: 3) by using stereotaxic apparatus. Each experimental group included 6-8 rats. To induce inflammation pain, the rats received subcutaneous (s.c.) injections of formalin (50 μL at 2.5%) once prior to testing. To evaluate the nociceptive effect of naloxone, the main narcotic antagonist of morphine (0.1-0.4 mg/kg) was injected intraperitoneally (i.p.) 10 min before injection of formalin. Injections of L-arginine, a precursor of NO, and N(G)-Nitro-L-arginine Methyl Ester (L-NAME), an inhibitor of NO synthase (NOS), intra-CA1, were conducted orderly prior to the administration of naloxone. The pain induction was analyzed by analysis of variance (ANOVA). RESULTS Naloxone at the lower doses caused a significant (P<0.01) pain in the naloxone-treated animals. However, pre-administration (1-2 min) of L-arginine (0.04, 0.08, 0.15, 0.3, 1.0, and 3.0 μg/rat, intra-CA1) reversed the response to naloxone. But, the response to L-arginine was blocked by pre-microinjection (1-2 min) of L-NAME (0.15, 0.3, 1.0, and 3.0 μg/rat), whilst, L-arginine or L-NAME alone did not induce pain behavior. CONCLUSION NO in the rat hippocampal CA1 area is involved in naloxone-induced nociception.
Collapse
|
22
|
Ariffin MZ, Chang LS, Koh HC, Low CM, Khanna S. An environment-dependent modulation of cortical neural response by forebrain cholinergic neurons in awake rat. Brain Res 2013; 1513:72-84. [DOI: 10.1016/j.brainres.2013.03.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 03/21/2013] [Accepted: 03/23/2013] [Indexed: 10/27/2022]
|
23
|
Chan FK, Chung SS, Ng IO, Chung SK. The RhoA GTPase-Activating Protein DLC2 Modulates RhoA Activity and Hyperalgesia to Noxious Thermal and Inflammatory Stimuli. Neurosignals 2012; 20:112-26. [DOI: 10.1159/000331240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 07/26/2011] [Indexed: 01/09/2023] Open
|
24
|
Sase A, Khan D, Höger H, Lubec G. Intraperitoneal injection of saline modulates hippocampal brain receptor complex levels but does not impair performance in the Morris Water Maze. Amino Acids 2011; 43:783-92. [DOI: 10.1007/s00726-011-1130-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 01/03/2023]
|
25
|
Forebrain medial septum region facilitates nociception in a rat formalin model of inflammatory pain. Pain 2011; 152:2528-2542. [DOI: 10.1016/j.pain.2011.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/16/2011] [Accepted: 07/26/2011] [Indexed: 12/25/2022]
|
26
|
Johnston IN, Maier SF, Rudy JW, Watkins LR. Post-conditioning experience with acute or chronic inflammatory pain reduces contextual fear conditioning in the rat. Behav Brain Res 2011; 226:361-8. [PMID: 21920390 DOI: 10.1016/j.bbr.2011.08.048] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 08/27/2011] [Accepted: 08/31/2011] [Indexed: 11/26/2022]
Abstract
There is evidence that pain can impact cognitive function in people. The present study evaluated whether Pavlovian fear conditioning in rats would be reduced if conditioning were followed by persistent inflammatory pain induced by a subcutaneous injection of dilute formalin or complete Freund's adjuvant (CFA) on the dorsal lumbar surface of the back. Formalin-induced pain specifically impaired contextual fear conditioning but not auditory cue conditioning (Experiment 1A). Moreover, formalin pain only impaired contextual fear conditioning if it was initiated within 1h of conditioning and did not have a significant effect if initiated 2, 8 or 32 h after (Experiments 1A and 1B). Experiment 2 showed that formalin pain initiated after a session of context pre-exposure reduced the ability of that pre-exposure to facilitate contextual fear when the rat was limited to a brief exposure to the context during conditioning. Similar impairments in context- but not CS-fear conditioning were also observed if the rats received an immediate post-conditioning injection with CFA (Experiment 3). Finally, we confirmed that formalin and CFA injected s.c. on the back induced pain-indicative behaviours, hyperalgesia and allodynia with a similar timecourse to intraplantar injections (Experiment 4). These results suggest that persistent pain impairs learning in a hippocampus-dependent task, and may disrupt processes that encode experiences into long-term memory.
Collapse
Affiliation(s)
- Ian N Johnston
- School of Psychology, The University of Sydney, NSW 2006, Australia.
| | | | | | | |
Collapse
|
27
|
Ford GK, Kieran S, Dolan K, Harhen B, Finn DP. A role for the ventral hippocampal endocannabinoid system in fear-conditioned analgesia and fear responding in the presence of nociceptive tone in rats. Pain 2011; 152:2495-2504. [PMID: 21864979 DOI: 10.1016/j.pain.2011.07.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 06/14/2011] [Accepted: 07/20/2011] [Indexed: 02/02/2023]
Abstract
The endogenous cannabinoid (endocannabinoid) system plays an important role in fear-conditioned analgesia (FCA) and expression and extinction of conditioned fear. The hippocampus has an established role in both pain and conditioned fear and is a substrate for endocannabinoid activity. This study aimed to investigate the role of the endocannabinoid system in the ventral hippocampus (vHip) in FCA and in fear responding in the presence of nociceptive tone. Fear-conditioned rats displayed significantly increased freezing and 22-kHz ultrasonic vocalisation and a reduction in formalin-evoked nociceptive behaviour (ie, FCA) upon re-exposure to a context previously paired with footshock. Tissue levels of the endocannabinoids, anandamide, and 2-arachidonoylglycerol, as well as the fatty acid amide, palmitoylethanolamide, were significantly higher in the vHip of fear-conditioned rats compared with non-fear-conditioned controls. URB597 (inhibitor of fatty acid amide hydrolase [FAAH]), administered bilaterally into the vHip, significantly enhanced FCA during the entire trial and increased fear responding in formalin-treated rats early in the trial. The URB597-induced enhancement of FCA was blocked by intra-vHip administration of the cannabinoid(1) (CB(1)) receptor antagonist/inverse agonist rimonabant. Intra-vHip rimonabant alone had no effect on the expression of FCA, and URB597 did not significantly alter formalin-evoked nociceptive behaviour in non-fear-conditioned rats. These data suggest an important role for the endocannabinoid system in the vHip in FCA, whereby levels of 2-arachidonoylglycerol and the FAAH substrates palmitoylethanolamide and anandamide are increased in rats expressing FCA, and pharmacological inhibition of FAAH in the vHip enhances this form of endogenous analgesia via a CB(1) receptor-dependent mechanism.
Collapse
Affiliation(s)
- Gemma K Ford
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland National Centre for Biomedical Engineering Science (NCBES), Neuroscience Cluster, National University of Ireland, Galway, Ireland Centre for Pain Research, National University of Ireland, Galway, Ireland
| | | | | | | | | |
Collapse
|
28
|
Tamaddonfard E, Erfanparast A, Farshid AA, Khalilzadeh E. Interaction between histamine and morphine at the level of the hippocampus in the formalin-induced orofacial pain in rats. Pharmacol Rep 2011; 63:423-32. [PMID: 21602597 DOI: 10.1016/s1734-1140(11)70508-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Revised: 10/19/2010] [Indexed: 10/25/2022]
Abstract
The present study explored the interaction between histaminergic and opioidergic systems at the level of the hippocampus in modulation of orofacial pain by intra-hippocampal microinjections of histamine, pyrilamine (an antagonist of histamine H(1) receptors), ranitidine (an antagonist of histamine H(2) receptors), morphine (an opioid receptor agonist) and naloxone (an opioid receptor antagonist) in separate and combined treatments. Orofacial pain was induced by subcutaneous (sc) injection of formalin (50 μl, 1%) in the upper lip region and the time spent face rubbing was recorded in 3 min blocks for 45 min. Formalin (sc) produced a marked biphasic (first phase: 0-3 min, second phase: 15-33 min) pain response. Histamine and morphine suppressed both phases of pain. Histamine increased morphine-induced antinociception. Pyrilamine and ranitidine had no effects when used alone, whereas pretreatments with pyrilamine and ranitidine prevented histamine- and morphine-induced antinociceptive effects. Naloxone alone non-significantly increased pain intensity and inhibited the antinociceptive effects of morphine and histamine. The results of the present study indicate that at the level of the hippocampus, histamine through its H(1) and H(2) receptors, mediates orofacial region pain. Moreover, morphine via a naloxone-reversible mechanism produces analgesia. In addition, both histamine H(1) and H(2) receptors, as well as opioid receptors may be involved in the interaction between histamine and morphine in producing analgesia.
Collapse
Affiliation(s)
- Esmaeal Tamaddonfard
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia 57153-1177, Iran.
| | | | | | | |
Collapse
|
29
|
Erfanparast A, Tamaddonfard E, Farshid AA, Khalilzadeh E. Effect of microinjection of histamine into the dorsal hippocampus on the orofacial formalin-induced pain in rats. Eur J Pharmacol 2010; 627:119-23. [DOI: 10.1016/j.ejphar.2009.10.063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Revised: 10/09/2009] [Accepted: 10/27/2009] [Indexed: 01/28/2023]
|
30
|
Abstract
Pain is a complex experience consisting of sensory-discriminative, affective-motivational, and cognitive-evaluative dimensions. Now it has been gradually known that noxious information is processed by a widely-distributed, hierarchically- interconnected neural network, referred to as neuromatrix, in the brain. Thus, identifying the multiple neural networks subserving these functional aspects and harnessing this knowledge to manipulate the pain response in new and beneficial ways are challenging tasks. Albeit with elaborate research efforts on the cortical responses to painful stimuli or clinical pain, involvement of the hippocampal formation (HF) in pain is still a matter of controversy. Here, we integrate previous animal and human studies from the viewpoint of HF and pain, sequentially representing anatomical, behavioral, electrophysiological, molecular/biochemical and functional imaging evidence supporting the role of HF in pain processing. At last, we further expound on the relationship between pain and memory and present some unresolved issues.
Collapse
Affiliation(s)
- Ming-Gang Liu
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, China
| | | |
Collapse
|
31
|
Role of nitric oxide in the rat hippocampal CA1 in morphine antinociception. Brain Res 2009; 1313:79-88. [PMID: 19931515 DOI: 10.1016/j.brainres.2009.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 11/08/2009] [Accepted: 11/09/2009] [Indexed: 12/23/2022]
Abstract
In the present study, the effects of intra-hippocampal CA1 injections of l-arginine, a nitric oxide (NO) precursor and N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, on morphine-induced antinociception in rat formalin test were investigated. To induce inflammation pain, formalin (50 microl at 2.5%) was injected into the right hind-paw of male Wistar rats prior to testing. Morphine (3-9 mg/kg) was injected intraperitoneally (i.p.) 10 min before injection of formalin. The present study shows that administration of L-arginine (0.08, 0.15, 0.3, 1.0 and 3.0 microg/rat), but not L-NAME (0.15, 0.3 and 1.0 microg/rat), 5 min before formalin injection reversed morphine-induced antinociception at the early phase of formalin test. However, both drugs blocked morphine antinociception at the late phase of the test, but none of these drugs elicited any response by themselves at the tonic phase when injected alone. Moreover, the response to l-arginine was potentiated by L-NAME pre-treatment. It should be noted that a single injection of both L-arginine and L-NAME showed nociceptive effect at the early phase of the test. The present study reveals an expression of NADPH-diaphorase in the rat brain samples administered by L-arginine. Expression of NADPH-d is decreased in the samples which were pre-injected with L-NAME. This study suggests NO participation in the rat hippocampal CA1 area in morphine-induced antinociception.
Collapse
|
32
|
Belcheva I, Ivanova M, Tashev R, Belcheva S. Differential involvement of hippocampal vasoactive intestinal peptide in nociception of rats with a model of depression. Peptides 2009; 30:1497-501. [PMID: 19467283 DOI: 10.1016/j.peptides.2009.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/14/2009] [Accepted: 05/15/2009] [Indexed: 11/23/2022]
Abstract
The effects of VIP microinjected unilaterally (left or right) into the hippocampal CA1 area at a dose of 10 and 100 ng or bilaterally (10 ng), on nociception of male Wistar rats with a model of depression (bilateral olfactory bulbectomy-OBX) were studied. Nociception was examined applying mechanical pressure on the left hind paw of the rat (analgesy-meter test). It was found that in OBX rats the pain threshold is increased. VIP showed differential effects depending on the side and dose of administration. The pain threshold after left-side microinjections of VIP into the hippocampal CA1 area of OBX rats was significantly higher than that after injections into right-side. There are no significant differences between right-side VIP-treated and OBX rats. Bilateral microinjections of VIP also exerted antinociceptive effect. These findings suggest that the hippocampal lateralized antinociceptive effect of VIP in OBX rats depends on the hemisphere of injection and suggest that VIP-ergic neurons in the hippocampal CA1 area may play differential role in nociception of rats with a model of depression.
Collapse
Affiliation(s)
- Iren Belcheva
- Department of Behavioral Neurobiology, Institute of Neurobiology, Bulgarian Academy of Sciences, 23, Acad. G. Bonchev St., 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
33
|
Zheng F, Khanna S. Intra-hippocampal tonic inhibition influences formalin pain-induced pyramidal cell suppression, but not excitation in dorsal field CA1 of rat. Brain Res Bull 2008; 77:374-81. [PMID: 18852032 DOI: 10.1016/j.brainresbull.2008.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Revised: 08/12/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
It has been hypothesized that intra-hippocampal GABAergic inhibitory interneurons mediate formalin pain-induced suppression of dorsal hippocampal CA1 pyramidal cell discharge. The present study performed on anaesthetized rats tested the hypothesis by disrupting GABAergic mechanisms with intra-hippocampal administration of the GABA(A) receptor antagonist bicuculline methiodide, applied either dorsally into the pyramidal cell layer and stratum oriens (dorsal-bicuculline) or ventrally into the region of apical dendrites (ventral-bicuculline). It was found that ventral-, but not dorsal-bicuculline attenuated formalin-induced suppression of pyramidal cell extracellular discharge. The antagonism was selective in such a way that the excitation of pyramidal cell was unaffected. Interestingly, ventral-bicuculline strongly disinhibited CA1 pyramidal cells and shifted the distribution of their spontaneous discharge to values higher than the control group. However, dorsal-bicuculline disinhibited the local CA1 interneurons that were strongly excited on injection of formalin. Overall, the findings favour the notion that tonic GABA(A) receptor mechanisms located in the region of apical dendrites facilitate formalin-induced pyramidal cell suppression by masking the background excitatory drive impinging on the pyramidal cells. Interestingly, both the attenuation of formalin-induced inhibition and facilitation of basal discharge of CA1 pyramidal cells by ventral-bicuculline are similar to the effects seen previously with the destruction of medial septal cholinergic neurons. This convergence of effects strengthens the proposal that the network of medial septal cholinergic neurons and hippocampal GABAergic interneurons influence formalin pain-induced CA1 pyramidal cell suppression. In addition, the data point to a non-overlapping excitatory drive whose strength is unaffected by the inhibitory drive that underpins formalin suppression.
Collapse
Affiliation(s)
- F Zheng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Blk MD9, 2 Medical Drive, Singapore 117597, Singapore.
| | | |
Collapse
|
34
|
Seo YJ, Kwon MS, Choi HW, Choi SM, Kim YW, Lee JK, Park SH, Jung JS, Suh HW. Differential expression of phosphorylated Ca2+/calmodulin-dependent protein kinase II and phosphorylated extracellular signal-regulated protein in the mouse hippocampus induced by various nociceptive stimuli. Neuroscience 2008; 156:436-49. [PMID: 18771711 DOI: 10.1016/j.neuroscience.2008.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 08/01/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
In the present study, we characterized differential expressions of phosphorylated Ca(2+)/calmodulin-dependent protein kinase IIalpha (pCaMKIIalpha) and phosphorylated extracellular signal-regulated protein (pERK) in the mouse hippocampus induced by various nociceptive stimuli. In an immunoblot study, s.c. injection of formalin and intrathecal (i.t.) injections of glutamate, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1 beta) significantly increased pCaMKIIalpha expression in the hippocampus, but i.p. injections of acetic acid did not. pERK1/2 expression was also increased by i.t. injection of glutamate, TNF-alpha, and IL-1beta but not by s.c. injections of formalin or i.p. injections of acetic acid. In an immunohistochemical study, we found that increased pCaMKIIalpha and pERK expressions were mainly located at CA3 or the dentate gyrus of the hippocampus. In a behavioral study, we assessed the effects of PD98059 (a MEK 1/2 inhibitor) and KN-93 (a CaMKII inhibitor) following i.c.v. administration on the nociceptive behaviors induced by i.t. injections of glutamate, pro-inflammatory cytokines (TNF-alpha or IL-1beta), and i.p. injections of acetic acid. PD98059 as well as KN-93 significantly attenuated the nociceptive behavior induced by glutamate, pro-inflammatory cytokines, and acetic acid. Our results suggest that (1) pERKalpha and pCaMK-II located in the hippocampus are important regulators during the nociceptive processes induced by s.c. formalin, i.t. glutamate, i.t. pro-inflammatory cytokines, and i.p. acetic acid injection, respectively, and (2) the alteration of pERK and pCaMKIIalpha in nociceptive processing induced by formalin, glutamate, pro-inflammatory cytokines and acetic acid was modulated in a different manner.
Collapse
Affiliation(s)
- Y-J Seo
- Division of Recombinant Product, Biopharmaceutical Bureau, Korea Food and Drug Administration, 194 Tongilro, Eunpyeong-gu, Seoul, 122-704, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Lee ATH, Shah JJ, Li L, Cheng Y, Moore PK, Khanna S. A nociceptive-intensity-dependent role for hydrogen sulphide in the formalin model of persistent inflammatory pain. Neuroscience 2008; 152:89-96. [PMID: 18248901 DOI: 10.1016/j.neuroscience.2007.11.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 10/22/2022]
Abstract
The present study investigated the hypothesis that hydrogen sulfide (H2S) is pro-nociceptive in the formalin model of persistent inflammatory pain in the adult rat. Hind paw injection of formalin evoked a concentration-dependent increase in the hind paw concentration of H2S. Increased concentration of H2S was found in homogenates prepared from hind paws injected with 5% (but not 1.25%) formalin. Correspondingly, animal nociceptive flinching and hind paw edema were maximal with 5% formalin. Both nociceptive flinching and hind paw edema induced by injection of 5% formalin were attenuated by pretreatment with DL-propargylglycine (PPG; 50 mg/kg, i.p.) which is an inhibitor of the H2S synthesizing enzyme cystathionine-gamma-lyase (CSE). The effect of pretreatment with PPG was selective and the drug did not influence animal behavior or hind-paw edema with injection of 1.25% formalin. Furthermore, PPG pretreatment attenuated the induction of c-Fos in spinal laminae I-II following injection of 5% formalin. In contrast, co-injection of 1.25% formalin with sodium hydrogen sulfide (NaHS; 1 nmol/0.1 ml), a H2S donor, into the hind paw increased animal nociceptive behavior. Collectively, these findings show that the effect of peripheral H2S in the pathogenesis of inflammatory pain depends, at least in part, on the nociceptive intensity level.
Collapse
Affiliation(s)
- A T H Lee
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, 2 Medical Drive, Singapore 117597
| | | | | | | | | | | |
Collapse
|
36
|
Xiao Y, Yang XF, Xu MY. Effect of acetylcholine on pain-related electric activities in hippocampal CA1 area of normal and morphinistic rats. Neurosci Bull 2008; 23:323-8. [PMID: 18064061 DOI: 10.1007/s12264-007-0048-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE To examine the effect of acetylcholine (ACh) on the electric activities of pain-excitation neurons (PEN) and pain-inhibitation neurons (PIN) in the hippocampal CA1 area of normal rats or morphinistic rats, and to explore the role of ACh in regulation of pain perception in CA1 area under normal condition and morphine addiction. METHODS The trains of electric impulses applied to sciatic nerve were set as noxious stimulation. The discharges of PEN and PIN in the CA1 area were recorded extracellularly by glass microelectrode. We observed the influence of intracerebroventricular (i.c.v.) injection of ACh and atropine on the noxious stimulation-evoked activities of PEN and PIN in the CA1 area. RESULTS Noxious stimulation enhanced the electric activity of PEN and depressed that of PIN in the CA1 area of both normal and addiction rats. In normal rats, ACh decrease the pain-evoked discharge frequency of PEN, while increased the frequency of PIN. These effects reached the peak value at 4 min after injection of ACh. In morphinistic rats, ACh also inhibited the PEN electric activity and potentialized the PIN electric activity, but the maximum effect appeared at 6 min after administration. The ACh-induced responses were significantly blocked by muscarinic receptor antagonist atropine. CONCLUSION Cholinergic neurons and muscarinic receptors in the hippocampal CA1 area are involved in the processing of nociceptive information and they may play an analgesia role in pain modulation. Morphine addiction attenuated the sensitivity of pain-related neurons to the noxious information.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Physiology, Harbin Medical University, Harbin 150081, China
| | | | | |
Collapse
|
37
|
Kodama D, Ono H, Tanabe M. Altered hippocampal long-term potentiation after peripheral nerve injury in mice. Eur J Pharmacol 2007; 574:127-32. [PMID: 17765219 DOI: 10.1016/j.ejphar.2007.07.054] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2007] [Revised: 07/17/2007] [Accepted: 07/26/2007] [Indexed: 11/27/2022]
Abstract
It has been clinically reported that patients with chronic pain often have accompanying cognitive deficiency, which hampers efficient medical treatment. In the present study, we investigated whether hippocampal synaptic plasticity, which has been considered to be a cellular model of learning and memory, could be influenced by chronic pain conditions using a murine model of neuropathic pain prepared by partial ligation of the sciatic nerve (the Seltzer model). In slices obtained from neuropathic animals, tetanus-induced long-term potentiation of CA1 hippocampal synaptic transmission was impaired, whereas long-term depression induced by low-frequency stimulation was similar in neuropathic and sham-treated (control) animals. Bath application of the beta-adrenoceptor agonist isoproterenol or the beta-adrenoceptor antagonist propranolol diminished the difference of synaptic plasticity between neuropathic and control mice. In the presence of isoproterenol, long-term potentiation was successfully induced in neuropathic mice. By contrast, long-term potentiation in sham-treated mice was impaired by propranolol which did not alter the already impaired long-term potentiation after peripheral nerve injury. These results suggest that beta-adrenergic functions are changed in chronic pain conditions, which may underlie the deficiency of long-term potentiation.
Collapse
Affiliation(s)
- Daisuke Kodama
- Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan
| | | | | |
Collapse
|
38
|
Duric V, McCarson KE. Neurokinin-1 (NK-1) receptor and brain-derived neurotrophic factor (BDNF) gene expression is differentially modulated in the rat spinal dorsal horn and hippocampus during inflammatory pain. Mol Pain 2007; 3:32. [PMID: 17974009 PMCID: PMC2174921 DOI: 10.1186/1744-8069-3-32] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 10/31/2007] [Indexed: 01/14/2023] Open
Abstract
Persistent pain produces complex alterations in sensory pathways of the central nervous system (CNS) through activation of various nociceptive mechanisms. However, the effects of pain on higher brain centers, particularly the influence of the stressful component of pain on the limbic system, are poorly understood. Neurokinin-1 (NK-1) receptors and brain-derived neurotrophic factor (BDNF), known neuromediators of hyperalgesia and spinal central sensitization, have also been implicated in the plasticity and neurodegeneration occurring in the hippocampal formation during exposures to various stressors. Results of this study showed that injections of complete Freund's adjuvant (CFA) into the hind paw increased NK-1 receptor and BDNF mRNA levels in the ipsilateral dorsal horn, supporting an important role for these nociceptive mediators in the amplification of ascending pain signaling. An opposite effect was observed in the hippocampus, where CFA down-regulated NK-1 receptor and BDNF gene expression, phenomena previously observed in immobilization models of stress and depression. Western blot analyses demonstrated that in the spinal cord, CFA also increased levels of phosphorylated cAMP response element-binding protein (CREB), while in the hippocampus the activation of this transcription factor was significantly reduced, further suggesting that tissue specific transcription of either NK-1 or BDNF genes may be partially regulated by common intracellular transduction mechanisms mediated through activation of CREB. These findings suggest that persistent nociception induces differential regional regulation of NK-1 receptor and BDNF gene expression and CREB activation in the CNS, potentially reflecting varied roles of these neuromodulators in the spinal cord during persistent sensory activation vs. modulation of the higher brain structures such as the hippocampus.
Collapse
Affiliation(s)
- Vanja Duric
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd., Kansas City, KS, 66160 USA.
| | | |
Collapse
|
39
|
Yang XF, Xiao Y, Xu MY. Both endogenous and exogenous ACh plays antinociceptive role in the hippocampus CA1 of rats. J Neural Transm (Vienna) 2007; 115:1-6. [PMID: 17851635 DOI: 10.1007/s00702-007-0808-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Accepted: 08/22/2007] [Indexed: 10/22/2022]
Abstract
The present study examines the effect of acetylcholine (ACh), muscarinic acetylcholine receptors (mAChRs) agonist pilocarpine and mAChRs antagonist atropine on the pain-evoked response of pain-excited neurons (PEN) and pain-inhibited neurons (PIN) in the hippocampal CA1 of rats. The trains of electric impulses applied to the sciatic nerve were used as noxious stimulation. The discharges of PEN and PIN in the hippocampal CA1 were recorded by glass microelectrode. The results showed that intrahippocampal microinjection of ACh (2 microg/1 microl) or pilocarpine (2 microg/1 microl) decreased the frequency of discharge of PEN, and increased the frequency of discharge of PIN evoked by the noxious stimulation in the hippocampal CA1, while intrahippocampal administration of atropine (0.5 microg/1 microl) produced opposite response. On the basis of the above findings, we can deduce that ACh and mAChRs are involved in the modulation of nociceptive information transmission in the hippocampal CA1.
Collapse
Affiliation(s)
- X F Yang
- Department of Physiology, Harbin Medical University, Harbin, China
| | | | | |
Collapse
|
40
|
Guo SW, Liu MG, Long YL, Ren LY, Lu ZM, Yu HY, Hou JF, Li H, Gao CY, Cui XY, An YY, Li J, Zhao LF, Chen J. Region- or state-related differences in expression and activation of extracellular signal-regulated kinases (ERKs) in naïve and pain-experiencing rats. BMC Neurosci 2007; 8:53. [PMID: 17650295 PMCID: PMC1949833 DOI: 10.1186/1471-2202-8-53] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2007] [Accepted: 07/24/2007] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Extracellular signal-regulated kinase (ERK), one member of the mitogen-activated protein kinase (MAPK) family, has been suggested to regulate a diverse array of cellular functions, including cell growth, differentiation, survival, as well as neuronal plasticity. Recent evidence indicates a role for ERKs in nociceptive processing in both dorsal root ganglion and spinal cord. However, little literature has been reported to examine the differential distribution and activation of ERK isoforms, ERK1 and ERK2, at different levels of pain-related pathways under both normal and pain states. In the present study, quantitative blot immunolabeling technique was used to determine the spatial and temporal expression of ERK1 and ERK2, as well as their activated forms, in the spinal cord, primary somatosensory cortex (SI area of cortex), and hippocampus under normal, transient pain and persistent pain states. RESULTS In naïve rats, we detected regional differences in total expression of ERK1 and ERK2 across different areas. In the spinal cord, ERK1 was expressed more abundantly than ERK2, while in the SI area of cortex and hippocampus, there was a larger amount of ERK2 than ERK1. Moreover, phosphorylated ERK2 (pERK2), not phosphorylated ERK1 (pERK1), was normally expressed with a high level in the SI area and hippocampus, but both pERK1 and pERK2 were barely detectable in normal spinal cord. Intraplantar saline or bee venom injection, mimicking transient or persistent pain respectively, can equally initiate an intense and long-lasting activation of ERKs in all three areas examined. However, isoform-dependent differences existed among these areas, that is, pERK2 exhibited stronger response than pERK1 in the spinal cord, whereas ERK1 was more remarkably activated than ERK2 in the S1 area and hippocampus. CONCLUSION Taken these results together, we conclude that: (1) under normal state, while ERK immunoreactivity is broadly distributed in the rat central nervous system in general, the relative abundance of ERK1 and ERK2 differs greatly among specific regions; (2) under pain state, either ERK1 or ERK2 can be effectively phosphorylated with a long-term duration by both transient and persistent pain, but their response patterns differ from each other across distinct regions; (3) The long-lasting ERKs activation induced by bee venom injection is highly correlated with our previous behavioral, electrophysiological, morphological and pharmacological observations, lending further support to the functional importance of ERKs-mediated signaling pathways in the processing of negative consequences of pain associated with sensory, emotional and cognitive dimensions.
Collapse
Affiliation(s)
- She-Wei Guo
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Ming-Gang Liu
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Ya-Li Long
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Li-Ying Ren
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Zhuo-Min Lu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Hou-You Yu
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Jun-Feng Hou
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P. R. China
| | - Hua Li
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Cui-Ying Gao
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Xiu-Yu Cui
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Yang-Yuan An
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Junfa Li
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Lan-Feng Zhao
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Capital Medical University, Beijing 100069, P. R. China
- Institute for Biomedical Sciences of Pain and Institute for Functional Brain Disorders, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, P. R. China
| |
Collapse
|
41
|
Soleimannejad E, Naghdi N, Semnanian S, Fathollahi Y, Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol 2007; 562:39-46. [PMID: 17362915 DOI: 10.1016/j.ejphar.2006.11.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/10/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
Previous research has shown that the hippocampus processes pain related-information, probably through hippocampal neurons that respond exclusively to painful stimulation. In the current experiments we tested whether blocking NMDA receptors in the hippocampal CA1 region and dentate gyrus could reduce nociceptive behaviors in rats. The competitive and noncompetitive NMDA receptor antagonists 2-amino-5-phosphonopentanoic acid (AP5; 3.75 microg/0.75 microl) and MK801 (1.5, 3, 6 microg/0.5 microl) were injected into the dentate gyrus and CA1 area of behaving rats 5 min before subcutaneous injection of formalin irritant. Pain behaviors in both acute and tonic phases of the formalin test were significantly reduced by AP5 (3.75 microg/0.75 microl) and MK801 (3 microg/0.5 microl, but not 1.5 and 6 microg/0.5 microl) injection to the dentate gyrus. In the CA1, injection of AP5 had no effect while injection of the effective dose of MK801 (3 microg/0.5 microl) had a significant antinociceptive effect. This effect was apparent only during the late phase of the formalin test. These results support the hypothesis that NMDA-sensitive mechanisms are involved in acute and persistent pain-related processing in the dentate gyrus and with tonic pain processing in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Elaheh Soleimannejad
- School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Niavaran, P.O.Box 19395-5746,Tehran, Iran
| | | | | | | | | |
Collapse
|
42
|
Soleimannejad E, Semnanian S, Fathollahi Y, Naghdi N. Microinjection of ritanserin into the dorsal hippocampal CA1 and dentate gyrus decrease nociceptive behavior in adult male rat. Behav Brain Res 2006; 168:221-5. [PMID: 16377002 DOI: 10.1016/j.bbr.2005.11.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2005] [Revised: 11/08/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
Prenatal 5HT depletion causes a significant decrease in the level of nociceptive sensitivity during the second phase of the formalin test behavioral response. These experiments were designed to test whether blocking 5HT2A/2c receptors in the CA1 region of the hippocampus and dentate gyrus would decrease nociceptive behaviors induced by a peripheral noxious stimulus formalin as an animal model of unremitting human being. The 5HT2A/2c receptor antagonist ritanserin (2, 4 and 8 microg/0.5 microl) was injected into the CA1 area and dentate gyrus of behaving rats 5 min before subcutaneous injection of formalin irritant. Nociceptive behaviors in both phases of the formalin test were significantly decreased by ritanserin (4 and 8 microg/0.5 microl) and ritanserin had no effect at 2 microg/0.5 microl. These results support the hypothesis that the hippocampal formation may modify the processing of incoming nociceptive information and that 5HT2A/2c receptor-sensitive mechanisms in the hippocampus may play a role in nociception and/or the expression of related behaviors.
Collapse
Affiliation(s)
- E Soleimannejad
- School of Cognitive Sciences, Institute for studies in Theoretical Physics and Mathematics (IPM), Niavaran, P.O. Box 19395-5746, Tehran, Iran
| | | | | | | |
Collapse
|
43
|
Tai SK, Huang FD, Moochhala S, Khanna S. Hippocampal theta state in relation to formalin nociception. Pain 2006; 121:29-42. [PMID: 16480829 DOI: 10.1016/j.pain.2005.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Revised: 11/14/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
In the present study using extracellular electrophysiological recording techniques, we explored the temporal characteristics of hippocampal theta activation in relation to formalin nociception. Results indicate that, compared to hind paw injection of saline, formalin injection in behaving rat evoked biphasic increase in duration of dorsal CA1 theta. Such an increase broadly paralleled animal biphasic behavioral activation, especially lick and moment-to-moment agitated behaviors. Correspondingly, theta-modulated cell firing was observed following formalin injection in anesthetized rat. The formalin-induced theta activation in behaving rat was most marked during peak of theta activation in the 2nd theta state (11-40 min post-injection) comprising 73% of the time in the 5 min block. An increase in theta peak frequency was also observed with respect to pre-injection control. However, the peak of theta in the 2nd theta state mostly preceded the peak of lick and flinch of the affected paw. In the 41-60 min, following formalin injection while the animals displayed robust nociceptive flinching and lifting, the theta activity approached control levels. Furthermore, the theta peak frequency at peak of theta was higher than the corresponding values of sustained theta observed in correlation with the nociceptive behaviors; in contrast, high frequency theta rhythm was observed during formalin-induced other moment-to-moment agitated behaviors. These findings favor the notion that in the formalin model the theta state of the hippocampus reflects a neural drive that is dissociated from the duration of nociceptive experience and is not selective to the typical nociceptive indices of lick, flinch, and lift of the injured paw.
Collapse
Affiliation(s)
- Siew Kian Tai
- Department of Physiology (MD9), National University of Singapore, 2 Medical Drive, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
44
|
Blom JMC, Benatti C, Alboni S, Capone G, Ferraguti C, Brunello N, Tascedda F. Early postnatal chronic inflammation produces long-term changes in pain behavior and N-methyl-D-aspartate receptor subtype gene expression in the central nervous system of adult mice. J Neurosci Res 2006; 84:1789-98. [PMID: 17016858 DOI: 10.1002/jnr.21077] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The objective of this study was to test whether postnatal chronic inflammation resulted in altered reactivity to pain later in life when reexposed to the same inflammatory agent and whether this alteration correlated with brain-region-specific patterns of N-methyl-D-aspartate (NMDA) receptor subtype gene expression. Neonatal mouse pups received a single injection of complete Freund's adjuvant (CFA) or saline into the left hind paw on postnatal day 1 or 14. At 12 weeks of age, both neonatal CFA- and saline-treated animals received a unilateral injection of CFA in the left hind paw. Adult behavioral responsiveness of the left paw to a radiant heat source was determined in mice treated neonatally with saline or CFA before and after receiving CFA as adults. Twenty-four hours later, brains were dissected and NMDA receptor subunit gene expression was determined in four different brain areas by using an RNase protection assay. The results indicated that NMDA receptor subtype gene expression in adult mice exposed to persistent neonatal peripheral inflammation was brain region specific and that NMDA gene expression and pain reactivity differed according to the day of neonatal CFA exposure. Similarly, adult behavioral responsiveness to a noxious radiant heat source differed according to the age of neonatal exposure to CFA. The data suggest a possible molecular basis for the hypothesis that chronic persistent inflammation experienced early during development may permanently alter the future behavior and the sensitivity to pain later in life, especially in response to subsequent or recurrent inflammatory events.
Collapse
Affiliation(s)
- Joan M C Blom
- Department of Pediatrics, University Hospital of Modena, Modena, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Casey KL, Tran TD. Chapter 12 Cortical mechanisms mediating acute and chronic pain in humans. HANDBOOK OF CLINICAL NEUROLOGY 2006; 81:159-III. [DOI: 10.1016/s0072-9752(06)80016-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Kelly MA, Beuckmann CT, Williams SC, Sinton CM, Motoike T, Richardson JA, Hammer RE, Garry MG, Yanagisawa M. Neuropeptide B-deficient mice demonstrate hyperalgesia in response to inflammatory pain. Proc Natl Acad Sci U S A 2005; 102:9942-7. [PMID: 15983370 PMCID: PMC1174999 DOI: 10.1073/pnas.0503795102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide B (NPB) and neuropeptide W (NPW) have been recently identified as ligands for the G protein-coupled receptor (GPR) 7 and GPR8. The precise in vivo role of this neuropeptide-receptor pathway has not been fully demonstrated. In this paper, we report that NPB-deficient mice manifest a mild adult-onset obesity, similar to that reported in GPR7-null mice. NPB-deficient mice also exhibit hyperalgesia in response to inflammatory pain. Hyperalgesia was not observed in response to chemical pain, thermal pain, or electrical stimulation. NPB-deficient mice demonstrated intact behavioral responses to pain, and learning from the negative reinforcement of electrical stimulation was unaltered. Baseline anxiety was also unchanged as measured in both the elevated plus maze and time spent immobile in a novel environment. These data support the idea that NPB is a factor in the modulation of responses to inflammatory pain and body weight homeostasis.
Collapse
Affiliation(s)
- Michele A Kelly
- Howard Hughes Medical Institute and Departments of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Al Amin HA, Atweh SF, Jabbur SJ, Saadé NE. Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci 2004; 20:3027-34. [PMID: 15579157 DOI: 10.1111/j.1460-9568.2004.03762.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The proper maturation of the hippocampus is essential for the development of different behaviours, including memory, pain responses and avoidance. The mechanisms involved in the neurodevelopment of nociception have also been implicated in several neuropsychiatric disorders. The neonatal lesion of the ventral hippocampus (VH) in rats, an animal model of schizophrenia, can be utilized to study the developmental neurobiology of animal behaviour. We examined the nociceptive responses in this animal model at different stages of development. Rat pups were lesioned at postnatal day 7 by injecting ibotenic acid into the VH bilaterally, and then tested for thermal and mechanical nociception at the age of 35, 65 and 180 days. The nociceptive tests used were the hot plate (HP), paw pressure (PP) and tail flick (TF) tests. Another group of adult rats had the same lesion in the VH and then underwent the same tests at 28, 56 and 168 days post-lesions. When compared with sham controls, the rats with neonatal VH lesion showed decreased latency for the HP and PP tests only after puberty. The TF test showed significant increase in latency for both groups at age 65 and 180 days. The adult rats with VH lesion showed no major changes over all periods of testing. These results suggest that early lesion of VH can alter the development of the neural mechanisms involved in the processing of thermal and mechanical nociception.
Collapse
Affiliation(s)
- Hassen A Al Amin
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | | | | | | |
Collapse
|