1
|
Goltash S, Stevens SJ, Topcu E, Bui TV. Changes in synaptic inputs to dI3 INs and MNs after complete transection in adult mice. Front Neural Circuits 2023; 17:1176310. [PMID: 37476398 PMCID: PMC10354275 DOI: 10.3389/fncir.2023.1176310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023] Open
Abstract
Introduction Spinal cord injury (SCI) is a debilitating condition that disrupts the communication between the brain and the spinal cord. Several studies have sought to determine how to revive dormant spinal circuits caudal to the lesion to restore movements in paralyzed patients. So far, recovery levels in human patients have been modest at best. In contrast, animal models of SCI exhibit more recovery of lost function. Previous work from our lab has identified dI3 interneurons as a spinal neuron population central to the recovery of locomotor function in spinalized mice. We seek to determine the changes in the circuitry of dI3 interneurons and motoneurons following SCI in adult mice. Methods After a complete transection of the spinal cord at T9-T11 level in transgenic Isl1:YFP mice and subsequent treadmill training at various time points of recovery following surgery, we examined changes in three key circuits involving dI3 interneurons and motoneurons: (1) Sensory inputs from proprioceptive and cutaneous afferents, (2) Presynaptic inhibition of sensory inputs, and (3) Central excitatory glutamatergic synapses from spinal neurons onto dI3 INs and motoneurons. Furthermore, we examined the possible role of treadmill training on changes in synaptic connectivity to dI3 interneurons and motoneurons. Results Our data suggests that VGLUT1+ inputs to dI3 interneurons decrease transiently or only at later stages after injury, whereas levels of VGLUT1+ remain the same for motoneurons after injury. Levels of VGLUT2+ inputs to dI3 INs and MNs may show transient increases but fall below levels seen in sham-operated mice after a period of time. Levels of presynaptic inhibition to VGLUT1+ inputs to dI3 INs and MNs can rise shortly after SCI, but those increases do not persist. However, levels of presynaptic inhibition to VGLUT1+ inputs never fell below levels observed in sham-operated mice. For some synaptic inputs studied, levels were higher in spinal cord-injured animals that received treadmill training, but these increases were observed only at some time points. Discussion These results suggest remodeling of spinal circuits involving spinal interneurons that have previously been implicated in the recovery of locomotor function after spinal cord injury in mice.
Collapse
|
2
|
Gulino R. Synaptic Dysfunction and Plasticity in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2023; 24:ijms24054613. [PMID: 36902042 PMCID: PMC10003601 DOI: 10.3390/ijms24054613] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Recent evidence has supported the hypothesis that amyotrophic lateral sclerosis (ALS) is a multi-step disease, as the onset of symptoms occurs after sequential exposure to a defined number of risk factors. Despite the lack of precise identification of these disease determinants, it is known that genetic mutations may contribute to one or more of the steps leading to ALS onset, the remaining being linked to environmental factors and lifestyle. It also appears evident that compensatory plastic changes taking place at all levels of the nervous system during ALS etiopathogenesis may likely counteract the functional effects of neurodegeneration and affect the timing of disease onset and progression. Functional and structural events of synaptic plasticity probably represent the main mechanisms underlying this adaptive capability, causing a significant, although partial and transient, resiliency of the nervous system affected by a neurodegenerative disease. On the other hand, the failure of synaptic functions and plasticity may be part of the pathological process. The aim of this review was to summarize what it is known today about the controversial involvement of synapses in ALS etiopathogenesis, and an analysis of the literature, although not exhaustive, confirmed that synaptic dysfunction is an early pathogenetic process in ALS. Moreover, it appears that adequate modulation of structural and functional synaptic plasticity may likely support function sparing and delay disease progression.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, 95123 Catania, Italy
| |
Collapse
|
3
|
Wu Y, Tang Z, Zhang J, Wang Y, Liu S. Restoration of spinal cord injury: From endogenous repairing process to cellular therapy. Front Cell Neurosci 2022; 16:1077441. [PMID: 36523818 PMCID: PMC9744968 DOI: 10.3389/fncel.2022.1077441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 09/26/2023] Open
Abstract
Spinal cord injury (SCI) disrupts neurological pathways and impacts sensory, motor, and autonomic nerve function. There is no effective treatment for SCI currently. Numerous endogenous cells, including astrocytes, macrophages/microglia, and oligodendrocyte, are involved in the histological healing process following SCI. By interfering with cells during the SCI repair process, some advancements in the therapy of SCI have been realized. Nevertheless, the endogenous cell types engaged in SCI repair and the current difficulties these cells confront in the therapy of SCI are poorly defined, and the mechanisms underlying them are little understood. In order to better understand SCI and create new therapeutic strategies and enhance the clinical translation of SCI repair, we have comprehensively listed the endogenous cells involved in SCI repair and summarized the six most common mechanisms involved in SCI repair, including limiting the inflammatory response, protecting the spared spinal cord, enhancing myelination, facilitating neovascularization, producing neurotrophic factors, and differentiating into neural/colloidal cell lines.
Collapse
Affiliation(s)
| | | | | | | | - Shengwen Liu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Casabona A, Valle MS, Dominante C, Laudani L, Onesta MP, Cioni M. Effects of Functional Electrical Stimulation Cycling of Different Duration on Viscoelastic and Electromyographic Properties of the Knee in Patients with Spinal Cord Injury. Brain Sci 2020; 11:brainsci11010007. [PMID: 33374653 PMCID: PMC7822482 DOI: 10.3390/brainsci11010007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022] Open
Abstract
The benefits of functional electrical stimulation during cycling (FES-cycling) have been ascertained following spinal cord injury. The instrumented pendulum test was applied to chronic paraplegic patients to investigate the effects of FES-cycling of different duration (20-min vs. 40-min) on biomechanical and electromyographic characterization of knee mobility. Seven adults with post-traumatic paraplegia attended two FES-cycling sessions, a 20-min and a 40-min one, in a random order. Knee angular excursion, stiffness and viscosity were measured using the pendulum test before and after each session. Surface electromyographic activity was recorded from the rectus femoris (RF) and biceps femoris (BF) muscles. FES-cycling led to reduced excursion (p < 0.001) and increased stiffness (p = 0.005) of the knee, which was more evident after the 20-min than 40-min session. Noteworthy, biomechanical changes were associated with an increase of muscle activity and changes in latency of muscle activity only for 20-min, with anticipated response times for RF (p < 0.001) and delayed responses for BF (p = 0.033). These results indicate that significant functional changes in knee mobility can be achieved by FES-cycling for 20 min, as evaluated by the pendulum test in patients with chronic paraplegia. The observed muscle behaviour suggests modulatory effects of exercise on spinal network aimed to partially restore automatic neuronal processes.
Collapse
Affiliation(s)
- Antonino Casabona
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (C.D.); (L.L.); (M.C.)
- Residency Program of Physical Medicine and Rehabilitation, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Maria Stella Valle
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (C.D.); (L.L.); (M.C.)
- Correspondence:
| | - Claudio Dominante
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (C.D.); (L.L.); (M.C.)
- Residency Program of Physical Medicine and Rehabilitation, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Luca Laudani
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (C.D.); (L.L.); (M.C.)
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | | | - Matteo Cioni
- Laboratory of Neuro-Biomechanics, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy; (A.C.); (C.D.); (L.L.); (M.C.)
- Residency Program of Physical Medicine and Rehabilitation, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- U.O.P.I. Gait and Posture Analysis Laboratory—A.O.U. Policlinico Vittorio Emanuele, 95123 Catania, Italy
| |
Collapse
|
5
|
Zeng K, Li Y, Yang W, Ge Y, Xu L, Ren T, Zhang H, Zhuo R, Peng L, Chen C, Zhou Y, Zhao Y, Li WJ, Jin X, Yang L. Moringa oleifera seed extract protects against brain damage in both the acute and delayed stages of ischemic stroke. Exp Gerontol 2019; 122:99-108. [DOI: 10.1016/j.exger.2019.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 03/11/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
6
|
Hu YD, Zhao Q, Zhang XR, Xiong LL, Zhang ZB, Zhang P, Zhang RP, Wang TH. Comparison of the properties of neural stem cells of the hippocampus in the tree shrew and rat in vitro. Mol Med Rep 2018; 17:5676-5683. [PMID: 29436662 PMCID: PMC5866009 DOI: 10.3892/mmr.2018.8589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 12/01/2017] [Indexed: 02/05/2023] Open
Abstract
Neural stem cells (NSCs) are characterized by the ability of self-renewal and capacity to proliferate and produce new nervous tissue. NSCs are capable of differentiating to three lineages of neural cells, including neurons, oligodendrocytes and astrocytes. Furthermore, hippocampal NSCs transplantation can improve the neurological deficits associated with expression of cytokines. Therefore, to compare the properties of NSCs of tree shrews and rats in vitro, NSCs from tree shrews (tsNSCs) and rats f(rNSCs) were isolated. Nestin was used as a marker to identify the cultured NSCs. Neuronal nuclei protein and glial fibrillary acidic protein (GFAP) were utilized to demonstrate the differentiation of NSCs towards neurons and astrocytes, respectively, in vitro. Furthermore, the expression of neurotrophin 3 (NT3), brain-derived neurotrophic factor (BDNF), glial cell-derived neurotrophic factor (GDNF) and transforming growth factor (TGF)β1 was also investigated in tsNSCs and rNSCs. The expression of all of the aforementioned proteins was detected using immunofluorescence methods. The results demonstrated that, after 5 days of culture, the average number of neurospheres in the cultured tsNSCs was significantly lower compared with rNSCs (P=0.0031). Additionally, compared with the rNSCs, tsNSCs exhibited an enhanced differentiation ability towards neurons. Furthermore, the expression of NT3 in the tsNSCs was higher compared with rNSCs (P<0.01), while the expression of BDNF was lower (P=0.045). However, no significant differences were observed in the expression level of GDNF and TGFβ1 between rNSCs and tsNSCs. Therefore, these results indicate that tsNSCs exhibit specific characteristics that are different from rNSCs, which provides novel information for the understanding of NSCs obtained from tree shrews. Overall, the results of the current study provide evidence to support the increased application of tree shrews as models for diseases of the central nervous system.
Collapse
Affiliation(s)
- Yuan-Dong Hu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Qiong Zhao
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Xue-Rong Zhang
- Department of Anesthesiology, Sun Yat‑Sen Memorial Hospital, Sun Yat‑Sen University, Guangzhou, Guangdong 510120, P.R. China
| | - Liu-Lin Xiong
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zi-Bin Zhang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Piao Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Rong-Ping Zhang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Gonzalez Deniselle MC, Garay L, Meyer M, Gargiulo-Monachelli G, Labombarda F, Gonzalez S, Guennoun R, Schumacher M, De Nicola AF. Experimental and clinical evidence for the protective role of progesterone in motoneuron degeneration and neuroinflammation. Horm Mol Biol Clin Investig 2015; 7:403-11. [PMID: 25961276 DOI: 10.1515/hmbci.2011.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 01/08/2023]
Abstract
Far beyond its role in reproduction, progesterone exerts neuro-protective, promyelinating, and anti-inflammatory effects in the nervous system. These effects are amplified under pathological conditions, implying that changes of the local environment sensitize nervous tissues to steroid therapy. The present survey covers our results of progesterone neuroprotection in a motoneuron neurodegeneration model and a neuroinflammation model. In the degenerating spinal cord of the Wobbler mouse, progesterone reverses the impaired expression of neurotrophins, increases enzymes of neurotransmission and metabolism, prevents oxidative damage of motoneurons and their vacuolar degeneration (paraptosis), and attenuates the development of mitochondrial abnormalities. After long-term treatment, progesterone also increases muscle strength and the survival of Wobbler mice. Subsequently, this review describes the effects of progesterone in mice with induced experimental autoimmune encephalomyelitis (EAE), a commonly used model of multiple sclerosis. In EAE mice, progesterone attenuates the clinical severity, decreases demyelination and neuronal dysfunction, increases axonal counts, reduces the formation of amyloid precursor protein profiles, and decreases the aberrant expression of growth-associated proteins. These actions of progesterone may be due to multiple mechanisms, considering that classic nuclear receptors, extranuclear receptors, and membrane receptors are all expressed in the spinal cord. Although many aspects of progesterone action in humans remain unsolved, data provided by experimental models makes getting to this objective closer than previously expected.
Collapse
|
8
|
Romanyuk N, Amemori T, Turnovcova K, Prochazka P, Onteniente B, Sykova E, Jendelova P. Beneficial Effect of Human Induced Pluripotent Stem Cell-Derived Neural Precursors in Spinal Cord Injury Repair. Cell Transplant 2014; 24:1781-97. [PMID: 25259685 DOI: 10.3727/096368914x684042] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Despite advances in our understanding and research of induced pluripotent stem cells (iPSCs), their use in clinical practice is still limited due to lack of preclinical experiments. Neural precursors (NPs) derived from a clone of human iPSCs (IMR90) were used to treat a rat spinal cord lesion 1 week after induction. Functional recovery was evaluated using the BBB, beam walking, rotarod, and plantar tests. Lesion morphology, endogenous axonal sprouting, graft survival, and iPSC-NP differentiation were analyzed immunohistochemically. Quantitative polymerase chain reaction (qPCR) was used to evaluate the effect of transplanted iPSC-NPs on endogenous regenerative processes and also to monitor their behavior after transplantation. Human iPSC-NPs robustly survived in the lesion, migrated, and partially filled the lesion cavity during the entire period of observation. Transplanted animals displayed significant motor improvement already from the second week after the transplantation of iPSC-NPs. qPCR revealed the increased expression of human neurotrophins 8 weeks after transplantation. Simultaneously, the white and gray matter were spared in the host tissue. The grafted cells were immunohistochemically positive for doublecortin, MAP2, βIII-tubulin, GFAP, and CNPase 8 weeks after transplantation. Human iPSC-NPs further matured, and 17 weeks after transplantation differentiated toward interneurons, dopaminergic neurons, serotoninergic neurons, and ChAT-positive motoneurons. Human iPSC-NPs possess neurotrophic properties that are associated with significant early functional improvement and the sparing of spinal cord tissue. Their ability to differentiate into tissue-specific neurons leads to the long-term restoration of the lesioned tissue, making the cells a promising candidate for future cell-based therapy of SCI.
Collapse
Affiliation(s)
- Nataliya Romanyuk
- Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
9
|
Fouad K, Bennett DJ, Vavrek R, Blesch A. Long-term viral brain-derived neurotrophic factor delivery promotes spasticity in rats with a cervical spinal cord hemisection. Front Neurol 2013; 4:187. [PMID: 24312075 PMCID: PMC3832889 DOI: 10.3389/fneur.2013.00187] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 11/04/2013] [Indexed: 12/31/2022] Open
Abstract
We have recently reported that rats with complete thoracic spinal cord injury (SCI) that received a combinatorial treatment, including viral brain-derived neurotrophic factor (BDNF) delivery in the spinal cord, not only showed enhanced axonal regeneration, but also deterioration of hind-limb motor function. By demonstrating that BDNF over-expression can trigger spasticity-like symptoms in a rat model of sacral SCI, we proposed a causal relationship between the observed spasticity-like symptoms (i.e., resistance to passive range of motion) and the over-expression of BDNF. The current study was originally designed to evaluate a comparable combined treatment for cervical SCI in the rat to improve motor recovery. Once again we found similar signs of spasticity involving clenching of the paws and wrist flexion. This finding changed the focus of the study and, we then explored whether this spasticity-like symptom is directly related to the over-expression of BDNF by administering a BDNF antagonist. Using electromyographic measurements we showed that this treatment gradually diminished the resistance to overcome forelimb flexion in an acute experiment. Thus, we conclude that neuro-excitatory effects of chronic BDNF delivery together with diminished descending control after SCI can result in adverse effects.
Collapse
Affiliation(s)
- Karim Fouad
- Rehabilitation Medicine, University of Alberta , Edmonton, AB , Canada
| | | | | | | |
Collapse
|
10
|
Razavi S, Razavi MR, Zarkesh Esfahani H, Kazemi M, Mostafavi FS. Comparing brain-derived neurotrophic factor and ciliary neurotrophic factor secretion of induced neurotrophic factor secreting cells from human adipose and bone marrow-derived stem cells. Dev Growth Differ 2013; 55:648-55. [DOI: 10.1111/dgd.12072] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/15/2013] [Accepted: 06/23/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Shahnaz Razavi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine; Isfahan University of Medical Sciences; Isfahan; 81744-176; Iran
| | - Mohamad Reza Razavi
- Molecular Parasitology Laboratory; Pasteur Institute of Iran; Tehran; 1316943551; Iran
| | - Hamid Zarkesh Esfahani
- Department of Immunology; School of Medicine; Isfahan University of Medical Sciences; Isfahan; 81744-176; Iran
| | - Mohammad Kazemi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine; Isfahan University of Medical Sciences; Isfahan; 81744-176; Iran
| | - Fatemeh Sadat Mostafavi
- Department of Anatomical Sciences and Molecular Biology; School of Medicine; Isfahan University of Medical Sciences; Isfahan; 81744-176; Iran
| |
Collapse
|
11
|
Gulino R, Gulisano M. Noggin and Sonic hedgehog are involved in compensatory changes within the motoneuron-depleted mouse spinal cord. J Neurol Sci 2013; 332:102-9. [PMID: 23859181 DOI: 10.1016/j.jns.2013.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/22/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
Abstract
Sonic hedgehog and Noggin are morphogenetic factors involved in neural induction and ventralization of the neural tube, but recent findings suggest that they could participate in regeneration and functional recovery after injury. Here, in order to verify if these mechanisms could occur in the spinal cord and involve synaptic plasticity, we measured the expression levels of Sonic hedgehog, Noggin, Choline Acetyltransferase, Synapsin-I and Glutamate receptor subunits (GluR1, GluR2, GluR4), in a motoneuron-depleted mouse spinal cord lesion model obtained by intramuscular injection of Cholera toxin-B saporin. The lesion caused differential expression changes of the analyzed proteins. Moreover, motor performance was found correlated with Sonic hedgehog and Noggin expression in lesioned animals. The results also suggest that Sonic hedgehog could collaborate in modulating synaptic plasticity. Together, these findings confirm that the injured mammalian spinal cord has intrinsic potential for repair and that some proteins classically involved in development, such as Sonic hedgehog and Noggin could have important roles in regeneration and functional restoration, by mechanisms including synaptic plasticity.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, Catania, Italy.
| | | |
Collapse
|
12
|
He BL, Ba YC, Wang XY, Liu SJ, Liu GD, Ou S, Gu YL, Pan XH, Wang TH. BDNF expression with functional improvement in transected spinal cord treated with neural stem cells in adult rats. Neuropeptides 2013; 47:1-7. [PMID: 22959240 DOI: 10.1016/j.npep.2012.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2009] [Revised: 05/19/2012] [Accepted: 06/19/2012] [Indexed: 02/07/2023]
Abstract
Neural stem cells (NSC) could promote the repair after spinal cord transection (SCT), the underlying mechanism, however, still keeps to be defined. This study reported that NSC grafts significantly improved sensory and locomotor functions in adult rats with SCT in acute stage after injury. NSC could survive; differentiate towards neurons or glia lineage in vitro and vivo. Biotin dextran amine (BDA) tracing showed that little CST regeneration in the injury site, while SEP was recorded in NSC engrafted rats. Immunohistochemistry and Real time PCR confirmed that engrafted NSC expressed BDNF and increased the level of BDNF mRNA in injured site following transplantation. The present data therefore suggested that the functional recovery following SCT with NSC transplantation was correlated with the expression of BDNF, indicating the usage of BDNF with NSC transplantation in the treatment of SCI following injury.
Collapse
Affiliation(s)
- Bao-Li He
- Institute of Neuroscience, Kunming Medical College, Kunming 650031, China
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Talaverón R, Matarredona ER, de la Cruz RR, Pastor AM. Neural progenitor cell implants modulate vascular endothelial growth factor and brain-derived neurotrophic factor expression in rat axotomized neurons. PLoS One 2013; 8:e54519. [PMID: 23349916 PMCID: PMC3548797 DOI: 10.1371/journal.pone.0054519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 12/12/2012] [Indexed: 12/27/2022] Open
Abstract
Axotomy of central neurons leads to functional and structural alterations which largely revert when neural progenitor cells (NPCs) are implanted in the lesion site. The new microenvironment created by NPCs in the host tissue might modulate in the damaged neurons the expression of a high variety of molecules with relevant roles in the repair mechanisms, including neurotrophic factors. In the present work, we aimed to analyze changes in neurotrophic factor expression in axotomized neurons induced by NPC implants. For this purpose, we performed immunofluorescence followed by confocal microscopy analysis for the detection of vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and nerve growth factor (NGF) on brainstem sections from rats with axotomy of abducens internuclear neurons that received NPC implants (implanted group) or vehicle injections (axotomized group) in the lesion site. Control abducens internuclear neurons were strongly immunoreactive to VEGF and BDNF but showed a weak staining for NT-3 and NGF. Comparisons between groups revealed that lesioned neurons from animals that received NPC implants showed a significant increase in VEGF content with respect to animals receiving vehicle injections. However, the immunoreactivity for BDNF, which was increased in the axotomized group as compared to control, was not modified in the implanted group. The modifications induced by NPC implants on VEGF and BDNF content were specific for the population of axotomized abducens internuclear neurons since the neighboring abducens motoneurons were not affected. Similar levels of NT-3 and NGF immunolabeling were obtained in injured neurons from axotomized and implanted animals. Among all the analyzed neurotrophic factors, only VEGF was expressed by the implanted cells in the lesion site. Our results point to a role of NPC implants in the modulation of neurotrophic factor expression by lesioned central neurons, which might contribute to the restorative effects of these implants.
Collapse
Affiliation(s)
- Rocío Talaverón
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Esperanza R. Matarredona
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Rosa R. de la Cruz
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Angel M. Pastor
- Laboratorio de Fisiología y Plasticidad Neuronal, Departamento de Fisiología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
14
|
Hougland MT, Harrison BJ, Magnuson DSK, Rouchka EC, Petruska JC. The Transcriptional Response of Neurotrophins and Their Tyrosine Kinase Receptors in Lumbar Sensorimotor Circuits to Spinal Cord Contusion is Affected by Injury Severity and Survival Time. Front Physiol 2013; 3:478. [PMID: 23316162 PMCID: PMC3540763 DOI: 10.3389/fphys.2012.00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 12/07/2012] [Indexed: 01/19/2023] Open
Abstract
Traumatic spinal cord injury (SCI) results in changes to the anatomical, neurochemical, and physiological properties of cells in the central and peripheral nervous system. Neurotrophins, acting by binding to their cognate Trk receptors on target cell membranes, contribute to modulation of anatomical, neurochemical, and physiological properties of neurons in sensorimotor circuits in both the intact and injured spinal cord. Neurotrophin signaling is associated with many post-SCI changes including maladaptive plasticity leading to pain and autonomic dysreflexia, but also therapeutic approaches such as training-induced locomotor improvement. Here we characterize expression of mRNA for neurotrophins and Trk receptors in lumbar dorsal root ganglia (DRG) and spinal cord after two different severities of mid-thoracic injury and at 6 and 12 weeks post-SCI. There was complex regulation that differed with tissue, injury severity, and survival time, including reversals of regulation between 6 and 12 weeks, and the data suggest that natural regulation of neurotrophins in the spinal cord may continue for months after birth. Our assessments determined that a coordination of gene expression emerged at the 12-week post-SCI time point and bioinformatic analyses address possible mechanisms. These data can inform studies meant to determine the role of the neurotrophin signaling system in post-SCI function and plasticity, and studies using this signaling system as a therapeutic approach.
Collapse
Affiliation(s)
- M Tyler Hougland
- Department of Anatomical Sciences and Neurobiology, University of Louisville Louisville, KY, USA ; Laboratory of Neural Physiology and Plasticity, Kentucky Spinal Cord Injury Research Center, Department of Neurological Surgery Louisville, KY, USA
| | | | | | | | | |
Collapse
|
15
|
Gulino R, Gulisano M. Involvement of brain-derived neurotrophic factor and sonic hedgehog in the spinal cord plasticity after neurotoxic partial removal of lumbar motoneurons. Neurosci Res 2012; 73:238-47. [PMID: 22579680 DOI: 10.1016/j.neures.2012.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023]
Abstract
Adult mammals could spontaneously achieve a partial sensory-motor recovery after spinal cord injury, by mechanisms including synaptic plasticity. We previously showed that this recovery is associated to the expression of synapsin-I, and that sonic hedgehog and Notch-1 could be also involved in plasticity. The role of brain-derived neurotrophic factor and glutamate receptors in regulating synaptic efficacy has been explored in the last decade but, although these mechanisms are now well-defined in the brain, the molecular mechanisms underlying the so called "spinal learning" are still less clear. Here, we measured the expression levels of choline acetyltransferase, synapsin-I, sonic hedgehog, Notch-1, glutamate receptor subunits (GluR1, GluR2, GluR4, NMDAR1) and brain-derived neurotrophic factor, in a motoneuron-depleted mouse spinal lesion model obtained by intramuscular injection of cholera toxin-B saporin. The lesion caused the down-regulation of the majority of analysed proteins. Moreover, we found that in lesioned but not in control spinal tissue, synapsin-I expression is associated to that of both brain-derived neurotrophic factor and sonic hedgehog, whereas GluR2 expression is linked to that of Shh. These results suggest that brain-derived neurotrophic factor and sonic hedgehog could collaborate in modulating synaptic plasticity after the removal of motoneurons, by a mechanism involving both pre- and post-synaptic processes. Interestingly, the involvement of sonic hedgehog showed here is novel, and offers new routes to address spinal cord plasticity and repair.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, I95125 Catania, Italy.
| | | |
Collapse
|
16
|
Zhao T, Li Y, Dai X, Wang J, Qi Y, Wang J, Xu K. Effects of retrograde gene transfer of brain-derived neurotrophic factor in the rostral spinal cord of a compression model in rat. Mol Biol Rep 2012; 39:8045-51. [PMID: 22531936 DOI: 10.1007/s11033-012-1651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 04/16/2012] [Indexed: 12/22/2022]
Abstract
Recovery after spinal cord injury (SCI) is rare in humans and experimental animals. Following SCI in adults, changes in gene expression and the regulation of these genes are associated with the pathological development of the injury. High levels of brain-derived neurotrophic factor (BDNF) in the injury area during the post-injury period contribute to enhanced neuroprotection and axonal regeneration. Intervention at the level of gene regulation has the potential to promote SCI repair. In this study, the injection of adenovirus-mediated BDNF in the lesion area (rostral spinal cord) up-regulated the expression of BDNF in the injury zone of a compression model in rat, thereby protecting neurons and enhancing behavioral function.
Collapse
Affiliation(s)
- Tengfei Zhao
- The Second Affiliated Hospital (Binjiang Branch), Hangzhou Binjiang Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Hawryluk GWJ, Mothe A, Wang J, Wang S, Tator C, Fehlings MG. An in vivo characterization of trophic factor production following neural precursor cell or bone marrow stromal cell transplantation for spinal cord injury. Stem Cells Dev 2012; 21:2222-38. [PMID: 22085254 DOI: 10.1089/scd.2011.0596] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cellular transplantation strategies for repairing the injured spinal cord have shown consistent benefit in preclinical models, and human clinical trials have begun. Interactions between transplanted cells and host tissue remain poorly understood. Trophic factor secretion is postulated a primary or supplementary mechanism of action for many transplanted cells, however, there is little direct evidence to support trophin production by transplanted cells in situ. In the present study, trophic factor expression was characterized in uninjured, injured-untreated, injured-treated with transplanted cells, and corresponding control tissue from the adult rat spinal cord. Candidate trophic factors were identified in a literature search, and primers were designed for these genes. We examined in vivo trophin expression in 3 paradigms involving transplantation of either brain or spinal cord-derived neural precursor cells (NPCs) or bone marrow stromal cells (BMSCs). Injury without further treatment led to a significant elevation of nerve growth factor (NGF), leukemia inhibitory factor (LIF), insulin-like growth factor-1 (IGF-1), and transforming growth factor-β1 (TGF-β1), and lower expression of vascular endothelial growth factor isoform A (VEGF-A) and platelet-derived growth factor-A (PDGF-A). Transplantation of NPCs led to modest changes in trophin expression, and the co-administration of intrathecal trophins resulted in significant elevation of the neurotrophins, glial-derived neurotrophic factor (GDNF), LIF, and basic fibroblast growth factor (bFGF). BMSCs transplantation upregulated NGF, LIF, and IGF-1. NPCs isolated after transplantation into the injured spinal cord expressed the neurotrophins, ciliary neurotrophic factor (CNTF), epidermal growth factor (EGF), and bFGF at higher levels than host cord. These data show that trophin expression in the spinal cord is influenced by injury and cell transplantation, particularly when combined with intrathecal trophin infusion. Trophins may contribute to the benefits associated with cell-based repair strategies for spinal cord injury.
Collapse
Affiliation(s)
- Gregory W J Hawryluk
- Division of Genetics and Development, Krembil Neuroscience Center, Toronto Western Research Institute, University Health Network, Toronto, Canada
| | | | | | | | | | | |
Collapse
|
18
|
Keeler BE, Liu G, Siegfried RN, Zhukareva V, Murray M, Houlé JD. Acute and prolonged hindlimb exercise elicits different gene expression in motoneurons than sensory neurons after spinal cord injury. Brain Res 2011; 1438:8-21. [PMID: 22244304 DOI: 10.1016/j.brainres.2011.12.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/06/2011] [Accepted: 12/09/2011] [Indexed: 01/31/2023]
Abstract
We examined gene expression in the lumbar spinal cord and the specific response of motoneurons, intermediate gray and proprioceptive sensory neurons after spinal cord injury and exercise of hindlimbs to identify potential molecular processes involved in activity dependent plasticity. Adult female rats received a low thoracic transection and passive cycling exercise for 1 or 4weeks. Gene expression analysis focused on the neurotrophic factors: brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), neurotrophin-3 (NT-3), neurotrophin-4 (NT-4), and their receptors because of their potential roles in neural plasticity. We also examined expression of genes involved in the cellular response to injury: heat shock proteins (HSP) -27 and -70, glial fibrillary acidic protein (GFAP) and caspases -3, -7, and -9. In lumbar cord samples, injury increased the expression of mRNA for TrkB, all three caspases and the HSPs. Acute and prolonged exercise increased expression of mRNA for the neurotrophic factors BDNF and GDNF, but not their receptors. It also increased HSP expression and decreased caspase-7 expression, with changes in protein levels complimentary to these changes in mRNA expression. Motoneurons and intermediate gray displayed little change in mRNA expression following injury, but acute and prolonged exercise increased levels of mRNA for BDNF, GDNF and NT-4. In large DRG neurons, mRNA for neurotrophic factors and their receptors were largely unaffected by either injury or exercise. However, caspase mRNA expression was increased by injury and decreased by exercise. Our results demonstrate that exercise affects expression of genes involved in plasticity and apoptosis in a cell specific manner and that these change with increased post-injury intervals and/or prolonged periods of exercise.
Collapse
Affiliation(s)
- Benjamin E Keeler
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
19
|
Gerin CG, Madueke IC, Perkins T, Hill S, Smith K, Haley B, Allen SA, Garcia RP, Paunesku T, Woloschak G. Combination strategies for repair, plasticity, and regeneration using regulation of gene expression during the chronic phase after spinal cord injury. Synapse 2011; 65:1255-81. [DOI: 10.1002/syn.20903] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
20
|
Glazova M, Pak ES, Moretto J, Hollis S, Brewer KL, Murashov AK. Pre-differentiated embryonic stem cells promote neuronal regeneration by cross-coupling of BDNF and IL-6 signaling pathways in the host tissue. J Neurotrauma 2010; 26:1029-42. [PMID: 19138107 DOI: 10.1089/neu.2008.0785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mechanism of embryonic stem (ES) cell therapeutic action remains far from being elucidated. Our recent report has shown that transplantation of ES cells, predifferentiated into neuronal progenitors, prevented appearance of chronic pain behaviors in mice after experimentally induced spinal cord injury. In the current study, we tested the hypothesis that this beneficial effect is mediated by antiapoptotic and regenerative signaling pathways activated in the host tissue by transplanted ES cells. Spinal cord injury was induced by unilateral microinjections of quisqualic acid at spinal levels T12-L2. At 1 week after injury, the pre-differentiated towards neuronal phenotype ES cells were transplanted into the site of injury. Here we show that transplantation of pre-differentiated ES cells activate both brain-derived neurotrophic factor (BDNF) and interleukin-6 (IL-6) signaling pathways in the host tissue, leading to activation of cAMP/PKA, phosporylation of cofilin and synapsin I, and promoting regenerative growth and neuronal survival.
Collapse
Affiliation(s)
- Margarita Glazova
- Department of Physiology, The Brody School of Medicine, East Carolina University, Greenville, North Carolina 27834, USA
| | | | | | | | | | | |
Collapse
|
21
|
Macias M, Nowicka D, Czupryn A, Sulejczak D, Skup M, Skangiel-Kramska J, Czarkowska-Bauch J. Exercise-induced motor improvement after complete spinal cord transection and its relation to expression of brain-derived neurotrophic factor and presynaptic markers. BMC Neurosci 2009; 10:144. [PMID: 19961582 PMCID: PMC2802589 DOI: 10.1186/1471-2202-10-144] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 12/04/2009] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND It has been postulated that exercise-induced activation of brain-derived neurotrophic factor (BDNF) may account for improvement of stepping ability in animals after complete spinal cord transection. As we have shown previously, treadmill locomotor exercise leads to up-regulation of BDNF protein and mRNA in the entire neuronal network of intact spinal cord. The questions arise: (i) how the treadmill locomotor training, supplemented with tail stimulation, affects the expression of molecular correlates of synaptic plasticity in spinal rats, and (ii) if a response is related to BDNF protein level and distribution. We investigated the effect of training in rats spinalized at low thoracic segments on the level and distribution of BDNF immunoreactivity (IR) in ventral quadrants of the lumbar segments, in conjunction with markers of presynaptic terminals, synaptophysin and synaptic zinc. RESULTS Training improved hindlimb stepping in spinal animals evaluated with modified Basso-Beattie-Bresnahan scale. Grades of spinal trained animals ranged between 5 and 11, whereas those of spinal were between 2 and 4. Functional improvement was associated with changes in presynaptic markers and BDNF distribution. Six weeks after transection, synaptophysin IR was reduced by 18% around the large neurons of lamina IX and training elevated its expression by over 30%. The level of synaptic zinc staining in the ventral horn was unaltered, whereas in ventral funiculi it was decreased by 26% postlesion and tended to normalize after the training. Overall BDNF IR levels in the ventral horn, which were higher by 22% postlesion, were unchanged after the training. However, training modified distribution of BDNF in the processes with its predominance in the longer and thicker ones. It also caused selective up-regulation of BDNF in two classes of cells (soma ranging between 100-400 microm2 and over 1000 microm2) of the ventrolateral and laterodorsal motor nuclei. CONCLUSION Our results show that it is not BDNF deficit that determines lack of functional improvement in spinal animals. They indicate selectivity of up-regulation of BDNF in distinct subpopulations of cells in the motor nuclei which leads to changes of innervation targeting motoneurons, tuned up by locomotor activity as indicated by a region-specific increase of presynaptic markers.
Collapse
Affiliation(s)
- Matylda Macias
- Department of Neurophysiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
- Institute of Molecular and Cellular Biology, (4 Trojdena Str), Warsaw, (02-109), Poland
| | - Dorota Nowicka
- Department of Molecular Neurobiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
| | - Artur Czupryn
- Department of Molecular Neurobiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
| | - Dorota Sulejczak
- Department of Neurophysiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
- Department of Experimental Pharmacology, Medical, Research Centre, Polish Academy of Sciences, (5 Pawińskiego Str), Warsaw, (02-106), Poland
| | - Małgorzata Skup
- Department of Neurophysiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
| | - Jolanta Skangiel-Kramska
- Department of Molecular Neurobiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
| | - Julita Czarkowska-Bauch
- Department of Neurophysiology, Nencki Institute of Experimental Biology, (3 Pasteur Str), Warsaw (02-093), Poland
| |
Collapse
|
22
|
Yara T, Kato Y, Kataoka H, Kanchiku T, Suzuki H, Gondo T, Yoshii S, Taguchi T. Environmental factors involved in axonal regeneration following spinal cord transection in rats. Med Mol Morphol 2009; 42:150-4. [PMID: 19784741 DOI: 10.1007/s00795-009-0454-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/01/2009] [Indexed: 10/20/2022]
Abstract
A recent study of a rat model treated with grafted collagen filament (CF) after spinal cord transection showed dramatic recovery of motor function but did not report on the acute-stage phenomenon. In the present study, we describe molecular and histological aspects of the axonal regeneration process during the acute stage following spinal cord transection. The spinal cord of 8-week-old rats was completely transected, and a scaffold of almost the same size as the resected portion was implanted in the gap. Changes in the mRNA expression of four neurotrophic factors [nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), NT-3, and glial cell-derived neurotrophic factor (GDNF)] were analyzed after 72 h. The expression of BDNF and NT-3 mRNA increased significantly in the CF-grafted group compared to the nongrafted group. Immunostaining for BDNF and NT-3 revealed that cells positive for these neurotrophic factors extended along the collagen filaments in the CF-grafted group. Similarly, astrocytes extended into the collagen filament scaffold together with the neurotrophic factors and partly across a border line. These findings indicate that collagen filament helps to reduce scar tissue, supports the expression of neurotrophic factors, and serves as a scaffold for the outgrowth of regenerating axons.
Collapse
Affiliation(s)
- Takahiro Yara
- Department of Orthopaedic Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Sieck GC, Mantilla CB. Role of neurotrophins in recovery of phrenic motor function following spinal cord injury. Respir Physiol Neurobiol 2009; 169:218-25. [PMID: 19703592 DOI: 10.1016/j.resp.2009.08.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 08/07/2009] [Accepted: 08/17/2009] [Indexed: 01/09/2023]
Abstract
Many individuals who sustain a cervical spinal cord injury are unable to maintain adequate ventilation due to diaphragm muscle paralysis. These patients become dependent on mechanical ventilators and this situation is associated with ongoing problems with pulmonary clearance, infections, and lung injury leading to significant morbidity and reduced life expectancy. Therefore, functional recovery of rhythmic phrenic activity and the ability to generate expulsive forces would dramatically affect the quality of life of patients with cervical spinal cord injury. Neurotrophins are very promising in that they have been shown to play an important role in modulating functional neuroplasticity. Specifically, brain-derived neurotrophic factor (BDNF) acting via the tropomyosin-related kinase receptor type B (TrkB) has been implicated in neuroplasticity following spinal cord injury. Our central hypothesis is that functional recovery of rhythmic phrenic activity after cervical spinal cord injury is enhanced by an increase in BDNF/TrkB signaling in phrenic motoneurons, providing a novel therapeutic target for patients.
Collapse
Affiliation(s)
- Gary C Sieck
- Departments of Physiology & Biomedical Engineering and Anesthesiology, Mayo Clinic, Rochester, MN 55905, United States.
| | | |
Collapse
|
24
|
De Nicola AF, Labombarda F, Gonzalez Deniselle MC, Gonzalez SL, Garay L, Meyer M, Gargiulo G, Guennoun R, Schumacher M. Progesterone neuroprotection in traumatic CNS injury and motoneuron degeneration. Front Neuroendocrinol 2009; 30:173-87. [PMID: 19318112 DOI: 10.1016/j.yfrne.2009.03.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 02/27/2009] [Accepted: 03/03/2009] [Indexed: 10/21/2022]
Abstract
Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.
Collapse
Affiliation(s)
- Alejandro F De Nicola
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biologia y Medicina Experimental-CONICET, Obligado, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Xiyang YB, Liu S, Liu J, Hao CG, Wang ZJ, Ni W, Wang XY, Wang TH. Roles of Platelet-Derived Growth Factor-B Expression in the Ventral Horn and Motor Cortex in the Spinal Cord–Hemisected Rhesus Monkey. J Neurotrauma 2009; 26:275-87. [PMID: 19236168 DOI: 10.1089/neu.2007.0374] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Yan-Bin Xiyang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Su Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Jia Liu
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Chun-Guang Hao
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Zhao-Jun Wang
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Wei Ni
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| | - Xu-Yang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical College, Wenzhou, China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, China
- Institute of Neuroscience, Kunming Medical College, Kunming, China
| |
Collapse
|
26
|
Liu F, Sun WW, Wang Y, Hu LQ, Dai P, Tian CF, Wang TH. Effects of electro-acupuncture on NT-4 expression in spinal dorsal root ganglion and associated segments of the spinal dorsal horn in cats subjected to adjacent dorsal root ganglionectomy. Neurosci Lett 2008; 450:158-62. [PMID: 18838104 DOI: 10.1016/j.neulet.2008.09.066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 11/17/2022]
Abstract
It is well known that neuroplasticity occurs in the central nervous system in response to injury. Electro-acupuncture (EA) may also promote neuroplasticity. But little is known about the underlying molecular mechanisms for the beneficial effects of EA. This study investigated the effects of EA on neurotrophin-4 (NT-4) expression in L(6) spinal dorsal root ganglion (DRG) and associated segments of the spinal dorsal horn in cats subjected to unilateral removal of L(1)-L(5) and L(7)-S(2) DRG. NT-4 protein was normally present in the cytoplasm of the L(6) DRG neurons and L(3) and L(6) spinal dorsal horn neurons and glia. Adjacent ganglionectomy leads to a significant decrease in NT-4 expression in the L(6) DRG, but no change in the spinal dorsal horn. Following EA treatment a significant increase occurred in the L(6) DRG at 14 days post-operation (dpo) as well as the L(6) cord segment at 7 and 14 dpo. These findings pointed to a possible association between NT-4 expression and EA promoted spinal cord plasticity in adult cats subjected to partial ganglionectomy.
Collapse
Affiliation(s)
- Fen Liu
- Institute of Neuroscience, Kunming Medical College, Ren Ming Western Road 191, Kunming, Yunnan 650031, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Temporal changes in the level of neurotrophins in the spinal cord and associated precentral gyrus following spinal hemisection in adult Rhesus monkeys. J Chem Neuroanat 2008; 36:138-43. [PMID: 18692128 DOI: 10.1016/j.jchemneu.2008.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 02/05/2023]
Abstract
Neurotrophins (NTs) appear to be crucial for the survival and potential regeneration of injured neurons. However, their temporal changes and remote regulations following spinal cord injury (SCI) have been only partially determined, especially in primates. In this study, ELISA was performed on the extracts of injured spinal cord and the associated precentral gyrus contralateral to the site of spinal cord hemisection to investigate the temporal changes in the levels of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4 (NT-4) in adult rhesus monkeys subjected to T8 spinal hemisection. Animals were allowed to survive 3, 7, 14, 30 and 90 days post-operation (dpo). In the spinal cord, the levels of NGF, BDNF and NT-3 sharply decreased between 3 and 7dpo. Thereafter, the levels of NGF and BDNF were transiently elevated while NT-3 level continuously increased and recovered to normal level at 30dpo. In the contralateral precentral gyrus (cPG), only the NT-3 level was altered and in fact elevated above the normal value. No obvious changes were observed in NT-4 level in any of the regions studied. Taken together, the present findings indicated that intrinsic NGF, BDNF and NT-3 may play a local role in the responses to the SCI in primates. Especially, the increase of NT-3 level occurred continuously in both the cPG and the spinal cord pointed to a possible transportation of NT-3 to the cord following SCI.
Collapse
|
28
|
Hajebrahimi Z, Mowla SJ, Movahedin M, Tavallaei M. Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion. Neurosci Lett 2008; 441:261-6. [PMID: 18585435 DOI: 10.1016/j.neulet.2008.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 12/17/2022]
Abstract
We have used a semi-quantitative RT-PCR approach to investigate the alterations in the expression of the main regulators of neuronal survival and death, neurotrophins (NTs), NT receptors, and prohormone convertases (PC), in a rat model of spinal cord contusion. Our results revealed that the expression of the members of NT family (Nerve-Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Neurotrophin-3 (NT-3)) is significantly declined in the injured spinal cord, as early as 6h after the induction of the contusion. The expression was recovered afterward to that of the control levels. Furthermore, the expression of all NTs high-affinity Trk receptors decreased severely after the contusion. While the expression of TrkA and TrkC were completely shut down after 6 and 12h after injury respectively, the expression of TrkB receptor declined at 12h after injury and remained at this low level thereafter. In contrast to the pattern of Trk receptor expression, p75NTR receptor showed a significant upregulation after contusion. The expression of PC members functioning in the constitutive secretory pathway, i.e. furin, PACE4 and PC7, increased after damage, while the expression of PC members acting in regulated secretory pathway, PC1 and PC2, reduced after spinal cord injury. All together, the down-regulation of NTs, their designated Trk receptors and PC1/PC2 enzymes along with an upregulation of p75NTR promote neuronal death after injury. Our results suggest that either overexpression of NTs, Trk receptors and PC1/PC2 or interfering with the expression of p75NTR in host and/or grafted cells before transplantation could increase the success of the transplantation.
Collapse
Affiliation(s)
- Zahra Hajebrahimi
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | | | | |
Collapse
|
29
|
Li XL, Liu J, Wang XY, Li LY, Ni W, Zheng RY, Yang HJ, Lu YC, Qi JG, Wang TH. Temporal changes in the expression of TGF-beta 1 and EGF in the ventral horn of the spinal cord and associated precentral gyrus in adult Rhesus monkeys subjected to cord hemisection. J Neurol Sci 2008; 268:163-71. [DOI: 10.1016/j.jns.2007.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Revised: 12/01/2007] [Accepted: 12/04/2007] [Indexed: 01/19/2023]
|
30
|
Li XL, Zhang W, Zhou X, Wang XY, Zhang HT, Qin DX, Zhang H, Li Q, Li M, Wang TH. Temporal changes in the expression of some neurotrophins in spinal cord transected adult rats. Neuropeptides 2007; 41:135-43. [PMID: 17459471 DOI: 10.1016/j.npep.2007.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 02/14/2007] [Accepted: 02/15/2007] [Indexed: 11/30/2022]
Abstract
Functional recovery of neurons in the spinal cord after physical injury is essentially abortive in clinical cases. As neurotrophins had been reported to be responsible, at least partially, for the lesion-induced recovery of spinal cord, it is not surprising that they have become the focus of numerous studies. Studies on endogenous neurotrophins, especially the three more important ones, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) in injured spinal cord might provide some important clues in clinical treatment. Here we investigate the immunohistological expression of the above three factors at lower thoracic levels of the spinal cord as well as changes in the motor functions of the adult rat hindlimbs after cord transection. The injured rats were allowed to survive 3, 7, 14 and 21 days post operation (dpo). Flaccid paralysis was seen at 3 dpo following cord transection, however, hindlimb function showed partial recovery from 7 dpo to 21 dpo. The numbers of NGF, BDNF and NT-3 immunopositive neurons and their optical densities all increased in the lesion-induced cord. The immuno-expression of NGF and BDNF peaked at 7 dpo, while that of NT-3 peaked at 7 dpo and remained so at least up to 14 dpo. These results suggested that neurotrophins might play essential roles in functional recovery of after spinal cord injury, but the time points for the expression of the three factors differed somewhat.
Collapse
Affiliation(s)
- Xiao-Li Li
- Institute of Neuroscience, Kunming Medical College, Kunming 650031, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Carrasco MA, Castro P, Sepulveda FJ, Tapia JC, Gatica K, Davis MI, Aguayo LG. Regulation of glycinergic and GABAergic synaptogenesis by brain-derived neurotrophic factor in developing spinal neurons. Neuroscience 2007; 145:484-94. [PMID: 17306467 DOI: 10.1016/j.neuroscience.2006.12.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 11/15/2006] [Accepted: 12/05/2006] [Indexed: 11/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) effects on the establishment of glycinergic and GABAergic transmissions in mouse spinal neurons were examined using combined electrophysiological and calcium imaging techniques. BDNF (10 ng/ml) caused a significant acceleration in the onset of synaptogenesis without large effects on the survival of these neurons. Amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature inhibitory postsynaptic currents (mIPSCs) associated to activation of glycine and GABA(A) receptors were augmented in neurons cultured with BDNF. The neurotrophin effect was blocked by long term tetrodotoxin (TTX) addition suggesting a dependence on neuronal activity. In addition, BDNF caused a significant increase in glycine- and GABA-evoked current densities that partly explains the increase in synaptic transmission. Presynaptic mechanisms were also involved in BDNF effects since triethylammonium(propyl)-4-(2-(4-dibutylamino-phenyl)vinyl)pyridinium (FM1-43) destaining with high K(+) was augmented in neurons incubated with the neurotrophin. The effects of BDNF were mediated by receptor tyrosine kinase B (TrkB) and mitogen-activated protein kinase kinase (MEK) activation since culturing neurons with either (9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'- kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester (K252a) or 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059) blocked the augmentation in synaptic activity induced by the neurotrophin.
Collapse
Affiliation(s)
- M A Carrasco
- Laboratory of Neurophysiology, Department of Physiology, University of Concepción, P.O. Box 160-C, Concepción, Chile
| | | | | | | | | | | | | |
Collapse
|
32
|
Gonzalez Deniselle MC, Garay L, Gonzalez S, Saravia F, Labombarda F, Guennoun R, Schumacher M, De Nicola AF. Progesterone modulates brain-derived neurotrophic factor and choline acetyltransferase in degenerating Wobbler motoneurons. Exp Neurol 2007; 203:406-14. [PMID: 17052708 DOI: 10.1016/j.expneurol.2006.08.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2006] [Revised: 08/11/2006] [Accepted: 08/24/2006] [Indexed: 12/20/2022]
Abstract
Progesterone (PROG) shows neuroprotective effects in nervous system diseases. The Wobbler mouse, a model of motoneuron degeneration, suffers a mutation of the Vsp154 gene on chromosome 11 leading to motoneuron vacuolation and astrocytosis of the spinal cord. Previous work has demonstrated beneficial effects of PROG in the Wobbler mouse. As an extension of this work, we now studied steroid effects on neuronal brain-derived neurotrophic factor (BDNF) mRNA and protein, on choline acetyltransferase (ChAT) immunoreactivity (IR) and activity in the spinal cord, and on recovery of muscle atrophy. Wobbler mice received implants of PROG pellets (20 mg) at 6 and 10 weeks of age and were killed at 14 weeks. In situ hybridization for BDNF mRNA demonstrated that grain density in large (>600 microm2) and medium size (<600 microm2) ventral horn neurons was decreased in untreated Wobblers, whereas PROG treatment increased BDNF mRNA in both neuronal types. PROG also induced a subcellular redistribution of BDNF protein, which in controls and steroid-naive Wobblers showed a predominant perinuclear and nucleolar location, whereas after PROG treatment, it was detected in cytoplasmic aggregates. ChAT activity was reduced by 55.3% in muscles of untreated Wobbler mice, whereas a significant increment was obtained after PROG treatment. Wobblers also showed reduced number of ChAT positive motoneurons, but this number was restored to normal by PROG. Finally, the pronounced biceps atrophy of steroid-naive Wobbler mice was slightly but significantly increased by PROG-treatment. Considering the important role played by neurotrophins on neuronal function, changes in BDNF might be part of the PROG activated-pathways to provide neuroprotection and re-establish neurotransmission and neuromuscular function in this degeneration model.
Collapse
Affiliation(s)
- Maria Claudia Gonzalez Deniselle
- Laboratory of Neuroendocrine Biochemistry, Instituto de Biología y Medicina Experimental, and Dep. of Biochemistry, Faculty of Medicine, University of Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Gulino R, Dimartino M, Casabona A, Lombardo SA, Perciavalle V. Synaptic plasticity modulates the spontaneous recovery of locomotion after spinal cord hemisection. Neurosci Res 2006; 57:148-56. [PMID: 17083989 DOI: 10.1016/j.neures.2006.10.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/04/2006] [Accepted: 10/04/2006] [Indexed: 11/21/2022]
Abstract
Several evidences have demonstrated that adult mammals could achieve a wide range of spontaneous sensory-motor recovery after spinal cord injury by means of various forms of neuroplasticity. In this study we evaluated the possibility that after low-thoracic spinal cord hemisection in the adult rat, significant hindlimb locomotor recovery could occur, and that this recovery may be driven, at least in part, by mechanisms of synaptic plasticity. In order to address these issues, we measured the expression levels of synapsin-I and brain-derived neurotrophic factor by Western blotting, at various time points after hemisection and correlated them with the motor performance on a grid walk test. Regression analysis showed that the expression of synapsin-I was strongly correlated with the spontaneous recovery of hindlimb locomotion (R=0.78). Conversely, neither the expression levels of synapsin-I nor the locomotor recovery were associated with the expression of brain-derived neurotrophic factor. Overall results indicate that after spinal cord hemisection, substantial recovery of hindlimb locomotion could occur spontaneously, and that synaptic plasticity within spinal circuitries below the level of the lesion, could be an important mechanism involved in these processes.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Physiological Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | | | | | | | | |
Collapse
|
34
|
Qin DX, Zou XL, Luo W, Zhang W, Zhang HT, Li XL, Zhang H, Wang XY, Wang TH. Expression of some neurotrophins in the spinal motoneurons after cord hemisection in adult rats. Neurosci Lett 2006; 410:222-7. [PMID: 17055159 DOI: 10.1016/j.neulet.2006.10.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 10/02/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
There are numerous studies reporting on the crucial roles of neurotrophins (NTFs) in neuronal survival and sprouting after spinal cord injury (SCI). But studies on endogenous changes of neurotrophins after SCI are few. In this study we explored by means of immunohistochemistry the localization of NGF, BDNF and NT-3 in the normal adult spinal cord (SC) and the changes in the expression of these chemicals in the ventral horn after right cord hemisection at T9-10. The results showed an obvious increase in the numbers of NGF, BDNF and NT-3-immunoreactive neurons in the ventral horn and also an increase in their intracellular optical density (O.D.) at 3, 7 and 21 days after cord hemisection, when compared with sham-operated rats. The expression of NGF peaked at 7 days postoperation (dpo), while BDNF and NT-3 expressions peaked at 3 dpo. Evaluation of hindlimb functions by Basso Beattie Bresnahan (BBB) scoring showed that the hindlimb support and stepping function improved very quickly at 7 dpo. This study indicated that NGF, BDNF and NT-3 could play important but different roles in the mechanisms of spinal neuroplasticity at different times after SCI.
Collapse
Affiliation(s)
- Dan Xia Qin
- Institute of Neuroscience, Kunming Medical College, 650031 Kunming, China
| | | | | | | | | | | | | | | | | |
Collapse
|