1
|
Chen ZK, Liu YY, Zhou JC, Chen GH, Liu CF, Qu WM, Huang ZL. Insomnia-related rodent models in drug discovery. Acta Pharmacol Sin 2024; 45:1777-1792. [PMID: 38671193 PMCID: PMC11335876 DOI: 10.1038/s41401-024-01269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/24/2024] [Indexed: 04/28/2024] Open
Abstract
Despite the widespread prevalence and important medical impact of insomnia, effective agents with few side effects are lacking in clinics. This is most likely due to relatively poor understanding of the etiology and pathophysiology of insomnia, and the lack of appropriate animal models for screening new compounds. As the main homeostatic, circadian, and neurochemical modulations of sleep remain essentially similar between humans and rodents, rodent models are often used to elucidate the mechanisms of insomnia and to develop novel therapeutic targets. In this article, we focus on several rodent models of insomnia induced by stress, diseases, drugs, disruption of the circadian clock, and other means such as genetic manipulation of specific neuronal activity, respectively, which could be used to screen for novel hypnotics. Moreover, important advantages and constraints of some animal models are discussed. Finally, this review highlights that the rodent models of insomnia may play a crucial role in novel drug development to optimize the management of insomnia.
Collapse
Affiliation(s)
- Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Yuan-Yuan Liu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ji-Chuan Zhou
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), the Affiliated Chaohu Hospital of Anhui Medical University, Hefei, 238000, China
| | - Chun-Feng Liu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences; State Key Laboratory of Medical Neurobiology, Institutes of Brain Science and Collaborative Innovation Center for Brain Science; Joint International Research Laboratory of Sleep; and Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Harding CD, Walker KMM, Hackett TD, Herwig A, Peirson SN, Vyazovskiy VV. Ultrasonic vocalisation rate tracks the diurnal pattern of activity in winter phenotype Djungarian hamsters (Phodopus sungorus). J Comp Physiol B 2024; 194:383-401. [PMID: 38733409 PMCID: PMC11233387 DOI: 10.1007/s00360-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
Vocalisations are increasingly being recognised as an important aspect of normal rodent behaviour yet little is known of how they interact with other spontaneous behaviours such as sleep and torpor, particularly in a social setting. We obtained chronic recordings of the vocal behaviour of adult male and female Djungarian hamsters (Phodopus sungorus) housed under short photoperiod (8 h light, 16 h dark, square wave transitions), in different social contexts. The animals were kept in isolation or in same-sex sibling pairs, separated by a grid which allowed non-physical social interaction. On approximately 20% of days hamsters spontaneously entered torpor, a state of metabolic depression that coincides with the rest phase of many small mammal species in response to actual or predicted energy shortages. Animals produced ultrasonic vocalisations (USVs) with a peak frequency of 57 kHz in both social and asocial conditions and there was a high degree of variability in vocalisation rate between subjects. Vocalisation rate was correlated with locomotor activity across the 24-h light cycle, occurring more frequently during the dark period when the hamsters were more active and peaking around light transitions. Solitary-housed animals did not vocalise whilst torpid and animals remained in torpor despite overlapping with vocalisations in social-housing. Besides a minor decrease in peak USV frequency when isolated hamsters were re-paired with their siblings, changing social contexts did not influence vocalisation behaviour or structure. In rare instances, temporally overlapping USVs occurred when animals were socially-housed and were grouped in such a way that could indicate coordination. We did not observe broadband calls (BBCs) contemporaneous with USVs in this paradigm, corroborating their correlation with physical aggression which was absent from our experiment. Overall, we find little evidence to suggest a direct social function of hamster USVs. We conclude that understanding the effects of vocalisations on spontaneous behaviours, such as sleep and torpor, will inform experimental design of future studies, especially where the role of social interactions is investigated.
Collapse
Affiliation(s)
- Christian D Harding
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK.
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, University of California San Diego, San Diego, USA.
| | - Kerry M M Walker
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
| | | | - Annika Herwig
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Stuart N Peirson
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| | - Vladyslav V Vyazovskiy
- Department of Physiology Anatomy and Genetics, University of Oxford, Oxford, UK
- Sir Jules Thorn Sleep and Circadian Neuroscience Institute, University of Oxford, Oxford, UK
- The Kavli Institute for Nanoscience Discovery, Oxford, UK
| |
Collapse
|
3
|
Fernandez FX, Perlis ML. Animal models of human insomnia. J Sleep Res 2023; 32:e13845. [PMID: 36748845 PMCID: PMC10404637 DOI: 10.1111/jsr.13845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/20/2023] [Indexed: 02/08/2023]
Abstract
Insomnia disorder (chronic sleep continuity disturbance) is a debilitating condition affecting 5%-10% of the adult population worldwide. To date, researchers have attempted to model insomnia in animals through breeding strategies that create pathologically short-sleeping individuals or with drugs and environmental contexts that directly impose sleeplessness. While these approaches have been invaluable for identifying insomnia susceptibility genes and mapping the neural networks that underpin sleep-wake regulation, they fail to capture concurrently several of the core clinical diagnostic features of insomnia disorder in humans, where sleep continuity disturbance is self-perpetuating, occurs despite adequate sleep opportunity, and is often not accompanied by significant changes in sleep duration or architecture. In the present review, we discuss these issues and then outline ways animal models can be used to develop approaches that are more ecologically valid in their recapitulation of chronic insomnia's natural aetiology and pathophysiology. Conditioning of self-generated sleep loss with these methods promises to create a better understanding of the neuroadaptations that maintain insomnia, including potentially within the infralimbic cortex, a substrate at the crossroads of threat habituation and sleep.
Collapse
Affiliation(s)
| | - Michael L. Perlis
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Cruz-Mendoza F, Luquin S, García-Estrada J, Fernández-Quezada D, Jauregui-Huerta F. Acoustic Stress Induces Opposite Proliferative/Transformative Effects in Hippocampal Glia. Int J Mol Sci 2023; 24:ijms24065520. [PMID: 36982594 PMCID: PMC10058072 DOI: 10.3390/ijms24065520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
The hippocampus is a brain region crucially involved in regulating stress responses and highly sensitive to environmental changes, with elevated proliferative and adaptive activity of neurons and glial cells. Despite the prevalence of environmental noise as a stressor, its effects on hippocampal cytoarchitecture remain largely unknown. In this study, we aimed to investigate the impact of acoustic stress on hippocampal proliferation and glial cytoarchitecture in adult male rats, using environmental noise as a stress model. After 21 days of noise exposure, our results showed abnormal cellular proliferation in the hippocampus, with an inverse effect on the proliferation ratios of astrocytes and microglia. Both cell lineages also displayed atrophic morphologies with fewer processes and lower densities in the noise-stressed animals. Our findings suggest that, stress not only affects neurogenesis and neuronal death in the hippocampus, but also the proliferation ratio, cell density, and morphology of glial cells, potentially triggering an inflammatory-like response that compromises their homeostatic and repair functions.
Collapse
|
5
|
Grunst AS, Grunst ML, Raap T, Pinxten R, Eens M. Anthropogenic noise and light pollution additively affect sleep behaviour in free-living birds in sex- and season-dependent fashions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120426. [PMID: 36273698 DOI: 10.1016/j.envpol.2022.120426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Rapid anthropogenic transformation of environments exposes organisms to diverse disturbance factors, including anthropogenic noise pollution and artificial light at night (ALAN). These sensory pollutants interfere with acquisition of, and response to, environmental cues and can be perceived as stressors. Noise pollution and ALAN are often experienced simultaneously, and are thus likely to jointly affect organisms, either additively or interactively. Yet, combined effects of noise pollution and ALAN remain poorly elucidated. We studied combined effects of noise pollution and ALAN on the sleep behaviour of a free-living songbird, the great tit (Parus major). Sleep is widely conserved across animal taxa and fulfils essential functions, and research has demonstrated independent effects of both noise and ALAN on sleep. We measured noise and light levels at nest boxes and used infrared video-recording to assess sleep behaviour. Results did not support interactive effects of noise and ALAN. However, noise pollution and ALAN were both independently related to variation in sleep behaviour, in sex- and season-dependent fashions. Males, but not females, woke up and left the nest box ∼20 min later in the noisiest as compared to quietest environments (range: 44.2-79.4 dB), perhaps because males are more sensitive to acoustical cues that are masked by noise. Furthermore, as the season progressed from November to early March, birds woke up and left the nest box ∼35 min earlier relative to sunrise on territories with the lowest, but not the highest, light levels (range: 0.01-8.5 lux). Thus, the seasonal difference in sleep duration was dampened on light polluted territories. These effects could arise if ALAN interferes with birds' ability to sense and respond to increasing daylength, and could have fitness ramifications. Our study suggests that noise pollution and ALAN exert additive effects on sleep behaviour, and that these effects can be sex- and season-dependent.
Collapse
Affiliation(s)
- Andrea S Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France.
| | - Melissa L Grunst
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS-La Rochelle Université, 2 Rue Olympe de Gouges, FR-17000 La Rochelle, France
| | - Thomas Raap
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| | - Rianne Pinxten
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium; Faculty of Social Sciences, Antwerp School of Education, University of Antwerp, Antwerp, Belgium
| | - Marcel Eens
- Department of Biology, Behavioural Ecology and Ecophysiology Group, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
6
|
Behavioural Changes in Zoo Animals during the COVID-19 Pandemic: A Long-Term, Multi Species Comparison. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3040044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Visitors are a prominent feature of the zoo environment and lives of zoo animals. The COVID-19 pandemic led to repeated and extended closure periods for zoos worldwide. This unique period in zoological history enabled the opportunity to investigate the consistency of behavioural responses of zoo animals to closures and subsequent reopenings. Bennett’s wallabies (Notamacropus rufogriseus), meerkats (Suricata suricatta), macaws (red and green: Ara chloropterus; blue and yellow: Ara ararauna; military: Ara militaris) and rabbits (Oryctolagus cuniculus domesticus) held at four zoological collections in the United Kingdom were studied during COVID-19 closures and subsequent reopening periods. Facilities were closed for three time periods during 2020 and 2021: March–June/July 2020; November–December 2020; January–April/May 2021. Behavioural data were captured during closures (maximum n = 3) and reopening periods (maximum n = 3) during five-min scans using instantaneous scan sampling with a one-minute inter-scan interval. General linear models (GLMs) and general linear mixed models (GLMMs) were used to investigate the relationship between observed behaviours and open/closed periods. Changes were observed in behaviour between open and closure periods in all species, and in some instances changes were also observed over time, with animals responding differently to different closure and reopening periods. However, no overt positive or negative impacts of the closures or reopening periods were identified for these species. The study species may have different relationships with zoo visitors, but no clear differences were seen across the species studied. The unique opportunity to study animals over a long period of time during repeated closure periods enabled a greater understanding of the impact of zoo visitors on animals. As with other work in this sphere, these data support the adaptability of zoo animals to zoo visitors. This work contributes to the growing field of research undertaken during the COVID-19 periods and enhances our understanding of the impact that these zoological closures had on a wider body of species in a number of facilities.
Collapse
|
7
|
Communication from the Zoo: Reports from Zoological Facilities of the Impact of COVID-19 Closures on Animals. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Zoos engaged in a range of communication types with prospective visitors during the temporary closures necessitated by the COVID-19 pandemic. This study sought to (1) investigate social media reports and public responses to zoo-animal-related posts over a one-year period during COVID-19 lockdowns; (2) understand the use of reporting language in news articles concerning animal responses during zoo closures, and to investigate whether this differed across species; and (3) investigate how keepers perceived general animal behavior, and how they perceived animal behavior in keeper–animal interactions, during the COVID-19 facility closures. Data were collected from BIAZA-accredited zoos’ Facebook pages (March 2020 to March 2021) and news reports (Google search outputs from 20 March to 5 April 2021). Keeper perceptions were captured via questionnaires (May to August 2021). Data were collected on taxa, the reported behavioral changes and the language used in media communications. In Facebook posts and news reports, mammals were more frequently represented than was expected (p < 0.05). Behavioral responses were more frequently negative (p < 0.05) and less frequently positive or neutral (p < 0.05). Keepers reported overall behavioral changes, as well as changes during their own interactions with animals. On Facebook, mammals were described using a combination of behavioral descriptions and anthropomorphic terms, which were used more frequently than was expected (p < 0.05). In the news reports concerning primate species, anthropomorphic descriptions were used more frequently than expected (p < 0.05), while behavioral descriptions were used less frequently than expected (p < 0.05). The reports regarding the Carnivora were the reverse of this. This study enabled an understanding of the impact of the temporary closures on the animals, and how this impact was communicated to the public. The findings may reflect the relationships that humans have with animals and the need for communication methods that will capture visitors’ interest and induce empathy with the various species.
Collapse
|
8
|
Zivi P, De Gennaro L, Ferlazzo F. Sleep in Isolated, Confined, and Extreme (ICE): A Review on the Different Factors Affecting Human Sleep in ICE. Front Neurosci 2020; 14:851. [PMID: 32848590 PMCID: PMC7433404 DOI: 10.3389/fnins.2020.00851] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
The recently renewed focus on the human exploration of outer space has boosted the interest toward a variety of questions regarding health of astronauts and cosmonauts. Among the others, sleep has traditionally been considered a central issue. To extend the research chances, human sleep alterations have been investigated in several analog environments, called ICEs (Isolated, Confined, and Extreme). ICEs share different features with the spaceflight itself and have been implemented in natural facilities and artificial simulations. The current paper presents a systematic review of research findings on sleep disturbances in ICEs. We looked for evidence from studies run in polar settings (mostly Antarctica) during space missions, Head-Down Bed-Rest protocols, simulations, and in a few ICE-resembling settings such as caves and submarines. Even though research has shown that sleep can be widely affected in ICEs, mostly evidencing general and non-specific changes in REM and SWS sleep, results show a very blurred picture, often with contradictory findings. The variable coexistence of the many factors characterizing the ICE environments (such as isolation and confinement, microgravity, circadian disentrainment, hypoxia, noise levels, and radiations) does not provide a clear indication of what role is played by each factor per se or in association one with each other in determining the pattern observed, and how. Most importantly, a number of methodological limitations contribute immensely to the unclear pattern of results reported in the literature. Among them, small sample sizes, small effect sizes, and large variability among experimental conditions, protocols, and measurements make it difficult to draw hints about whether sleep alterations in ICEs do exist due to the specific environmental characteristics, and which of them plays a major role. More systematic and cross-settings research is needed to address the mechanisms underlying the sleep alterations in ICE environments and possibly develop appropriate countermeasures to be used during long-term space missions.
Collapse
Affiliation(s)
| | | | - Fabio Ferlazzo
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
9
|
Pelletier C, Weladji RB, Lazure L, Paré P. Zoo soundscape: Daily variation of low-to-high-frequency sounds. Zoo Biol 2020; 39:374-381. [PMID: 32735724 DOI: 10.1002/zoo.21560] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/07/2020] [Accepted: 07/22/2020] [Indexed: 11/07/2022]
Abstract
Most studies assessing the impact of noises on zoo animal welfare did not measure sound frequencies outside of the human-hearing range (infrasounds and ultrasounds). Many nonhuman mammals can hear these frequencies, and because loud and variable soundscapes are potentially detrimental for animal welfare, this overlooked aspect of their acoustic environment could have important consequences. This study evaluated the soundscape of an urban zoo in a large frequency range (17.5-90,510 Hz) by measuring its average sound levels (Leq ) and variability (the difference between highest and lowest peaks). Sound data were collected for 24 hr in 25 locations (e.g., indoor, outdoor, near the amusement park). The soundscape was not considered problematic for animal welfare when looking at the average sound levels in most locations (<77-dB sound pressure level [SPL]), except for a few indoor areas and near the water park. Ultrasounds were rare, had low average sound levels, and were less variable in time. Infrasounds were always present and were the loudest and most variable sound frequencies. The soundscape was louder and more variable during the day and when visitors were present, suggesting that human-related activities were the sources of these augmentations. Indoor environments were generally louder than outdoor environments and touristic features; however, the water park was near 85-dB SPL during the day. On the basis of results, we suggest a series of mitigation actions to minimize noise-related stress in captive animals.
Collapse
Affiliation(s)
| | - Robert B Weladji
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Louis Lazure
- Department of Biology, Concordia University, Montréal, Québec, Canada.,Conservation and Research Department, Zoo de Granby, Granby, Québec, Canada
| | - Patrick Paré
- Conservation and Research Department, Zoo de Granby, Granby, Québec, Canada
| |
Collapse
|
10
|
Fernández-Quezada D, Moran-Torres D, Luquin S, Ruvalcaba-Delgadillo Y, García-Estrada J, Jáuregui-Huerta F. Male/female Differences in Radial Arm Water Maze Execution After Chronic Exposure to Noise. Noise Health 2020; 21:25-34. [PMID: 32098928 PMCID: PMC7050231 DOI: 10.4103/nah.nah_23_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Introduction: Noise is one of the main sources of discomfort in modern societies. It affects physiology, behavior, and cognition of exposed subjects. Although the effects of noise on cognition are well known, gender role in noise-cognition relationship remains controversial. Aim: We analyzed the effects of noise on the ability of male and female rats to execute the Radial Arm Water Maze (RAWM) paradigm. Materials and Methods: Male and female Wistar rats were exposed to noise for 3 weeks, and the cognitive effects were assessed at the end of the exposure. RAWM execution included a three-day training phase and a reversal-learning phase conducted on the fourth day. Escape latency, reference memory errors, and working memory errors were quantified and compared between exposed and non-exposed subjects. Results: We found that male rats were in general more affected by noise. Execution during the three-day learning phase evidenced that male exposed rats employed significantly more time to acquire the task than the non-exposed. On the other hand, the exposed females solved the paradigm in latencies similar to control rats. Both, males and females diminished their capacity to execute on the fourth day when re-learning abilities were tested. Conclusion: We conclude that male rats might be less tolerable to noise compared to female ones and that spatial learning may be a cognitive function comparably more vulnerable to noise.
Collapse
Affiliation(s)
- David Fernández-Quezada
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Diana Moran-Torres
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Sonia Luquin
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Yaveth Ruvalcaba-Delgadillo
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Joaquín García-Estrada
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| | - Fernando Jáuregui-Huerta
- Laboratorio de Microscopía de Alta Resolución, Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Mexico
| |
Collapse
|
11
|
Physical influences on seafarers are different during their voyage episodes of port stay, river passage and sea passage: A maritime field study. PLoS One 2020; 15:e0231309. [PMID: 32267889 PMCID: PMC7141673 DOI: 10.1371/journal.pone.0231309] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/20/2020] [Indexed: 11/19/2022] Open
Abstract
Introduction During a sea voyage, crew members of vessels are permanently exposed to physical stress caused by noise, vibration and heat. This study aims to describe the extent of the physical influences on board container ships and the resulting stress. Methods Up to four scientific investigators accompanied six sea voyages on container ships under German management. Workplace and person-related measurements for noise, vibration and climatic parameters were carried out on the vessels during the three different voyage episodes (port stay, river passage and sea passage). Results The interviewed seafarers reported, in decreasing order, the level of psychological stress due to vibration (80.6%), noise (71.8%) and, much less, heat (45.7%) in the workplace. In terms of workplace-related physical measurements, the highest noise levels were found in the engine room (104 dB (A)), in the workshop (81 dB (A)) and on deck (77 dB (A)), irrespective of the voyage episode. Some noise measurements in the recreational area revealed levels above the threshold. All measured 180 vibration values were below the relevant threshold limits—with the highest values in the engine room (62 mm/s2), followed by the workshop (37 mm/s2) and the engine control room (34 mm/s2). In terms of thermal comfort, none of the measured climatic parameters differed significantly between the voyage episodes. According to the person-related physical measurements, the noise exposure was particularly pronounced among the engine room personnel with an average noise level of 96 dB (A) (often during cleaning, painting and repair work). In contrast, the deck crew and nautical officers were respectively exposed to an average level of 83 dB (A) and 77 dB (A) at work. Discussion A relevant stress level due to physical loads was detectable in the present study. As ship crews are exposed to the physical influences on board for 7 days a week over several months, further research is recommended to assess the long-term health effects for seafarers.
Collapse
|
12
|
Huet-Bello O, Ruvalcaba-Delgadillo Y, Feria-Velasco A, González-Castañeda RE, Garcia-Estrada J, Macias-Islas MA, Jauregui-Huerta F, Luquin S. Environmental noise exposure modifies astrocyte morphology in hippocampus of young male rats. Noise Health 2019; 19:239-244. [PMID: 28937018 PMCID: PMC5644383 DOI: 10.4103/nah.nah_97_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Background: Chronic exposure to noise induces changes on the central nervous system of exposed animals. Those changes affect not only the auditory system but also other structures indirectly related to audition. The hippocampus of young animals represents a potential target for these effects because of its essential role in individuals’ adaptation to environmental challenges. Objective: The aim of the present study was to evaluate hippocampus vulnerability, assessing astrocytic morphology in an experimental model of environmental noise (EN) applied to rats in pre-pubescent stage. Materials and Methods: Weaned Wistar male rats were subjected to EN adapted to the rats’ audiogram for 15 days, 24 h daily. Once completed, plasmatic corticosterone (CORT) concentration was quantified, and immunohistochemistry for glial fibrillary acidic protein was taken in hippocampal DG, CA3, and CA1 subareas. Immunopositive cells and astrocyte arborizations were counted and compared between groups. Results: The rats subjected to noise exhibited enlarged length of astrocytes arborizations in all hippocampal subareas. Those changes were accompanied by a marked rise in serum CORT levels. Conclusions: These findings confirm hippocampal vulnerability to EN and suggest that glial cells may play an important role in the adaptation of developing the participants to noise exposure.
Collapse
Affiliation(s)
- Odelie Huet-Bello
- Departamento de Neurociencias, CUCS Universidad de Guadalajara, Guadalajara; Centro de Investigación Biomédica de Occidente, IMSS-Jalisco, Jalisco, Mexico
| | | | - Alfredo Feria-Velasco
- Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Mexico
| | | | - Joaquín Garcia-Estrada
- Departamento de Neurociencias, CUCS Universidad de Guadalajara, Guadalajara; Centro de Investigación Biomédica de Occidente, IMSS-Jalisco, Jalisco, Mexico
| | | | | | - Sonia Luquin
- Departamento de Neurociencias, CUCS Universidad de Guadalajara, Guadalajara, Mexico
| |
Collapse
|
13
|
Bosquillon de Jenlis A, Del Vecchio F, Delanaud S, Gay-Queheillard J, Bach V, Pelletier A. Impacts of Subchronic, High-Level Noise Exposure on Sleep and Metabolic Parameters: A Juvenile Rodent Model. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:57004. [PMID: 31067133 PMCID: PMC6791575 DOI: 10.1289/ehp4045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Noise is an environmental factor that has been associated with metabolic and sleep disorders. Sleep is a vital function, since it underpins physiologic processes and cognitive recovery and development. However, the effects of chronic noise exposure on the developing organism are still subject to debate. OBJECTIVE The objective of the present study was to assess the effects of subchronic, high-level noise exposure on sleep, apnea, and homeostasis in juvenile rats. METHODS Twenty-four 3-wk-old male Wistar rats were exposed to noise [[Formula: see text], [Formula: see text]] for 5 wk and 2 d during the 12-h rest period. Data on sleep stages, food and water intake, apnea, and body and organ weight were recorded. RESULTS Five weeks of high-level noise exposure were associated with hyperphagia ([Formula: see text]), body weight gain ([Formula: see text]), a heavier thymus ([Formula: see text]), and heavier adrenal glands ([Formula: see text]). A sleep analysis highlighted microstructural differences in the active period: in particular, the mean daily amount of rapid eye movement (REM) sleep as a proportion of total sleep time (TST) was higher. The mean daily amount of non-REM (NREM) sleep was lower in the exposed group, meaning that the intergroup difference in the TST was not significant. During a 1-h, noise-free plethysmographic recording during the rest period, the mean total amount of active wakefulness (AW) was lower in the exposed group (by 9.1 min), whereas the mean duration of an episode of REM sleep was higher (by 1.8 min), and the TST was higher (by 10.7 min). DISCUSSION Subchronic exposure of juvenile rats to high-intensity noise during the rest period was associated with some small but significant sleep disturbances, greater food and water intakes, greater body weight gain, and greater thymus and adrenal gland weights. The main effects of noise exposure on sleep were also observed in the 1-h plethysmography session after 5 wk of exposure. https://doi.org/10.1289/EHP4045.
Collapse
Affiliation(s)
- Aymar Bosquillon de Jenlis
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Flavia Del Vecchio
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Stéphane Delanaud
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Jérôme Gay-Queheillard
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Véronique Bach
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| | - Amandine Pelletier
- PériTox Laboratory, Périnatalité & Risques Toxiques, UMR-I 01 INERIS, Picardie Jules Verne University, Amiens, France
| |
Collapse
|
14
|
Farokhnezhad Afshar P, Bahramnezhad F, Asgari P, Shiri M. Effect of White Noise on Sleep in Patients Admitted to a Coronary Care. J Caring Sci 2016; 5:103-9. [PMID: 27354974 PMCID: PMC4923834 DOI: 10.15171/jcs.2016.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/01/2015] [Indexed: 11/25/2022] Open
Abstract
Introduction: Sleep disorders are a common problem in
patients in the critical care unit. The objective of the present study was to determine
the effect of white noise on the quality of sleep in patients admitted to the CCU. Methods: The present study was single-blind,
quasi-experimental study. A total of 60 patients were selected using the purposive
sampling method. Quality of sleep was measured with PSQI on the first day in admission,
then after three nights of admission without any intervention for control group and for
the experimental group quality of sleep measured by white noise with intensity of 50-60 dB
then Quality of sleep was measured with PSQI. Data were analyzed by SPSS 13 software. Results: The average total sleep time in the control group
before the study reached from 7.08 (0.8) to 4.75 (0.66) hours after three nights of
hospitalization, while in the experimental group, no significant changes were seen in the
average sleep hours (6.69 ± 0.84 vs. 6.92 ± 0.89, P = 0.15).The average minutes of sleep
in the control group before the study reached from 12.66 (7.51) to 25.83 (11.75) minutes
after a three- night stay, while in the experimental group, no significant changes were
observed in the average sleep duration (12.16 ± 7.50 vs. 11 ±6. 07, P = 0.16). Conclusion: The use of white noise is recommended as a
method for masking environmental noises, improving sleep, and maintaining sleep in the
coronary care unit.
Collapse
Affiliation(s)
| | - Fatemeh Bahramnezhad
- Department of Critical Care Nursing, Nursing and Midwifery Faculty, Tehran University of Medical Sciences, Tehran, Iran
| | - Parvaneh Asgari
- Department of Critical Care Nursing, Nursing and Midwifery Faculty, Arak University of Medical Sciences, Arak, Iran
| | - Mahmoud Shiri
- Department of Electronic Engineering, Islamic Azad University Iranshahar Branch, Iranshahr, Iran
| |
Collapse
|
15
|
Jauregui-Huerta F, Zhang L, Yañez-Delgadillo G, Hernandez-Carrillo P, García-Estrada J, Luquín S. Hippocampal cytogenesis and spatial learning in senile rats exposed to chronic variable stress: effects of previous early life exposure to mild stress. Front Aging Neurosci 2015; 7:159. [PMID: 26347648 PMCID: PMC4539520 DOI: 10.3389/fnagi.2015.00159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 07/31/2015] [Indexed: 12/01/2022] Open
Abstract
In this study, we exposed adult rats to chronic variable stress (CVS) and tested the hypothesis that previous early-life exposure to stress changes the manner in which older subjects respond to aversive conditions. To this end, we analyzed the cytogenic changes in the hippocampus and hippocampal-dependent spatial learning performance. The experiments were performed on 18-month-old male rats divided into four groups as follows: Control (old rats under standard laboratory conditions), Early-life stress (ELS; old rats who were exposed to environmental noise from postnatal days, PNDs 21–35), CVS + ELS (old rats exposed to a chronic stress protocol who were previously exposed to the early-life noise stress) and CVS (old rats who were exposed only to the chronic stress protocol). The Morris Water Maze (MWM) was employed to evaluate the spatial learning abilities of the rats at the end of the experiment. Immunohistochemistry against 5′Bromodeoxyuridine (BrdU) and glial fibrillar acidic protein (GFAP) was also conducted in the DG, CA1, CA2 and CA3 regions of the hippocampus. We confocally analyzed the cytogenic (BrdU-labeled cells) and astrogenic (BrdU + GFAP-labeled cells) changes produced by these conditions. Using this procedure, we found that stress diminished the total number of BrdU+ cells over the main proliferative area of the hippocampus (i.e., the dentate gyrus, DG) but increased the astrocyte phenotypes (GFAP + BrdU). The depleted BrdU+ cells were restored when the senile rats also experienced stress at the early stages of life. The MWM assessment demonstrated that stress also impairs the ability of the rats to learn the task. This impairment was not present when the stressful experience was preceded by the early-life exposure. Thus, our results support the idea that previous exposure to mild stressing agents may have beneficial effects on aged subjects.
Collapse
Affiliation(s)
- Fernando Jauregui-Huerta
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México México, Mexico
| | - Griselda Yañez-Delgadillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Pamela Hernandez-Carrillo
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| | - Joaquín García-Estrada
- División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social Guadalajara, Mexico
| | - Sonia Luquín
- Departamento de Neurociencias, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara Guadalajara, Jalisco, Mexico
| |
Collapse
|
16
|
Ruvalcaba-Delgadillo Y, Luquín S, Ramos-Zúñiga R, Feria-Velasco A, González-Castañeda RE, Pérez-Vega MI, Jáuregui-Huerta F, García-Estrada J. Early-life exposure to noise reduces mPFC astrocyte numbers and T-maze alternation/discrimination task performance in adult male rats. Noise Health 2015; 17:216-26. [PMID: 26168952 PMCID: PMC4900483 DOI: 10.4103/1463-1741.160703] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
In this experiment, we evaluated the long-term effects of noise by assessing both astrocyte changes in medial prefrontal cortex (mPFC) and mPFC-related alternation/discrimination tasks. Twenty-one-day-old male rats were exposed during a period of 15 days to a standardized rats' audiogram-fitted adaptation of a human noisy environment. We measured serum corticosterone (CORT) levels at the end of the exposure and periodically registered body weight gain. In order to evaluate the long-term effects of this exposure, we assessed the rats' performance on the T-maze apparatus 3 months later. Astrocyte numbers and proliferative changes in mPFC were also evaluated at this stage. We found that environmental noise (EN) exposure significantly increased serum CORT levels and negatively affected the body weight gain curve. Accordingly, enduring effects of noise were demonstrated on mPFC. The ability to solve alternation/discrimination tasks was reduced, as well as the number of astroglial cells. We also found reduced cytogenesis among the mPFC areas evaluated. Our results support the idea that early exposure to environmental stressors may have long-lasting consequences affecting complex cognitive processes. These results also suggest that glial changes may become an important element behind the cognitive and morphological alterations accompanying the PFC changes seen in some stress-related pathologies.
Collapse
Affiliation(s)
| | - Sonia Luquín
- Department of Neurosciences, University of Guadalajara, Guadalajara, Mexico
| | | | - Alfredo Feria-Velasco
- Department of Cellular and Molecular Biology, University of Guadalajara, Guadalajara, Mexico
| | | | | | | | - Joaquín García-Estrada
- Department of Neurosciences, CIBO, Mexican Institute of Social Security, Guadalajara, Mexico
| |
Collapse
|
17
|
Long-term recovery from hippocampal-related behavioral and biochemical abnormalities induced by noise exposure during brain development. Evaluation of auditory pathway integrity. Int J Dev Neurosci 2014; 37:41-51. [PMID: 24911434 DOI: 10.1016/j.ijdevneu.2014.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/30/2014] [Accepted: 06/01/2014] [Indexed: 11/24/2022] Open
Abstract
Sound is an important part of man's contact with the environment and has served as critical means for survival throughout his evolution. As a result of exposure to noise, physiological functions such as those involving structures of the auditory and non-auditory systems might be damaged. We have previously reported that noise-exposed developing rats elicited hippocampal-related histological, biochemical and behavioral changes. However, no data about the time lapse of these changes were reported. Moreover, measurements of auditory pathway function were not performed in exposed animals. Therefore, with the present work, we aim to test the onset and the persistence of the different extra-auditory abnormalities observed in noise-exposed rats and to evaluate auditory pathway integrity. Male Wistar rats of 15 days were exposed to moderate noise levels (95-97 dB SPL, 2 h a day) during one day (acute noise exposure, ANE) or during 15 days (sub-acute noise exposure, SANE). Hippocampal biochemical determinations as well as short (ST) and long term (LT) behavioral assessments were performed. In addition, histological and functional evaluations of the auditory pathway were carried out in exposed animals. Our results show that hippocampal-related behavioral and biochemical changes (impairments in habituation, recognition and associative memories as well as distortion of anxiety-related behavior, decreases in reactive oxygen species (ROS) levels and increases in antioxidant enzymes activities) induced by noise exposure were almost completely restored by PND 90. In addition, auditory evaluation shows that increased cochlear thresholds observed in exposed rats were re-established at PND 90, although with a remarkable supra-threshold amplitude reduction. These data suggest that noise-induced hippocampal and auditory-related alterations are mostly transient and that the effects of noise on the hippocampus might be, at least in part, mediated by the damage on the auditory pathway. However, we cannot exclude that a different mechanism might be responsible for the observed hippocampal-related changes.
Collapse
|
18
|
Dominoni DM, Carmona-Wagner EO, Hofmann M, Kranstauber B, Partecke J. Individual-based measurements of light intensity provide new insights into the effects of artificial light at night on daily rhythms of urban-dwelling songbirds. J Anim Ecol 2013; 83:681-92. [DOI: 10.1111/1365-2656.12150] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 09/10/2013] [Indexed: 01/08/2023]
Affiliation(s)
- Davide M. Dominoni
- Department of Migration and Immuno-ecology; Max Planck Institute for Ornithology; Am Obstberg 1 78315 Radolfzell Germany
- Department of Biology; University of Konstanz; Universitätsstraße 10 78464 Konstanz Germany
| | | | - Michaela Hofmann
- Department of Biology; Ludwig-Maximilians University; Geschwister-Scholl-Platz 1 80539 Munich Germany
| | - Bart Kranstauber
- Department of Migration and Immuno-ecology; Max Planck Institute for Ornithology; Am Obstberg 1 78315 Radolfzell Germany
- Department of Biology; University of Konstanz; Universitätsstraße 10 78464 Konstanz Germany
| | - Jesko Partecke
- Department of Migration and Immuno-ecology; Max Planck Institute for Ornithology; Am Obstberg 1 78315 Radolfzell Germany
- Department of Biology; University of Konstanz; Universitätsstraße 10 78464 Konstanz Germany
| |
Collapse
|
19
|
Uran S, Aon-Bertolino M, Caceres L, Capani F, Guelman L. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels. Brain Res 2012; 1471:1-12. [DOI: 10.1016/j.brainres.2012.06.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 12/21/2022]
|
20
|
O'connor EA, Parker MO, Davey EL, Grist H, Owen RC, Szladovits B, Demmers TGM, Wathes CM, Abeyesinghe SM. Effect of low light and high noise on behavioural activity, physiological indicators of stress and production in laying hens. Br Poult Sci 2012; 52:666-74. [PMID: 22221232 DOI: 10.1080/00071668.2011.639342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
1. Commercial laying hens are commonly housed in noisy and dim environments, yet relatively little is known about whether these conditions, particularly in combination, have any effect on welfare or egg production. 2. The study was designed to investigate whether chronic exposure to continuous noise (60 dB(A) vs. 80 dB(A)) and/or light intensity (150 lux vs. 5 lux) during the critical period of coming into lay (16-24 weeks of age) influenced behaviour (activity, resting and feather maintenance), physiological stress (plasma corticosterone and heterophil to lymphocyte ratio) and production (number and weight of eggs laid) in laying hens. 3. Hens in the low light pens were less active and preened and dust-bathed more than those housed in 150 lux; hens in the high noise pens rested more frequently than those in quieter pens. 4. There was no evidence that chronic exposure to low light or high noise caused appreciable physiological stress but egg production was affected by these conditions. Hens kept in pens with low light or high noise laid fewer eggs per day than those kept in high light or low noise pens. These effects were additive, so that the fewest eggs were laid by hens subject to both low light and high noise. 5. These results show that low light intensity and continual high background noise have a detrimental effect on egg production in the early laying phase as well as influencing the time allocated to different behaviours. However there was no strong evidence for a physiological stress response to either of these conditions or their combination.
Collapse
Affiliation(s)
- E A O'connor
- Centre for Animal Welfare, Department of Veterinary Clinical Sciences, Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Hertfordshire, AL7 9TA, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Stress by noise produces differential effects on the proliferation rate of radial astrocytes and survival of neuroblasts in the adult subgranular zone. Neurosci Res 2011; 70:243-50. [DOI: 10.1016/j.neures.2011.03.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 03/28/2011] [Accepted: 03/31/2011] [Indexed: 01/22/2023]
|
22
|
Velluti RA, Pedemonte M, Suárez H, Bentancor C, Rodríguez-Servetti Z. Auditory input modulates sleep: an intra-cochlear-implanted human model. J Sleep Res 2011; 19:585-90. [PMID: 20408927 DOI: 10.1111/j.1365-2869.2010.00829.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To properly demonstrate the effect of auditory input on sleep of intra-cochlear-implanted patients, the following approach was developed. Four implanted deaf patients were recorded during four nights: two nights with the implant OFF, with no auditory input, and two nights with the implant ON, that is, with normal auditory input, being only the common night sounds present, without any additional auditory stimuli delivered. The sleep patterns of another five deaf people were used as controls, exhibiting normal sleep organization. Moreover, the four experimental patients with intra-cochlear devices and the implant OFF also showed normal sleep patterns. On comparison of the night recordings with the implant ON and OFF, a new sleep organization was observed for the recordings with the implant ON, suggesting that brain plasticity may produce changes in the sleep stage percentages while maintaining the ultradian rhythm. During sleep with the implant ON, the analysis of the electroencephalographic delta, theta and alpha bands in the frequency domain, using the Fast Fourier Transform, revealed a diversity of changes in the power originated in the contralateral cortical temporal region. Different power shifts were observed, perhaps related to the exact position of the implant inside the cochlea and the scalp electrode location. In conclusion, this pilot study shows that the auditory input in humans can introduce changes in central nervous system activity leading to shifts in sleep characteristics, as previously demonstrated in guinea pigs. We are postulating that an intra-cochlear-implanted deaf patient may have a better recovery if the implant is maintained ON during the night, that is, during sleep.
Collapse
Affiliation(s)
- Ricardo A Velluti
- Neuro-Otología Experimental, ORL, Hospital de Clínicas, Programa de Desarrollo de Ciencias Básicas (PEDECIBA), Universidad de la República, Montevideo, Uruguay.
| | | | | | | | | |
Collapse
|
23
|
Castelhano-Carlos MJ, Baumans V. The impact of light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. Lab Anim 2009; 43:311-27. [PMID: 19505937 DOI: 10.1258/la.2009.0080098] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Human interaction and physical environmental factors are part of the stimuli presented to laboratory animals everyday, influencing their behaviour and physiology and contributing to their welfare. Certain environmental conditions and routine procedures in the animal facility might induce stress responses and when the animal is unable to maintain its homeostasis in the presence of a particular stressor, the animal's wellbeing is threatened. This review article summarizes several published studies on the impact of environmental factors such as light, noise, cage cleaning and in-house transport on welfare and stress of laboratory rats. The behaviour and physiological responses of laboratory rats to different environmental housing conditions and routine procedures are reviewed. Recommendations on the welfare of laboratory rats and refinements in experimental design are discussed and how these can influence and improve the quality of scientific data.
Collapse
Affiliation(s)
- M J Castelhano-Carlos
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | |
Collapse
|
24
|
Revel FG, Gottowik J, Gatti S, Wettstein JG, Moreau JL. Rodent models of insomnia: A review of experimental procedures that induce sleep disturbances. Neurosci Biobehav Rev 2009; 33:874-99. [DOI: 10.1016/j.neubiorev.2009.03.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 03/04/2009] [Accepted: 03/04/2009] [Indexed: 12/21/2022]
|
25
|
Taylor-Ford R, Catlin A, LaPlante M, Weinke C. Effect of a Noise Reduction Program on a Medical— Surgical Unit. Clin Nurs Res 2008; 17:74-88. [DOI: 10.1177/1054773807312769] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This quasi-experimental study tested an intervention to reduce sound levels in an acute care hospital. A parallel pre- and posttest design with control group was used; patients and employees completed the Topf Adapted Sound Disturbance Scales, and environmental sound levels were recorded on a Quest 2900 Sound Level Meter. Treatment interventions included an educational PowerPoint presentation for employees, minor environmental acoustical alterations, and the use of a Quest 261 Sound Detector/Controller for behavioral modification. None of these interventions produced statistically significant changes in sound levels. Patients and employees reported slightly less disturbance due to noise postintervention on the treatment unit. The findings of this study support Philbin and Gray's suggestion that the use of sound-absorbing materials in the hospital's physical structure may be the most effective measure to reduce sound levels in the hospital setting.
Collapse
Affiliation(s)
| | - Anita Catlin
- Sonoma State University, Rohnert Park, California
| | | | | |
Collapse
|
26
|
Caffier PP, Berl JC, Muggli A, Reinhardt A, Jakob A, Möser M, Fietze I, Scherer H, Hölzl M. Snoring noise pollution—the need for objective quantification of annoyance, regulatory guidelines and mandatory therapy for snoring. Physiol Meas 2006; 28:25-40. [PMID: 17151417 DOI: 10.1088/0967-3334/28/1/003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Habitual snoring without episodes of apnea or hypoventilation and without respiratory related arousals is considered to be annoying and without any need for treatment. However, studies seem to suggest an enormous psychosocial impact of annoyance for the bed partner. Apart from subjective questionnaires there still exists no generally accepted mode of measurement that can describe snoring objectively. We therefore adapted methods developed for environmental medicine and established a new snore score using psycho-acoustic parameters. For quantification of snoring noise we conducted nocturnal measurements in 19 habitual snorers. Free-field snore sounds were acquired with two low-cost non-contact microphones and transferred to a PC (sampling frequency 11 kHz). The data were recorded, analysed and stored automatically using a MATLAB script. Following the analysis of sound characteristics and levels, the score was computed from relevant parameters containing the rating level (L(R)), maximum level, two percentile levels for frequent maxima (L(5)S; L(1)) and snoring time. The determined values substantially exceeded the prescribed limits defined by WHO noise guidelines, and mainly affected the equivalent continuous sound exposure level, rating level and the immission standard values of brief noise peaks, whose maximum was exceeded by up to 32 dB(A). The Berlin snore score illustrated the objective acoustic annoyance on a scale from 0 to 100. It allows inter-individual comparison and objectifies the need for therapy. The clinical applicability of evaluating the reduction of snoring after surgical therapy is discussed exemplarily. The presented measuring method was found to be suitable for quantifying snoring noise and can be easily integrated into existing polysomnographic applications. In the case of habitual snoring with objective evidence of psychosocially disturbing acoustic annoyance, health fund providers should assume the costs of mandatory medical therapy.
Collapse
Affiliation(s)
- P P Caffier
- Department of Otorhinolaryngology, Charité-University Medicine Berlin, Joint Facility of Free University and Humboldt-University, Campus Charité Mitte, Charitéplatz 1, D-10117 Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W. Chronic exposure to an environmental noise permanently disturbs sleep in rats: Inter-individual vulnerability. Brain Res 2005; 1059:72-82. [PMID: 16168393 DOI: 10.1016/j.brainres.2005.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 08/10/2005] [Accepted: 08/10/2005] [Indexed: 11/21/2022]
Abstract
Chronic exposure to an environmental noise (EN) induces sleep disturbances. However, discrepancies exist in the literature since many contradictory conclusions have been reported. These disagreements are largely due to inappropriate evaluation of sleep and also to uncontrolled and confounding factors such as sex, age and also inter-individual vulnerability. Based on a recently validated animal model, aims of the present study were (i) to determine the effects of a chronic exposure to EN on sleep and (ii) to evaluate the inter-individual vulnerability of sleep to EN. For this purpose, rats were exposed during 9 days to EN. Results show that a chronic exposure to EN restricts continually amounts of slow wave sleep (SWS) and paradoxical sleep (PS) and fragments these two sleep stages with no habituation effect. Results also evidence the existence of subpopulations of rats that are either resistant or vulnerable to these deleterious effects of EN on sleep and especially on SWS amounts, bouts number and bout duration. Furthermore, importance of SWS debt and daily decrease of SWS bout duration are correlated to each others and both correlate to the amplitude of the locomotor reactivity to novelty, a behavioral measure of reactivity to stress. This last result suggests that this psychobiological profile of subjects, known to induce profound differences in neural and endocrine systems, could be responsible for their SWS vulnerability under a chronic EN exposure.
Collapse
Affiliation(s)
- A Rabat
- INSERM Unité 588, Physiopathologie du Comportement, Institut François Magendie, Université Bordeaux II, 1 rue Camille St Saëns, 33077 Bordeaux Cedex, France.
| | | | | | | | | |
Collapse
|