1
|
Abstract
Evidence from both preclinical and clinical studies suggest the importance of zinc homeostasis in seizures/epilepsy. Undoubtedly, zinc, via modulation of a variety of targets, is necessary for maintaining the balance between neuronal excitation and inhibition, while an imbalance between excitation and inhibition underlies seizures. However, the relationship between zinc signaling and seizures/epilepsy is complex as both extracellular and intracellular zinc may produce either protective or detrimental effects. This review provides an overview of preclinical/behavioral, functional and molecular studies, as well as clinical data on the involvement of zinc in the pathophysiology and treatment of seizures/epilepsy. Furthermore, the potential of targeting elements associated with zinc signaling or homeostasis and zinc levels as a therapeutic strategy for epilepsy is discussed.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland.
| | - Katarzyna Młyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wlaź
- Department of Pathophysiology, Medical University of Lublin, Lublin, Poland
| | - Ewa Poleszak
- Department of Applied Pharmacy, Medical University of Lublin, Lublin, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Kraków, Poland; Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Piotr Wlaź
- Department of Animal Physiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| |
Collapse
|
2
|
Bazyan AS, van Luijtelaar G. Neurochemical and behavioral features in genetic absence epilepsy and in acutely induced absence seizures. ISRN NEUROLOGY 2013; 2013:875834. [PMID: 23738145 PMCID: PMC3664506 DOI: 10.1155/2013/875834] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 02/08/2023]
Abstract
The absence epilepsy typical electroencephalographic pattern of sharp spikes and slow waves (SWDs) is considered to be due to an interaction of an initiation site in the cortex and a resonant circuit in the thalamus. The hyperpolarization-activated cyclic nucleotide-gated cationic I h pacemaker channels (HCN) play an important role in the enhanced cortical excitability. The role of thalamic HCN in SWD occurrence is less clear. Absence epilepsy in the WAG/Rij strain is accompanied by deficiency of the activity of dopaminergic system, which weakens the formation of an emotional positive state, causes depression-like symptoms, and counteracts learning and memory processes. It also enhances GABAA receptor activity in the striatum, globus pallidus, and reticular thalamic nucleus, causing a rise of SWD activity in the cortico-thalamo-cortical networks. One of the reasons for the occurrence of absences is that several genes coding of GABAA receptors are mutated. The question arises: what the role of DA receptors is. Two mechanisms that cause an infringement of the function of DA receptors in this genetic absence epilepsy model are proposed.
Collapse
Affiliation(s)
- A. S. Bazyan
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, Russian Federation, 5A Butlerov Street, Moscow 117485, Russia
| | - G. van Luijtelaar
- Biological Psychology, Donders Centre for Cognition, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, P.O. Box 9104, 6500 HE Nijmegen, The Netherlands
| |
Collapse
|
3
|
Cholesterol synthesis inhibitor U18666A and the role of sterol metabolism and trafficking in numerous pathophysiological processes. Lipids 2009; 44:477-87. [PMID: 19440746 DOI: 10.1007/s11745-009-3305-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 12/16/2008] [Indexed: 01/16/2023]
Abstract
The multiple actions of U18666A have enabled major discoveries in lipid research and contributed to understanding the pathophysiology of multiple diseases. This review describes these advances and the utility of U18666A as a tool in lipid research. Harry Rudney's recognition that U18666A inhibited oxidosqualene cyclase led him to discover a pathway for formation of polar sterols that he proved to be important regulators of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase. Laura Liscum's recognition that U18666A inhibited the egress of cholesterol from late endosomes and lysosomes led to greatly improved perspective on the major pathways of intracellular cholesterol trafficking. The inhibition of cholesterol trafficking by U18666A mimicked the loss of functional Niemann-Pick type C protein responsible for NPC disease and thus provided a model for this disorder. U18666A subsequently became a tool for assessing the importance of molecular trafficking through the lysosomal pathway in other conditions such as atherosclerosis, Alzheimer's disease, and prion infections. U18666A also provided animal models for two important disorders: petite mal (absence) epilepsy and cataracts. This was the first chronic model of absence epilepsy. U18666A is also being used to address the role of oxidative stress in apoptosis. How can one molecule have so many effects? Perhaps because of its structure as an amphipathic cationic amine it can interact and inhibit diverse proteins. Restricting the availability of cholesterol for membrane formation through inhibition of cholesterol synthesis and intracellular trafficking could also be a mechanism for broadly affecting many processes. Another possibility is that through intercalation into membrane U18666A can alter membrane order and therefore the function of resident proteins. The similarity of the effects of natural and enantiomeric U18666A on cells and the capacity of intercalated U18666A to increase membrane order are arguments in favor of this possibility.
Collapse
|
4
|
Zheng C, Wang MY, Liu Q, Wakui M, Whiteaker P, Lukas RJ, Wu J. U18666A, a cholesterol-inhibition agent, modulates human neuronal nicotinic acetylcholine receptors heterologously expressed in SH-EP1 cell line. J Neurochem 2009; 108:1526-38. [PMID: 19183258 DOI: 10.1111/j.1471-4159.2009.05903.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In this study, we evaluate the effects of (3beta)-3-[2-(diethylamino)ethoxy]androst-5-en-17-one dihydrochloride (U18666A), a cholesterol synthesis/transporter inhibitor, on selected human neuronal nicotinic acetylcholine receptors (nAChRs) heterologously expressed in the SH-EP1 cell line using whole-cell patch-clamp recordings. The results indicate that with 2-min pretreatment, U18666A inhibited different nAChR subtypes with a rank-order of potency (IC(50) of whole-cell peak current): alpha4beta2 (8.0 +/- 3.0 nM) > alpha3beta2 (1.7 +/- 0.4 microM) > alpha4beta4 (26 +/- 7.2 microM) > alpha7 (> 100 microM), suggesting this compound is more selective to alpha4beta2-nAChRs. Thus, the pharmacological profiles and mechanisms of U18666A acting on alpha4beta2-nAChRs were investigated in detail. U18666A suppresses both peak and steady state components of whole-cell currents mediated by human alpha4beta2-nAChRs in response to nicotine. In nicotine-induced concentration-response curves, U18666A reduces nicotine-induced current at maximally effective agonist concentrations without influencing nicotine's EC(50) value, suggesting a non-competitive inhibition. U18666A-induced inhibition of nAChR function is concentration-, voltage-, and use-dependent, suggesting an open channel block. Taken into consideration of approximately 10 000-fold enhancement of the potency of U18666A after 2-min pre-treatment, this compound also likely inhibits alpha4beta2-nAChRs through a close channel block. In addition, the U18666A-induced inhibition in alpha4beta2-nAChRs is not mediated by either increased receptor endocytosis or altered cell cholesterol. These data indicate that U18666A is a potent antagonist of alpha4beta2-nAChRs and may be useful as a tool in the functional characterization and pharmacological profiling of nAChRs, as well as a potential candidate for smoking cessation.
Collapse
Affiliation(s)
- Chao Zheng
- Division of Neurology, Barrow Neurological Institute, St Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Rocha L. Subchronic treatment with antiepileptic drugs modifies pentylenetetrazol-induced seizures in mice: Its correlation with benzodiazepine receptor binding. Neuropsychiatr Dis Treat 2008; 4:619-25. [PMID: 18830436 PMCID: PMC2526378 DOI: 10.2147/ndt.s2118] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Experiments using male CD1 mice were carried out to investigate the effects of subchronic (daily administration for 8 days) pretreatments with drugs enhancing GABAergic transmission (diazepam, 10 mg/kg, ip; gabapentin, 100 mg/kg, po; or vigabatrin, 500 mg/kg, po) on pentylenetetrazol (PTZ)-induced seizures, 24 h after the last injection. Subchronic administration of diazepam reduced latencies to clonus, tonic extension and death induced by PTZ. Subchronic vigabatrin produced enhanced latency to the first clonus but faster occurrence of tonic extension and death induced by PTZ. Subchronic gabapentin did not modify PTZ-induced seizures. Autoradiography experiments revealed reduced benzodiazepine receptor binding in several brain areas after subchronic treatment with diazepam or gabapentin, whereas subchronic vigabatrin did not induce significant receptor changes. The present results indicate differential effects induced by the subchronic administration of diazepam, vigabatrin, and gabapentin on the susceptibility to PTZ-induced seizures, benzodiazepine receptor binding, or both.
Collapse
Affiliation(s)
- Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies Calz, Tenorios, México.
| |
Collapse
|
6
|
Cataldi M, Lariccia V, Marzaioli V, Cavaccini A, Curia G, Viggiano D, Canzoniero LMT, di Renzo G, Avoli M, Annunziato L. Zn2+ Slows Down CaV3.3 Gating Kinetics: Implications for Thalamocortical Activity. J Neurophysiol 2007; 98:2274-84. [PMID: 17699699 DOI: 10.1152/jn.00889.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We employed whole cell patch-clamp recordings to establish the effect of Zn2+ on the gating the brain specific, T-type channel isoform CaV3.3 expressed in HEK-293 cells. Zn2+ (300 μM) modified the gating kinetics of this channel without influencing its steady-state properties. When inward Ca2+ currents were elicited by step depolarizations at voltages above the threshold for channel opening, current inactivation was significantly slowed down while current activation was moderately affected. In addition, Zn2+ slowed down channel deactivation but channel recovery from inactivation was only modestly changed. Zn2+ also decreased whole cell Ca2+ permeability to 45% of control values. In the presence of Zn2+, Ca2+ currents evoked by mock action potentials were more persistent than in its absence. Furthermore, computer simulation of action potential generation in thalamic reticular cells performed to model the gating effect of Zn2+ on T-type channels (while leaving the kinetic parameters of voltage-gated Na+ and K+ unchanged) revealed that Zn2+ increased the frequency and the duration of burst firing, which is known to depend on T-type channel activity. In line with this finding, we discovered that chelation of endogenous Zn2+ decreased the frequency of occurrence of ictal-like epileptiform discharges in rat thalamocortical slices perfused with medium containing the convulsant 4-aminopyridine (50 μM). These data demonstrate that Zn2+ modulates CaV3.3 channel gating thus leading to increased neuronal excitability. We also propose that endogenous Zn2+ may have a role in controlling thalamocortical oscillations.
Collapse
Affiliation(s)
- M Cataldi
- Divisione di Farmacologia, Dipartimento di Neuroscienze, Facoltà di Medicina e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Wu J, Chang Y, Li G, Xue F, DeChon J, Ellsworth K, Liu Q, Yang K, Bahadroani N, Zheng C, Zhang J, Rekate H, Rho JM, Kerrigan JF. Electrophysiological properties and subunit composition of GABAA receptors in patients with gelastic seizures and hypothalamic hamartoma. J Neurophysiol 2007; 98:5-15. [PMID: 17428906 DOI: 10.1152/jn.00165.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Abnormalities in GABA(A) receptor structure and/or function have been associated with various forms of epilepsy in both humans and animals. Whether this is true for patients with gelastic seizures and hypothalamic hamartoma (HH) is unknown. In this study, we characterized the pharmacological properties and native subunit composition of GABA(A) receptors on acutely dissociated single neurons from surgically resected HH tissues using patch-clamp, immunocytochemical, and RT-PCR techniques. We found that 1) GABA induced an inward current (I(GABA)) at a holding potential of -60 mV; 2) I(GABA) was mimicked by the GABA(A) receptor agonist muscimol and blocked by the GABA(A) receptor antagonist bicuculline, suggesting that I(GABA) was mediated principally through the GABA(A) receptor; 3) the EC(50) and Hill coefficient derived from the I(GABA) concentration-response curve were 6.8 muM and 1.9, respectively; 4) the current-voltage curve was linear at a reversal potential close to zero; and 5) I(GABA) exhibited low sensitivity to zinc and diazepam but higher sensitivity to pentobarbital and pregnanolone. Additionally, using Xenopus oocytes microtransplanted with normal human hypothalamic tissue, we confirmed that the functional properties of GABA(A) receptors were similar to those seen in small isolated HH neurons. Finally, the expression profile of GABA(A) receptor subunits obtained from normal control human hypothalamic tissue was identical to that from surgically resected human HH tissue. Taken together, our data indicate that GABA(A) receptors on small HH neurons exhibit normal pharmacosensitivity and subunit composition. These findings bear relevance to a broader understanding of inhibitory neurotransmission in human HH tissue.
Collapse
Affiliation(s)
- Jie Wu
- Neurophysiology Lab, Div of Neurology, Barrow Neurological Inst, St Joseph's Hospital and Medical Center, Phoenix, AZ 85013-4496, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
González Ramírez M, Orozco Suárez S, Salgado Ceballos H, Feria Velasco A, Rocha L. Hyperthermia-induced seizures modify the GABA(A) and benzodiazepine receptor binding in immature rat brain. Cell Mol Neurobiol 2007; 27:211-27. [PMID: 16802192 DOI: 10.1007/s10571-006-9094-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 05/10/2005] [Indexed: 11/28/2022]
Abstract
Effects of hyperthermia-induced seizures (HS) on GABA(A) and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-days-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABA(A) and BDZ receptor binding. GABA(A) binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABA(A) and BDZ binding in immature brain. HS-induced GABA(A) and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.
Collapse
Affiliation(s)
- M González Ramírez
- Unidad de Investigación Médica en Enfermedades Neurológicas, H. Especialidades, CMN S XXI, Av Cuauhtémoc 330, Col Doctores México DF, México
| | | | | | | | | |
Collapse
|
9
|
Li H, Huguenard JR, Fisher RS. Gender and age differences in expression of GABAA receptor subunits in rat somatosensory thalamus and cortex in an absence epilepsy model. Neurobiol Dis 2007; 25:623-30. [PMID: 17208003 PMCID: PMC2708099 DOI: 10.1016/j.nbd.2006.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/31/2006] [Accepted: 11/05/2006] [Indexed: 11/29/2022] Open
Abstract
Absence epilepsy is more prevalent in females, but reasons for this gender asymmetry are unknown. We reported previously that perinatal treatment of Long-Evans Hooded rats with the cholesterol synthesis inhibitor (CSI) AY9944 causes a life-long increase in EEG spike-wave discharges (SWDs), correlated with decreased expression of GABA(A) receptor subunit gamma2 protein levels in thalamic reticular and ventrobasal nuclei (SS thalamus) [Li, H., Kraus, A., Wu, J., Huguenard, J.R., Fisher, R.S., 2006. Selective changes in thalamic and cortical GABA(A) receptor subunits in a model of acquired absence epilepsy in the rat. Neuropharmacology 51, 121-128]. In this study, we explored time course and gender different effects of perinatal AY9944 treatment on expression of GABA(A) receptor alpha1 and gamma2 subunits in SS thalamus and SS cortex. Perinatal AY9944 treatment-induced decreases in GABA(A) gamma2 receptor subunits in rat SS thalamus and increases in SS cortex are gender and age specific. The findings suggest a mechanism for the higher prevalence of absence epilepsy in female patients.
Collapse
MESH Headings
- Age Factors
- Animals
- Anticholesteremic Agents
- Disease Models, Animal
- Epilepsy, Absence/chemically induced
- Epilepsy, Absence/metabolism
- Epilepsy, Absence/physiopathology
- Female
- Gene Expression Regulation, Developmental
- Intralaminar Thalamic Nuclei/growth & development
- Intralaminar Thalamic Nuclei/physiology
- Male
- Protein Subunits/genetics
- Protein Subunits/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Long-Evans
- Receptors, GABA-A/genetics
- Receptors, GABA-A/metabolism
- Sex Characteristics
- Somatosensory Cortex/growth & development
- Somatosensory Cortex/physiology
- Ventral Thalamic Nuclei/growth & development
- Ventral Thalamic Nuclei/physiology
- trans-1,4-Bis(2-chlorobenzaminomethyl)cyclohexane Dihydrochloride
Collapse
Affiliation(s)
- Huifang Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Room A343, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5235, USA.
| | | | | |
Collapse
|
10
|
Li H, Kraus A, Wu J, Huguenard JR, Fisher RS. Selective changes in thalamic and cortical GABAA receptor subunits in a model of acquired absence epilepsy in the rat. Neuropharmacology 2006; 51:121-8. [PMID: 16678865 DOI: 10.1016/j.neuropharm.2006.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2005] [Revised: 03/06/2006] [Accepted: 03/07/2006] [Indexed: 11/19/2022]
Abstract
Neonatal treatment of Long-Evans Hooded rats with the cholesterol synthesis inhibitor (CSI) AY9944 has been shown to increase occurrence of spike-waves in EEG recordings and decrease benzodiazepines sensitivity of GABA(A) receptor-mediated responses in neurons from the thalamic reticular nuclei (nRt, Wu et al., 2004). The present experiments were designed to investigate the changes in the gamma2 and alpha1 subunits of the GABA(A) receptor in CSI model rats as possible mechanisms of these changes. Western blot, immunohistochemistry and real-time PCR techniques were performed to measure the levels of GABA(A) receptor gamma2 and alpha1 subunit transcripts and protein in the nRt and ventrobasal (VB) relay nuclei of thalamus and in somatosensory cortex. In CSI model animals, Western blot results showed that gamma2 subunit expression significantly decreased in thalamus (control, n=6: 0.17+/-0.02 relative to actin vs. CSI model, n=6: 0.11+/-0.01, P<0.05) but neither in cortex nor in hippocampal tissues. Conversely, alpha1 subunit expression decreased in CSI model somatosensory cortex, but not in nRt and VB. The present results demonstrate that neonatal block of cholesterol synthesis produces region- and subunit-specific decreases in GABA(A) receptor subunits in thalamus and cortex. Selective reductions in GABA(A) receptor subunits in thalamus may play a role in pathophysiology of absence epilepsy.
Collapse
Affiliation(s)
- Huifang Li
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Room A343, Stanford Medical Center, 300 Pasteur Drive, Stanford, CA 94305-5235, USA.
| | | | | | | | | |
Collapse
|
11
|
Wu J, Xu L, Kim DY, Rho JM, St John PA, Lue LF, Coons S, Ellsworth K, Nowak L, Johnson E, Rekate H, Kerrigan JF. Electrophysiological properties of human hypothalamic hamartomas. Ann Neurol 2005; 58:371-82. [PMID: 16130091 DOI: 10.1002/ana.20580] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The hypothalamic hamartoma (HH) is a rare developmental malformation often characterized by gelastic seizures, which are usually refractory to medical therapy. The mechanisms of epileptogenesis operative in this subcortical lesion are unknown. In this study, we used standard patch-clamp electrophysiological techniques combined with histochemical approaches to study individual cells from human HH tissue immediately after surgical resection. More than 90% of dissociated HH cells were small (6-9 microm soma) and exhibited immunoreactivity to the neuronal marker NeuN, and to glutamic acid decarboxylase, but not to glial fibrillary acidic protein. Under current-clamp, whole-cell recordings in single dissociated cells or in intact HH slices demonstrated typical neuronal responses to depolarizing and hyperpolarizing current injection. In some cases, HH cells exhibited a "sag-like" membrane potential change during membrane hyperpolarization. Interestingly, most HH cells exhibited robust, spontaneous "pacemaker-like" action potential firing. Under voltage-clamp, dissociated HH cells exhibited functional tetrodotoxin (TTX)-sensitive Na(+) and tetraethylammonium-sensitive K(+) currents. Both GABA and glutamate evoked whole-cell currents, with GABA exhibiting a peak current amplitude 10-fold greater than glutamate. These findings suggest that human HH tissues, associated with gelastic seizures, contained predominantly small GABAergic inhibitory neurons that exhibited intrinsic "pacemaker-like" behavior.
Collapse
Affiliation(s)
- Jie Wu
- Division of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ 85013, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
González-Ramírez M, Orozco S, Salgado H, Feria A, Rocha L. Hyperthermia-induced seizures modify the GABAA and benzodiazepine receptor binding in immature rat brain. Cell Mol Neurobiol 2005; 25:955-71. [PMID: 16392029 DOI: 10.1007/s10571-005-8467-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Accepted: 05/10/2005] [Indexed: 10/25/2022]
Abstract
Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-day-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h, or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal, and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta, and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.
Collapse
Affiliation(s)
- M González-Ramírez
- Unidad de Investigación Médica en Enfermedades Neurológicas, H. Especialidades, CMN S XXI, Av. Cuauhtémoc 330, Col. Doctores México, D.F., C.P. 06720
| | | | | | | | | |
Collapse
|
13
|
Hales TG, Tang H, Bollan KA, Johnson SJ, King DP, McDonald NA, Cheng A, Connolly CN. The epilepsy mutation, gamma2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol Cell Neurosci 2005; 29:120-7. [PMID: 15866052 DOI: 10.1016/j.mcn.2005.01.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 01/05/2005] [Indexed: 11/22/2022] Open
Abstract
Given the association of a gamma2 mutation (R43Q) with epilepsy and the reduced cell surface expression of mutant receptors, we investigated a role for this residue in alpha1beta2gamma2 receptor assembly when present in each subunit. Regardless of which subunit contained the mutation, mutant GABA(A) receptors assembled poorly into functional cell surface receptors. The low level of functional expression gives rise to reduced GABA EC50s (alpha1(R43Q)beta2gamma2 and alpha1beta2(R43Q)gamma2) or reduced benzodiazepine potentiation of GABA-evoked currents (alpha1beta2gamma2(R43Q)). We determined that a 15-residue peptide surrounding R43 is capable of subunit binding, with a profile that reflected the orientation of subunits in the pentameric receptor. Subunit binding is perturbed when the R43Q mutation is present suggesting that this residue is critical for the formation of inter-subunit contacts at (+) interfaces of GABAA subunits. Rather than being excluded from receptors, gamma2(R43Q) may form non-productive subunit interactions leading to a dominant negative effect on other receptor subtypes.
Collapse
Affiliation(s)
- Tim G Hales
- Department of Pharmacology and Physiology, The George Washington University, 2300 Eye Street NW, Washington, DC 20037, USA
| | | | | | | | | | | | | | | |
Collapse
|