1
|
Choi JY, Lee ES, Kim JS. Vestibular syncope. Curr Opin Neurol 2024; 37:66-73. [PMID: 38193502 DOI: 10.1097/wco.0000000000001226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
PURPOSE OF REVIEW This review considers recent observations on vestibular syncope in terms of clinical features, laboratory findings, and potential mechanisms. RECENT FINDINGS Vestibular syncope, potentially associated with severe fall-related injuries, may develop multiple times in about one-third of patients. Meniere's disease and benign paroxysmal positional vertigo are the most common causes of vestibular syncope, but the underlying disorders remain elusive in 62% of cases with vestibular syncope. The postictal orthostatic blood pressure test exhibits a lower diagnostic yield. Vestibular function tests, such as cervical vestibular-evoked myogenic potentials and video head impulse tests, can reveal one or more abnormal findings, suggesting compensated or ongoing minor vestibular dysfunctions. The pathomechanism of syncope is assumed to be the erroneous interaction between the vestibulo-sympathetic reflex and the baroreflex that have different operating mechanisms and action latencies. The central vestibular system, which estimates gravity orientation and inertia motion may also play an important role in abnormal vestibulo-sympathetic reflex. SUMMARY Vestibular disorders elicit erroneous cardiovascular responses by providing false vestibular information. The results include vertigo-induced hypertension or hypotension, which can ultimately lead to syncope in susceptible patients.
Collapse
Affiliation(s)
- Jeong-Yoon Choi
- Dizziness Center, Seoul National University Bundang Hospital, Seongnam
- Department of Neurology, Seoul National University College of Medicine, Seoul
| | - Eek-Sung Lee
- Department of Neurology, Soonchunhang University Bucheon Hospital, Bucheon, Korea
| | - Ji-Soo Kim
- Dizziness Center, Seoul National University Bundang Hospital, Seongnam
- Department of Neurology, Seoul National University College of Medicine, Seoul
| |
Collapse
|
2
|
Raffai G, Csekő C, Nádasy G, Kocsis L, Dézsi L, Hunyor SN, Monos E. Environmental stress and vestibular inputs modulate cardiovascular responses to orthostasis in hypertensive rats. Hypertens Res 2017; 41:18-26. [PMID: 29070830 DOI: 10.1038/hr.2017.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 05/22/2017] [Accepted: 06/02/2017] [Indexed: 11/09/2022]
|
3
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
4
|
Ishikawa C, Li H, Ogura R, Yoshimura Y, Kudo T, Shirakawa M, Shiba D, Takahashi S, Morita H, Shiga T. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain. PLoS One 2017; 12:e0177833. [PMID: 28591153 PMCID: PMC5462371 DOI: 10.1371/journal.pone.0177833] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 02/01/2023] Open
Abstract
Spaceflight entails various stressful environmental factors including microgravity. The effects of gravity changes have been studied extensively on skeletal, muscular, cardiovascular, immune and vestibular systems, but those on the nervous system are not well studied. The alteration of gravity in ground-based animal experiments is one of the approaches taken to address this issue. Here we investigated the effects of centrifugation-induced gravity changes on gene expression of brain-derived neurotrophic factor (BDNF) and serotonin receptors (5-HTRs) in the mouse brain. Exposure to 2g hypergravity for 14 days showed differential modulation of gene expression depending on regions of the brain. BDNF expression was decreased in the ventral hippocampus and hypothalamus, whereas increased in the cerebellum. 5-HT1BR expression was decreased in the cerebellum, whereas increased in the ventral hippocampus and caudate putamen. In contrast, hypergravity did not affect gene expression of 5-HT1AR, 5-HT2AR, 5-HT2CR, 5-HT4R and 5-HT7R. In addition to hypergravity, decelerating gravity change from 2g hypergravity to 1g normal gravity affected gene expression of BDNF, 5-HT1AR, 5-HT1BR, and 5-HT2AR in various regions of the brain. We also examined involvement of the vestibular organ in the effects of hypergravity. Surgical lesions of the inner ear's vestibular organ removed the effects induced by hypergravity on gene expression, which suggests that the effects of hypergravity are mediated through the vestibular organ. In summary, we showed that gravity changes induced differential modulation of gene expression of BDNF and 5-HTRs (5-HT1AR, 5-HT1BR and 5-HT2AR) in some brain regions. The modulation of gene expression may constitute molecular bases that underlie behavioral alteration induced by gravity changes.
Collapse
MESH Headings
- Animals
- Brain/metabolism
- Brain/physiology
- Brain Mapping
- Brain-Derived Neurotrophic Factor/biosynthesis
- Brain-Derived Neurotrophic Factor/metabolism
- Gene Expression Regulation
- Gravitation
- Hippocampus/metabolism
- Humans
- Mice
- Receptor, Serotonin, 5-HT1A/biosynthesis
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1B/biosynthesis
- Receptor, Serotonin, 5-HT1B/metabolism
- Receptor, Serotonin, 5-HT2A/biosynthesis
- Receptor, Serotonin, 5-HT2A/metabolism
- Space Flight
- Vestibule, Labyrinth/metabolism
- Vestibule, Labyrinth/physiology
Collapse
Affiliation(s)
- Chihiro Ishikawa
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Haiyan Li
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Rin Ogura
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Yuko Yoshimura
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Takashi Kudo
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Masaki Shirakawa
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Dai Shiba
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- JEM Utilization Center, Human Spaceflight Technology Directorate, JAXA, Tsukuba, Ibaraki, Japan
| | - Satoru Takahashi
- Laboratory Animal Resource Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
| | - Hironobu Morita
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Takashi Shiga
- Laboratory of Neurobiology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
- Mouse Epigenetics Project, ISS/Kibo experiment, Japan Aerospace Exploration Agency (JAXA), Tsukuba, Japan
- Department of Neurobiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
5
|
Nádasy GL, Raffai G, Fehér E, Schaming G, Monos E. A simple standard technique for labyrinthectomy in the rat: A methodical communication with a detailed description of the surgical process. Physiol Int 2017; 103:354-360. [PMID: 28229637 DOI: 10.1556/2060.103.2016.3.8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aims Labyrinthectomized rats are suitable models to test consequences of vestibular lesion and are widely used to study neural plasticity. We describe a combined microsurgical-chemical technique that can be routinely performed with minimum damage. Methods Caudal leaflet of the parotis is elevated. The tendinous fascia covering the bulla is opened frontally from the sternomastoid muscle's tendon while sparing facial nerve branches. A 4 mm diameter hole is drilled into the bulla's hind lower lateral wall to open the common (in rodents) mastoid-tympanic cavity. The cochlear crista (promontory) at the lower posterior part of its medial wall is identified as a bony prominence. A 1 mm diameter hole is drilled into its lower part. The perilymphatic/endolymphatic fluids with tissue debris of the Corti organ are suctioned. Ethanol is injected into the hole. Finally, 10 µL of sodium arsenite solution (50 µM/mL) is pumped into the labyrinth and left in place for 15 min. Simple closure in two layers (fascia and skin) is sufficient. Results and conclusion All rats had neurological symptoms specific for labyrinthectomy (muscle tone, body position, rotatory movements, nystagmus, central deafness). Otherwise, their behavior was unaffected, drinking and eating normally. After a few days, they learned to balance relying on visual and somatic stimuli (neuroplasticity).
Collapse
Affiliation(s)
- G L Nádasy
- 1 Experimental Research Department and Department of Human Physiology, Semmelweis University , Budapest, Hungary.,2 Department of Physiology, Semmelweis University , Budapest, Hungary
| | - G Raffai
- 1 Experimental Research Department and Department of Human Physiology, Semmelweis University , Budapest, Hungary
| | - E Fehér
- 3 Department of Anatomy, Histology and Embryology, Semmelweis University , Budapest, Hungary
| | - G Schaming
- 1 Experimental Research Department and Department of Human Physiology, Semmelweis University , Budapest, Hungary
| | - E Monos
- 1 Experimental Research Department and Department of Human Physiology, Semmelweis University , Budapest, Hungary
| |
Collapse
|
6
|
Abstract
Evidence accumulated over 30 years, from experiments on animals and human subjects, has conclusively demonstrated that inputs from the vestibular otolith organs contribute to the control of blood pressure during movement and changes in posture. This review considers the effects of gravity on the body axis, and the consequences of postural changes on blood distribution in the body. It then separately considers findings collected in experiments on animals and human subjects demonstrating that the vestibular system regulates blood distribution in the body during movement. Vestibulosympathetic reflexes differ from responses triggered by unloading of cardiovascular receptors such as baroreceptors and cardiopulmonary receptors, as they can be elicited before a change in blood distribution occurs in the body. Dissimilarities in the expression of vestibulosympathetic reflexes in humans and animals are also described. In particular, there is evidence from experiments in animals, but not humans, that vestibulosympathetic reflexes are patterned, and differ between body regions. Results from neurophysiological and neuroanatomical studies in animals are discussed that identify the neurons that mediate vestibulosympathetic responses, which include cells in the caudal aspect of the vestibular nucleus complex, interneurons in the lateral medullary reticular formation, and bulbospinal neurons in the rostral ventrolateral medulla. Recent findings showing that cognition can modify the gain of vestibulosympathetic responses are also presented, and neural pathways that could mediate adaptive plasticity in the responses are proposed, including connections of the posterior cerebellar vermis with the vestibular nuclei and brainstem nuclei that regulate blood pressure.
Collapse
Affiliation(s)
- Bill J Yates
- Departments of Otolaryngology and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | | |
Collapse
|
7
|
Abe C, Ueta Y, Morita H. Exposure to hypergravity during the preweaning but not postweaning period reduces vestibular-related stress responses in rats. J Appl Physiol (1985) 2013; 115:1082-7. [PMID: 23908316 DOI: 10.1152/japplphysiol.00285.2013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gravitational forces, including hypergravity or microgravity, induce plasticity of vestibular-related functions. These functions are not easily reversed if exposure to the gravitational forces occurs during vestibular development. In the present study, we hypothesized that vestibular-related stress responses might be suppressed in rats exposed to hypergravity during the vestibular development period. We exposed the rats to 2 g (hypergravity) during the preweaning (BW-HG; embryonic day 14 to postnatal week 3) or postweaning (AW-HG; postnatal weeks 4-6) periods. After recovery for 4 wk at 1 g, we conducted rotarod tests and then exposed the rats to 2 g for 90 min. In BW-HG rats, vestibular-related motor coordination on the rotarod test was partially, but not fully, restored to the level of AW-HG rats or rats raised at 1 g (1-G group). Loading-induced plasma adrenocorticotropic hormone and corticosterone levels were significantly suppressed in BW-HG and in rats with a vestibular lesion compared with AW-HG and 1-G rats. Arginine vasopressin and Fos expression levels in the paraventricular hypothalamic nucleus were also significantly lower in BW-HG and vestibular lesion rats than in AW-HG and 1-G rats. By contrast, there was no difference in the electrical foot shock-induced increase in plasma corticosterone among the experimental groups, suggesting that the nonvestibular-related stress response was not suppressed by exposure to 2 g during preweaning. These results indicated that exposure to hypergravity during preweaning specifically suppressed the vestibular-related stress response, and this suppression did not recover after 4 wk at 1 g.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | | |
Collapse
|
8
|
Lan Y, Yang YZ, Jiang X, Li LW, Jin GS, Kim MS, Park BR, Jin YZ. Additive role of the vestibular end organ and baroreceptors on the regulation of blood pressure in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:367-73. [PMID: 23946697 PMCID: PMC3741494 DOI: 10.4196/kjpp.2013.17.4.367] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 06/12/2013] [Accepted: 07/12/2013] [Indexed: 02/07/2023]
Abstract
Contribution of the vestibular end organ to regulation of arterial pressure was quantitatively compared with the role of baroreceptors in terms of baroreflex sensitivity and c-Fos protein expression in the rostral ventrolateral medulla (RVLM). Baroreflex sensitivity and c-Fos protein expression in the RVLM were measured in conscious rats that had undergone bilateral labyrinthectomy (BL) and/or baroreceptor unloading. BL attenuated baroreflex sensitivity during intravenous infusion of sodium nitroprusside (SNP), but did not significantly affect the sensitivity following infusion of phenylephrine (PE). Baroreflex sensitivity became positive following sinoaortic denervation (SAD) during infusion of PE and attenuated sensitivity during infusion of SNP. Baroreflex sensitivity also became positive following double ablation (BL+SAD) during infusion of PE, and attenuated sensitivity during infusion of SNP. c-Fos protein expression increased significantly in the RVLM in the sham group after SNP administration. However, the BL, SAD, and SAD+BL groups showed significant decreases in c-Fos protein expression compared with that in the sham group. The SAD group showed more reduced c-Fos protein expression than that in the BL group, and the SAD+BL group showed less expression than that in the SAD group. These results suggest that the vestibular system cooperates with baroreceptors to maintain arterial pressure during hypotension but that baroreceptors regulate arterial pressure during both hypotension and hypertension. Additionally, afferent signals for maintaining blood pressure from the vestibular end organs and the baroreceptors may be integrated in the RVLM.
Collapse
Affiliation(s)
- Yan Lan
- Department of Physiology and Pathophysiology, Yanbian University College of Medicine, Yanji 133002, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Iwata C, Abe C, Tanaka K, Morita H. Role of the vestibular system in the arterial pressure response to parabolic-flight-induced gravitational changes in human subjects. Neurosci Lett 2011; 495:121-5. [PMID: 21440600 DOI: 10.1016/j.neulet.2011.03.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 11/17/2022]
Abstract
Arterial pressure (AP) is known to fluctuate during parabolic-flight-induced gravitational changes in human subjects, increasing during hypergravity and decreasing during microgravity. In this study, we examined whether the vestibular system participates in the AP response to the gravitational changes induced by parabolic flight in human subjects. Eight subjects performed parabolic flights in a supine position as their AP was measured. Their vestibular inputs during the gravitational changes were reversibly masked by artificial electrical stimulation (galvanic vestibular stimulation, GVS). The AP responses during the parabolas were then compared between the GVS-off and GVS-on conditions. AP increased during hypergravity and decreased during microgravity. The AP responses at the onset of hypergravity and microgravity were abolished by GVS. These results indicate that the vestibular system elicits pressor and depressor responses during parabolic-flight-induced hypergravity and microgravity, respectively.
Collapse
Affiliation(s)
- Chihiro Iwata
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
10
|
Abe C, Tanaka K, Awazu C, Morita H. Galvanic vestibular stimulation counteracts hypergravity-induced plastic alteration of vestibulo-cardiovascular reflex in rats. J Appl Physiol (1985) 2009; 107:1089-94. [PMID: 19679746 DOI: 10.1152/japplphysiol.00400.2009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent data from our laboratory demonstrated that, when rats are raised in a hypergravity environment, the sensitivity of the vestibulo-cardiovascular reflex decreases. In a hypergravity environment, static input to the vestibular system is increased; however, because of decreased daily activity, phasic input to the vestibular system may decrease. This decrease may induce use-dependent plasticity of the vestibulo-cardiovascular reflex. Accordingly, we hypothesized that galvanic vestibular stimulation (GVS) may compensate the decrease in phasic input to the vestibular system, thereby preserving the vestibulo-cardiovascular reflex. To examine this hypothesis, we measured horizontal and vertical movements of rats under 1-G or 3-G environments as an index of the phasic input to the vestibular system. We then raised rats in a 3-G environment with or without GVS for 6 days and measured the pressor response to linear acceleration to examine the sensitivity of the vestibulo-cardiovascular reflex. The horizontal and vertical movement of 3-G rats was significantly less than that of 1-G rats. The pressor response to forward acceleration was also significantly lower in 3-G rats (23 +/- 1 mmHg in 1-G rats vs. 12 +/- 1 mmHg in 3-G rats). The pressor response was preserved in 3-G rats with GVS (20 +/- 1 mmHg). GVS stimulated Fos expression in the medial vestibular nucleus. These results suggest that GVS stimulated vestibular primary neurons and prevent hypergravity-induced decrease in sensitivity of the vestibulo-cardiovascular reflex.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu Univ. Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
11
|
Synaptopathy under conditions of altered gravity: changes in synaptic vesicle fusion and glutamate release. Neurochem Int 2009; 55:724-31. [PMID: 19631248 DOI: 10.1016/j.neuint.2009.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 11/22/2022]
Abstract
Glutamate release and synaptic vesicle heterotypic/homotypic fusion were characterized in brain synaptosomes of rats exposed to hypergravity (10 G, 1h). Stimulated vesicular exocytosis determined as KCl-evoked fluorescence spike of pH-sensitive dye acridine orange (AO) was decreased twice in synaptosomes under hypergravity conditions as compared to control. Sets of measurements demonstrated reduced ability of synaptic vesicles to accumulate AO ( approximately 10% higher steady-state baseline level of AO fluorescence). Experiments with preloaded l-[(14)C]glutamate exhibited similar amount of total glutamate accumulated by synaptosomes, equal concentration of ambient glutamate, but the enlarged level of cytoplasmic glutamate measuring as leakage from digitonin-permeabilized synaptosomes in hypergravity. Thus, it may be suggested that +G-induced changes in stimulated vesicular exocytosis were a result of the redistribution of intracellular pool of glutamate, i.e. a decrease in glutamate content of synaptic vesicles and an enrichment of the cytoplasmic glutamate level. To investigate the effect of hypergravity on the last step of exocytosis, i.e. membrane fusion, a cell-free system consisted of synaptic vesicles, plasma membrane vesicles, cytosolic proteins isolated from rat brain synaptosomes was used. It was found that hypergravity reduced the fusion competence of synaptic vesicles and plasma membrane vesicles, whereas synaptosomal cytosolic proteins became more active to promote membrane fusion. The total rate of homo- and heterotypic fusion reaction initiated by Ca(2+) or Mg(2+)/ATP remained unchanged under hypergravity conditions. Thus, hypergravity could induce synaptopathy that was associated with incomplete filling of synaptic vesicles with the neuromediator and changes in exocytotic release.
Collapse
|
12
|
Kamiya A, Kawada T, Shimizu S, Iwase S, Sugimachi M, Mano T. Slow head-up tilt causes lower activation of muscle sympathetic nerve activity: loading speed dependence of orthostatic sympathetic activation in humans. Am J Physiol Heart Circ Physiol 2009; 297:H53-8. [DOI: 10.1152/ajpheart.00260.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many earlier human studies have reported that increasing the tilt angle of head-up tilt (HUT) results in greater muscle sympathetic nerve activity (MSNA) response, indicating the amplitude dependence of sympathetic activation in response to orthostatic stress. However, little is known about whether and how the inclining speed of HUT influences the MSNA response to HUT, independent of the magnitude of HUT. Twelve healthy subjects participated in passive 30° HUT tests at inclining speeds of 1° (control), 0.1° (slow), and 0.0167° (very slow) per second. We recorded MSNA (tibial nerve) by microneurography and assessed nonstationary time-dependent changes of R-R interval variability using a complex demodulation technique. MSNA averaged over every 10° tilt angle increased during inclination from 0° to 30°, with smaller increases in the slow and very slow tests than in the control test. Although a 3-min MSNA overshoot after reaching 30° HUT was observed in the control test, no overshoot was detected in the slow and very slow tests. In contrast with MSNA, increases in heart rate during the inclination and after reaching 30° were similar in these tests, probably because when compared with the control test, greater increases in plasma epinephrine counteracted smaller autonomic responses in the very slow test. These results indicate that slower HUT results in lower activation of MSNA, suggesting that HUT-induced sympathetic activation depends partially on the speed of inclination during HUT in humans.
Collapse
|
13
|
Cai YL, Ma WL, Wang JQ, Li YQ, Li M. Excitatory pathways from the vestibular nuclei to the NTS and the PBN and indirect vestibulo-cardiovascular pathway from the vestibular nuclei to the RVLM relayed by the NTS. Brain Res 2008; 1240:96-104. [PMID: 18809392 DOI: 10.1016/j.brainres.2008.08.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2008] [Revised: 08/12/2008] [Accepted: 08/28/2008] [Indexed: 02/07/2023]
Abstract
Previous studies have confirmed the existence of vestibulo-sympathetic pathways in the central nervous system. However, the exact pathways and neurotransmitters underlying this reflex are unclear. The present study was undertaken to investigate whether the vestibulo-cardiovascular responses are a result of activated glutamate receptors in the caudal vestibular nucleus. We also attempt to verify the indirect excitatory pathways from the vestibular nucleus (VN) to the rostral ventrolateral medulla (RVLM) using a tracing method combined with a vesicular glutamate transporter (VGluTs) immunofluorescence. In anesthetized rats, unilateral injection of l-glutamate (5 nmol) into the medial vestibular nucleus (MVe) and spinal vestibular nucleus (SpVe) slightly increased the mean arterial pressure (MVe: 93.29+/-11.58 to 96.30+/-11.66, SpVe: 91.72+/-15.20 to 95.48+/-17.16). Local pretreatment with the N-methyl-D-aspartate (NMDA)-receptor antagonist MK-801 (2 nmol) significantly attenuated the pressor effect of L-glutamate injected into the MVe compared to the contralateral self-control. After injection of biotinylated dextran amine (BDA) into the MVe and SpVe, and fluorogold (FG) into the RVLM, some BDA-labeled fibres and terminals in the nucleus of solitary tract (NTS) and the parabrachial nucleus (PBN) were immunoreactive for VGluT1 and VGluT2. Several BDA-labeled fibres were closely apposed to FG-labeled neurons in the NTS. These results suggested that activation of caudal vestibular nucleus neurons could induce pressor response and NMDA receptors might contribute to this response in the MVe. The glutamatergic VN-NTS and VN-PBN pathways might exist, and the projections from the VN to the RVLM relayed by the NTS comprise an indirect vestibulo-cardiovascular pathway in the brain stem.
Collapse
Affiliation(s)
- Yi-Ling Cai
- Department of Military Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, PR China.
| | | | | | | | | |
Collapse
|
14
|
Abe C, Tanaka K, Awazu C, Morita H. Impairment of vestibular-mediated cardiovascular response and motor coordination in rats born and reared under hypergravity. Am J Physiol Regul Integr Comp Physiol 2008; 295:R173-80. [PMID: 18495837 DOI: 10.1152/ajpregu.00120.2008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well known that environmental stimulation is important for the proper development of sensory function. The vestibular system senses gravitational acceleration and then alters cardiovascular and motor functions through reflex pathways. The development of vestibular-mediated cardiovascular and motor functions may depend on the gravitational environment present at birth and during subsequent growth. To examine this hypothesis, arterial pressure (AP) and renal sympathetic nerve activity (RSNA) were monitored during horizontal linear acceleration and performance in a motor coordination task in rats born and reared in 1-G or 2-G environments. Linear acceleration of +/-1 G increased AP and RSNA. These responses were attenuated in rats with a vestibular lesion, suggesting that the vestibular system mediated AP and RSNA responses. These responses were also attenuated in rats born in a 2-G environment. AP and RSNA responses were partially restored in these rats when the hypergravity load was removed, and the rats were maintained in a 1-G environment for 1 wk. The AP response to compressed air, which is mediated independently of the vestibular system, did not change in the 2-G environment. Motor coordination was also impaired in the 2-G environment and remained impaired even after 1 wk of unloading. These results indicate that hypergravity impaired both the vestibulo-cardiovascular reflex and motor coordination. The vestibulo-cardiovascular reflex was only impaired temporarily and partially recovered following 1 wk of unloading. In contrast, motor coordination did not return to normal in response to unloading.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
15
|
Abe C, Tanaka K, Awazu C, Morita H. Strong galvanic vestibular stimulation obscures arterial pressure response to gravitational change in conscious rats. J Appl Physiol (1985) 2007; 104:34-40. [PMID: 17916676 DOI: 10.1152/japplphysiol.00454.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Galvanic vestibular stimulation (GVS) is known to create an imbalance in the vestibular inputs; thus it is possible that the simultaneously applied GVS obscures adequate gravity-based inputs to the vestibular organs or modifies an input-output relationship of the vestibular system and then impairs the vestibular-mediated response. To examine this, arterial pressure (AP) response to gravitational change was examined in conscious rats with and without GVS. Free drop-induced microgravity and centrifugation-induced hypergravity were employed to elicit vestibular-mediated AP response. GVS itself induced pressor response in an intensity-dependent manner. This pressor response was completely abolished by vestibular lesion, suggesting that the GVS-induced response was mediated by the vestibular system. The pressor response to microgravity (35 +/- 3 mmHg) was significantly reduced by simultaneously applied GVS (19 +/- 1 mmHg), and pressor response to 3-G load was also significantly reduced by GVS. However, GVS had no effect on air jet-induced pressor response. The effects of GVS on pressor response to gravitational change were qualitatively and quantitatively similar to that caused by the vestibular lesion, effects of which were demonstrated in our previous studies (Gotoh TM, Fujiki N, Matsuda T, Gao S, Morita H. Am J Physiol Regul Integr Comp Physiol 286: R25-R30, 2004; Matsuda T, Gotoh TM, Tanaka K, Gao S, Morita H. Brain Res 1028: 140-147, 2004; Tanaka K, Gotoh TM, Awazu C, Morita H. Neurosci Lett 397: 40-43, 2006). These results indicate that GVS reduced the vestibular-mediated pressor response to gravitational change but has no effect on the non-vestibular-mediated pressor response. Thus GVS might be employed for the acute interruption of the AP response to gravitational change.
Collapse
Affiliation(s)
- Chikara Abe
- Dept. of Physiology, Gifu Univ. Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | |
Collapse
|
16
|
Grieve PG, Stark RI, Isler JR, Housman SL, Fifer WP, Myers MM. Electrocortical functional connectivity in infancy: response to body tilt. Pediatr Neurol 2007; 37:91-8. [PMID: 17675023 DOI: 10.1016/j.pediatrneurol.2007.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/18/2007] [Accepted: 04/18/2007] [Indexed: 11/30/2022]
Abstract
To test the hypothesis that infant cortical regions activated by a head-up tilt also exhibit increased functional electrocortical connectivity, prone sleeping newborn and 2- to 4-month-old infants were tilted head-up to 30 degrees. Electroencephalogram (EEG) data were collected with 128 electrodes and coherence calculated to quantify electrocortical synchrony. Local coherence, defined as the average of coherence measurements between the EEG at each electrode site and neighboring sites (approximately 1 cm electrode spacing), was found in activated cortical regions that had previously shown increased high-frequency power with tilt. Long-distance coherence was computed between the regions. Newborn infants had significant increases in local coherence in the activated left frontal, right frontal-temporal, and occipital cortical regions; long-distance coherence increased between the right frontal-temporal and occipital regions. In contrast, infants at 2 to 4 months old, the age of maximum risk for sudden infant death syndrome, had no significant changes in coherence. Newborn and 2- to 4-month-old infants thus have different electrocortical responses to a classic cardiovascular challenge.
Collapse
Affiliation(s)
- Philip G Grieve
- Department of Pediatrics, Columbia University, and New York State Psychiatric Institute, New York, NY 10032, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Abe C, Tanaka K, Awazu C, Chen H, Morita H. Plastic alteration of vestibulo-cardiovascular reflex induced by 2 weeks of 3-G load in conscious rats. Exp Brain Res 2007; 181:639-46. [PMID: 17492278 DOI: 10.1007/s00221-007-0961-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 04/12/2007] [Indexed: 01/29/2023]
Abstract
Previous studies conducted in our laboratory have demonstrated that the vestibular system plays a significant role in controlling arterial pressure (AP) in conscious rats under conditions of transient microgravity. The vestibular system is known to be highly plastic, and on exposure to different gravitational environments, the sensitivity of the vestibular system-mediated AP response might be altered. In order to test this hypothesis, rats were maintained in a 3-G or a normal 1-G environment for 2 weeks, and the AP responses to free drop-induced microgravity were determined. In 1-G rats, the microgravity increased the AP by 37 +/- 3 mmHg; this pressor response was significantly attenuated by vestibular lesion (VL) (24 +/- 3 mmHg) or body stabilization (29 +/- 2 mmHg). Thus, the microgravity-induced pressor response was mediated by both the vestibular and nonvestibular systems; the input of the latter system was blocked by body stabilization. In the 3-G rats, the pressor responses were significantly suppressed compared to those in the corresponding 1-G rats; i.e., the AP increased by 24 +/- 2 mmHg in freely moving 3-G rats, by 10 +/- 4 mmHg in 3-G rats with VL, and by 13 +/- 4 mmHg in stabilized 3-G rats. Furthermore, there was no difference between the 1- and 3-G rats in terms of the pressor response induced by stressors such as a loud noise or an air jet. These results indicate that pre-exposure to 3-G for 2 weeks induces plasticity in both the vestibular- and nonvestibular-mediated AP responses to microgravity.
Collapse
Affiliation(s)
- Chikara Abe
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan
| | | | | | | | | |
Collapse
|
18
|
Morita H, Abe C, Awazu C, Tanaka K. Long-term hypergravity induces plastic alterations in vestibulo-cardiovascular reflex in conscious rats. Neurosci Lett 2006; 412:201-5. [PMID: 17123714 DOI: 10.1016/j.neulet.2006.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2006] [Revised: 10/25/2006] [Accepted: 11/03/2006] [Indexed: 11/25/2022]
Abstract
To test the hypothesis that an altered gravitational environment induces plastic changes in the vestibulo-cardiovascular reflex, arterial pressure (AP) and hypothalamic glutamate concentration were examined in 2 groups of conscious rats, i.e., a 3-G group and a 1-G group, in which rats were maintained under a 3-G and 1-G environment for 2 weeks, respectively. The vestibulo-cardiovascular reflex was stimulated by a gravitational change induced by a parabolic flight that consisted of 3 phases: "pull-up", during which the G load gradually increased to 2G; a 20s "push-over" into microgravity; and "pull-out", during which the G load increased to 1.8. In the 1-G group, the AP increased by 11.9+/-1.2 mmHg during the pull-up hypergravity period. The AP response was significantly attenuated in the 3-G group (4.0+/-0.8 mmHg). During the push-over microgravity period, the AP decreased from the peak level in the pull-up period and recovered to the pre-parabolic control level (-1.8+/-2.4 mmHg). In rats of the 3-G group, the AP was not altered by push-over microgravity. These AP responses were associated with a significant increase in the glutamate concentration in the hypothalamus (4.4+/-0.7%). The glutamate response was also significantly attenuated in the 3-G group compared with that in the 1-G group. These results indicate that an altered gravitational environment induces plastic alterations in the vestibulo-cardiovascular reflex.
Collapse
Affiliation(s)
- Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
19
|
Tanaka K, Gotoh TM, Awazu C, Morita H. Roles of the vestibular system in controlling arterial pressure in conscious rats during a short period of microgravity. Neurosci Lett 2006; 397:40-3. [PMID: 16384644 DOI: 10.1016/j.neulet.2005.11.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Revised: 11/27/2005] [Accepted: 11/28/2005] [Indexed: 11/27/2022]
Abstract
In order to evaluate the roles of the vestibular system in controlling arterial pressure (AP) during exposure to a short period of microgravity (microG), the AP was measured in conscious free-moving rats having intact vestibular systems and those having vestibular lesions (FM-Intact and FM-VL groups, respectively). During free drop-induced microG, the AP increased in the FM-Intact group; it was 38+/-4 mmHg more than the AP observed during 1G. However, the increase in AP was significantly lower in the FM-VL group (20+/-2 mmHg). Further, to examine the sudden effect of a body floating in the midair in response to the AP during exposure to muG a body stabilizer was placed on the back of rats having intact vestibular systems and those having vestibular lesions (STAB-Intact and STAB-VL groups, respectively). The increase in the AP was significantly depressed in the STAB-Intact group; when compared with that in the FM-Intact group, but the increase was still significant (27+/-2 mmHg). On the other hand, the increase in the AP was completely eliminated in the STAB-VL group (7+/-5 mmHg). These results indicate that the AP increases during exposure to muG in conscious rats, and the vestibular system and body stability are significantly involved in this response.
Collapse
Affiliation(s)
- Kunihiko Tanaka
- Department of Physiology, Gifu University, Graduate School of Medicine, Gifu 501-1194, Japan.
| | | | | | | |
Collapse
|
20
|
Lóránt M, Raffai G, Nádasy G, Fehér E, Monos E. Does Chronic Experimental Head-Down Tilt Alter Intramural Innervation Density of Limb Blood Vessels? ACTA ACUST UNITED AC 2005; 55:127-34. [PMID: 15890084 DOI: 10.2170/jjphysiol.r2076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2004] [Accepted: 05/13/2005] [Indexed: 11/05/2022]
Abstract
Earlier, substantial increases in the intramural sympathetic innervation density of rat hind-limb blood vessels were found after 2 weeks of experimental orthostasis with tubular 45 degrees head-up tilt cages. In the present study, we presumed that chronic head-down tilting induces opposite changes in the innervation density. Tilted rats were kept 45 degrees head-down in long tubular cages for either 2 or 4 weeks (HDT2, HDT4), and the control animals were maintained in horizontal tilt cages for the same period (HOR2, HOR4). Segments of the saphenous and brachial veins and arteries were used for quantitative electron microscopic examinations. Intramural innervation density was defined by nerve terminal density (NTD) and synaptic microvesicle count (SVC) within the vascular adventitia. Neither HDT2 nor HDT4 resulted in a decrease of NTD or SVC of the saphenous and brachial veins or arteries; instead, a tendency to increase was observed in some cases. Thus in contrast to the large increases we found earlier in hind-limb vascular innervation density after 2 weeks of head-up tilting, head-down tilting of the same duration-or even twice as long-did not decrease the adventitial innervation density in our model. We assume that the quasi-free locomotor exercise the tilted animals in the long tubular cages were allowed may counteract a possible suppressive effect of chronic head-down tilt on hind-limb vascular innervation density.
Collapse
Affiliation(s)
- M Lóránt
- Institute of Human Physiology and Clinical Experimental Research, Histology and Embryology, Faculty of Medicine, Semmelweis University, 1082 Budapest, Hungary
| | | | | | | | | |
Collapse
|