1
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh + neurons control allergen-induced airway hyperreactivity. Nature 2024; 631:601-609. [PMID: 38987587 PMCID: PMC11254774 DOI: 10.1038/s41586-024-07608-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 05/24/2024] [Indexed: 07/12/2024]
Abstract
Exaggerated airway constriction triggered by repeated exposure to allergen, also called hyperreactivity, is a hallmark of asthma. Whereas vagal sensory neurons are known to function in allergen-induced hyperreactivity1-3, the identity of downstream nodes remains poorly understood. Here we mapped a full allergen circuit from the lung to the brainstem and back to the lung. Repeated exposure of mice to inhaled allergen activated the nuclei of solitary tract (nTS) neurons in a mast cell-, interleukin-4 (IL-4)- and vagal nerve-dependent manner. Single-nucleus RNA sequencing, followed by RNAscope assay at baseline and allergen challenges, showed that a Dbh+ nTS population is preferentially activated. Ablation or chemogenetic inactivation of Dbh+ nTS neurons blunted hyperreactivity whereas chemogenetic activation promoted it. Viral tracing indicated that Dbh+ nTS neurons project to the nucleus ambiguus (NA) and that NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that directly drive airway constriction. Delivery of noradrenaline antagonists to the NA blunted hyperreactivity, suggesting noradrenaline as the transmitter between Dbh+ nTS and NA. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. This knowledge informs how neural modulation could be used to control allergen-induced airway hyperreactivity.
Collapse
Affiliation(s)
- Yujuan Su
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jinhao Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Ziai Zhu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jisun Chin
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Le Xu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Haoze Yu
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Victoria Nudell
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Barsha Dash
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Esteban A Moya
- Division of Pulmonary, Critical Care & Sleep Medicine, Department of Medicine, University of California, San Diego, CA, USA
| | - Li Ye
- Department of Neuroscience, Scripps Research Institute, La Jolla, CA, USA
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Sun
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Su Y, Xu J, Zhu Z, Chin J, Xu L, Yu H, Nudell V, Dash B, Moya EA, Ye L, Nimmerjahn A, Sun X. Brainstem Dbh+ Neurons Control Chronic Allergen-Induced Airway Hyperreactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.04.527145. [PMID: 36778350 PMCID: PMC9915738 DOI: 10.1101/2023.02.04.527145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic exposure of the lung to irritants such as allergen is a primary cause of asthma characterized by exaggerated airway constriction, also called hyperreactivity, which can be life-threatening. Aside from immune cells, vagal sensory neurons are important for airway hyperreactivity 1-4 . However, the identity and signature of the downstream nodes of this adaptive circuit remains poorly understood. Here we show that a single population of Dbh + neurons in the nucleus of the solitary tract (nTS) of the brainstem, and downstream neurons in the nucleus ambiguous (NA), are both necessary and sufficient for chronic allergen-induced airway hyperreactivity. We found that repeated exposures of mice to inhaled allergen activates nTS neurons in a mast cell-, interleukin 4 (IL-4)-and vagal nerve-dependent manner. Single-nucleus RNA-seq of the nTS at baseline and following allergen challenges reveals that a Dbh + population is preferentially activated. Ablation or chemogenetic inactivation of Dbh + nTS neurons blunted, while chemogenetic activation promoted hyperreactivity. Viral tracing indicates that Dbh + nTS neurons, capable of producing norepinephrine, project to the NA, and NA neurons are necessary and sufficient to relay allergen signals to postganglionic neurons that then directly drive airway constriction. Focusing on transmitters, delivery of norepinephrine antagonists to the NA blunted allergen-induced hyperreactivity. Together, these findings provide molecular, anatomical and functional definitions of key nodes of a canonical allergen response circuit. The knowledge opens the possibility of targeted neural modulation as an approach to control refractory allergen-induced airway constriction.
Collapse
|
3
|
Guggenberger M, Engster KM, Hofmann T, Rose M, Stengel A, Kobelt P. Cholecystokinin and bombesin activate neuronatin neurons in the nucleus of the solitary tract. Brain Res 2020; 1746:147006. [DOI: 10.1016/j.brainres.2020.147006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/09/2020] [Accepted: 06/29/2020] [Indexed: 12/29/2022]
|
4
|
Leptin Sensitizes NTS Neurons to Vagal Input by Increasing Postsynaptic NMDA Receptor Currents. J Neurosci 2020; 40:7054-7064. [PMID: 32817248 DOI: 10.1523/jneurosci.1865-19.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/05/2019] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Leptin signaling within the nucleus of the solitary tract (NTS) contributes to the control of food intake, and injections of leptin into the NTS reduce meal size and increase the efficacy of vagus-mediated satiation signals. Leptin receptors (LepRs) are expressed by vagal afferents as well as by a population of NTS neurons. However, the electrophysiological properties of LepR-expressing NTS neurons have not been well characterized, and it is unclear how leptin might act on these neurons to reduce food intake. To address this question, we recorded from LepR-expressing neurons in horizontal brain slices containing the NTS from male and female LepR-Cre X Rosa-tdTomato mice. We found that the vast majority of NTS LepR neurons received monosynaptic innervation from vagal afferent fibers and LepR neurons exhibited large synaptic NMDA receptor (NMDAR)-mediated currents compared with non-LepR neurons. During high-frequency stimulation of vagal afferents, leptin increased the size of NMDAR-mediated currents, but not AMPAR-mediated currents. Leptin also increased the size of evoked EPSPs and the ability of low-intensity solitary tract stimulation to evoke action potentials in LepR neurons. These effects of leptin were blocked by bath applying a competitive NMDAR antagonist (DCPP-ene) or by an NMDAR channel blocker applied through the recording pipette (MK-801). Last, feeding studies using male rats demonstrate that intra-NTS injections of DCPP-ene attenuate reduction of overnight food intake following intra-NTS leptin injection. Our results suggest that leptin acts in the NTS to reduce food intake by increasing NMDAR-mediated currents, thus enhancing NTS sensitivity to vagal inputs.SIGNIFICANCE STATEMENT Leptin is a hormone that critically impacts food intake and energy homeostasis. The nucleus of the solitary tract (NTS) is activated by vagal afferents from the gastrointestinal tract, which promotes termination of a meal. Injection of leptin into the NTS inhibits food intake, while knockdown of leptin receptors (LepRs) in NTS neurons increases food intake. However, little was known about how leptin acts in the NTS neurons to inhibit food intake. We found that leptin increases the sensitivity of LepR-expressing neurons to vagal inputs by increasing NMDA receptor-mediated synaptic currents and that NTS NMDAR activation contributes to leptin-induced reduction of food intake. These findings suggest a novel mechanism by which leptin, acting in the NTS, could potentiate gastrointestinal satiation signals.
Collapse
|
5
|
Bove C, Coleman FH, Travagli RA. Characterization of the Basic Membrane Properties of Neurons of the Rat Dorsal Motor Nucleus of the Vagus in Paraquat-Induced Models of Parkinsonism. Neuroscience 2019; 418:122-132. [PMID: 31491501 PMCID: PMC6878173 DOI: 10.1016/j.neuroscience.2019.08.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023]
Abstract
Most of Parkinson's disease (PD) patients experience gastrointestinal dysfunctions, including gastric hypomotility. The dorsal motor nucleus of the vagus (DMV) modulates the motility of the upper gastrointestinal (GI) tract. Paraquat (P) administration induces Parkinsonism in experimental models, and we have developed recently an environmental model of Parkinsonism in which rats are treated with subthreshold doses of P and lectins (P + L), in both models rats develop reduced gastric motility prodromal to the full extent of motor deficits. The aim of the present study was to examine whether the membrane properties of DMV neurons in these two experimental models of Parkinsonism were altered. Whole cell recordings in slices containing DMV neurons were conducted in male Sprague Dawley rats which received either injections of paraquat (10 mg/kg i.p.; 10P), or oral administration of paraquat (1 mg/kg) and lectin (0.05% w/v; P + L). Morphological reconstructions of DMV neurons were conducted at the end of the recordings. The repolarization kinetics of the afterhyperpolarization phase of the action potential was accelerated in 10P neurons vs control, while the phase plot revealed a slower depolarizing slope. At baseline, the amplitude of miniature excitatory postsynaptic currents was increased in P + L neurons. No differences in the morphology of DMV neurons were observed. These data indicate that the membrane and synaptic properties of DMV neurons are altered in rodent models of Parkinsonism, in which neurons of 10P and P + L rats demonstrate an increased excitatory transmission, perhaps in an attempt to counteract the paraquat-induced gastric hypomotility.
Collapse
Affiliation(s)
- C Bove
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, United States of America
| | - F H Coleman
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, United States of America
| | - R A Travagli
- Department of Neural and Behavioral Sciences, Penn State - College of Medicine, Hershey, PA, United States of America.
| |
Collapse
|
6
|
A case of pancreatic cancer with severe vomiting treated by endoscopic ultrasound-guided celiac ganglia neurolysis. Clin J Gastroenterol 2017; 10:464-468. [PMID: 28815450 DOI: 10.1007/s12328-017-0761-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 07/06/2017] [Indexed: 10/19/2022]
Abstract
A 50-year-old man with advanced pancreatic cancer was admitted for intractable severe vomiting 5-6 times a day, continuing over a week. He had been treated for advanced pancreatic cancer with chemotherapy for 6 months, and had undergone self-expandable metalic stent placement for obstructive jaundice due to the pancreatic cancer 4 months before admission. No abnormal findings suggesting gastrointestinal obstruction or brain metastasis were revealed on diagnostic imaging. We performed endoscopic ultrasound-guided celiac ganglia neurolysis twice by injecting ethanol into the celiac ganglion. After the treatments, the vomiting disappeared, and his eating habits gradually returned to normal. The patient died 7 months after treatment due to the advanced pancreatic cancer without recurrence of the vomiting.
Collapse
|
7
|
Bhagat R, Fortna SR, Browning KN. Exposure to a high fat diet during the perinatal period alters vagal motoneurone excitability, even in the absence of obesity. J Physiol 2014; 593:285-303. [PMID: 25556801 DOI: 10.1113/jphysiol.2014.282806] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/24/2014] [Indexed: 01/02/2023] Open
Abstract
KEY POINTS Obesity is recognized as being multifactorial in origin, involving both genetic and environmental factors. The perinatal period is known to be critically important in the development of neural circuits responsible for energy homeostasis and the integration of autonomic reflexes. Diet-induced obesity alters the biophysical, pharmacological and morphological properties of vagal neurocircuits regulating upper gastrointestinal tract functions, including satiety. Less information is available, however, regarding the effects of a high fat diet (HFD) itself on the properties of vagal neurocircuits. The present study was designed to test the hypothesis that exposure to a HFD during the perinatal period alters the electrophysiological, pharmacological and morphological properties of vagal efferent motoneurones innervating the stomach. Our data indicate that perinatal HFD decreases the excitability of gastric-projecting dorsal motor nucleus neurones and dysregulates neurotransmitter release from synaptic inputs and that these alterations occur prior to the development of obesity. These findings represent the first direct evidence that exposure to a HFD modulates the processing of central vagal neurocircuits even in the absence of obesity. The perinatal period is critically important to the development of autonomic neural circuits responsible for energy homeostasis. Vagal neurocircuits are vital to the regulation of upper gastrointestinal functions, including satiety. Diet-induced obesity modulates the excitability and responsiveness of both peripheral vagal afferents and central vagal efferents but less information is available regarding the effects of diet per se on vagal neurocircuit functions. The aims of this study were to investigate whether perinatal exposure to a high fat diet (HFD) dysregulated dorsal motor nucleus of the vagus (DMV) neurones, prior to the development of obesity. Whole cell patch clamp recordings were made from gastric-projecting DMV neurones in thin brainstem slices from rats that were exposed to either a control diet or HFD from pregnancy day 13. Our data demonstrate that following perinatal HFD: (i) DMV neurones had decreased excitability and input resistance with a reduced ability to fire action potentials; (ii) the proportion of DMV neurones excited by cholecystokinin (CCK) was unaltered but the proportion of neurones in which CCK increased excitatory glutamatergic synaptic inputs was reduced; (iii) the tonic activation of presynaptic group II metabotropic glutamate receptors on inhibitory nerve terminals was attenuated, allowing modulation of GABAergic synaptic transmission; and (iv) the size and dendritic arborization of gastric-projecting DMV neurones was increased. These results suggest that perinatal HFD exposure compromises the excitability and responsiveness of gastric-projecting DMV neurones, even in the absence of obesity, suggesting that attenuation of vago-vagal reflex signalling may precede the development of obesity.
Collapse
Affiliation(s)
- Ruchi Bhagat
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
8
|
Babic T, Ambler J, Browning KN, Travagli RA. Characterization of synapses in the rat subnucleus centralis of the nucleus tractus solitarius. J Neurophysiol 2014; 113:466-74. [PMID: 25355962 DOI: 10.1152/jn.00598.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The nucleus tractus solitarius (NTS) receives subdiaphragmatic visceral sensory information via vagal A- or C-fibers. We have recently shown that, in contrast to cardiovascular NTS medialis neurons, which respond to either purinergic or vanilloid agonists, the majority of esophageal NTS centralis (cNTS) neurons respond to vanilloid agonists, whereas a smaller subset responds to both vanilloid and purinerigic agonists. The present study aimed to further investigate the neurochemical and synaptic characteristics of cNTS neurons using whole cell patch-clamp, single cell RT-PCR and immunohistochemistry. Excitatory postsynaptic currents (EPSCs) were evoked in cNTS by tractus solitarius stimulation, and in 19 of 64 neurons perfusion with the purinergic agonist αβ-methylene ATP (αβMeATP) increased the evoked EPSC amplitude significantly. Furthermore, neurons with αβMeATP-responsive synaptic inputs had different probabilities of release compared with nonresponsive neurons. Single cell RT-PCR revealed that 8 of 13 αβMeATP-responsive neurons expressed metabotropic glutamate receptor 8 (mGluR8) mRNA, which our previous studies have suggested is a marker of glutamatergic neurons, whereas only 3 of 13 expressed glutamic acid dehydroxylase, a marker of GABAergic neurons. A significantly lower proportion of αβMeATP-nonresponsive neurons expressed mGluR8 (2 of 30 neurons), whereas a greater proportion expressed glutamic acid dehydroxylase (12 of 30 neurons). Esophageal distension significantly increased the number of colocalized mGluR8- and c-Fos-immunoreactive neurons in the cNTS from 8.0 ± 4% to 20 ± 2.5%. These data indicate that cNTS comprises distinct neuronal subpopulations that can be distinguished based on their responses to purinergic agonists and that these subpopulations have distinct neurochemical and synaptic characteristics, suggesting that integration of sensory inputs from the esophagus relies on a discrete organization of synapses between vagal afferent fibers and cNTS neurons.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Jason Ambler
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| | - R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
9
|
Swartz EM, Browning KN, Travagli RA, Holmes GM. Ghrelin increases vagally mediated gastric activity by central sites of action. Neurogastroenterol Motil 2014; 26:272-82. [PMID: 24261332 PMCID: PMC3907172 DOI: 10.1111/nmo.12261] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 10/19/2013] [Indexed: 12/31/2022]
Abstract
BACKGROUND Vagally dependent gastric reflexes are mediated through vagal afferent fibers synapsing upon neurons of the nucleus tractus solitarius (NTS) which, in turn modulate the preganglionic parasympathetic dorsal motor nucleus of the vagus (DMV) neurons within the medullary dorsal vagal complex (DVC). The expression and transport of ghrelin receptors has been documented for the afferent vagus nerve, and functional studies have confirmed that vagal pathways are integral to ghrelin-induced stimulation of gastric motility. However, the central actions of ghrelin within the DVC have not been explored fully. METHODS We assessed the responses to ghrelin in fasted rats using: (i) in vivo measurements of gastric tone and motility following IVth ventricle application or unilateral microinjection of ghrelin into the DVC and (ii) whole cell recordings from gastric-projecting neurons of the DMV. KEY RESULTS (i) IVth ventricle application or unilateral microinjection of ghrelin into the DVC-elicited contractions of the gastric corpus via excitation of a vagal cholinergic efferent pathway and (ii) ghrelin facilitates excitatory, but not inhibitory, presynaptic transmission to DMV neurons. CONCLUSIONS & INFERENCES Our data indicate that ghrelin acts centrally by activating excitatory synaptic inputs onto DMV neurons, resulting in increased cholinergic drive by way of vagal motor innervation to the stomach.
Collapse
Affiliation(s)
| | | | | | - Gregory M. Holmes
- Corresponding Author: Dr. Gregory M. Holmes, Penn State University College of Medicine, 500 University Dr., H181, Hershey, PA 17033, Tel: +1 717 531-6413, fax; +1 717 531-5184,
| |
Collapse
|
10
|
Browning KN. Modulation of gastrointestinal vagal neurocircuits by hyperglycemia. Front Neurosci 2013; 7:217. [PMID: 24324393 PMCID: PMC3840437 DOI: 10.3389/fnins.2013.00217] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/30/2013] [Indexed: 12/17/2022] Open
Abstract
Glucose sensing within autonomic neurocircuits is critical for the effective integration and regulation of a variety of physiological homeostatic functions including the co-ordination of vagally-mediated reflexes regulating gastrointestinal (GI) functions. Glucose regulates GI functions via actions at multiple sites of action, from modulating the activity of enteric neurons, endocrine cells, and glucose transporters within the intestine, to regulating the activity and responsiveness of the peripheral terminals, cell bodies and central terminals of vagal sensory neurons, to modifying both the activity and synaptic responsiveness of central brainstem neurons. Unsurprisingly, significant impairment in GI functions occurs in pathophysiological states where glucose levels are dysregulated, such as diabetes. A substantial obstacle to the development of new therapies to modify the disease, rather than treat the symptoms, are the gaps in our understanding of the mechanisms by which glucose modulates GI functions, particularly vagally-mediated responses and a more complete understanding of disease-related plasticity within these neurocircuits may open new avenues and targets for research.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine Hershey, PA, USA
| |
Collapse
|
11
|
Babic T, Browning KN. The role of vagal neurocircuits in the regulation of nausea and vomiting. Eur J Pharmacol 2013; 722:38-47. [PMID: 24184670 DOI: 10.1016/j.ejphar.2013.08.047] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 08/28/2013] [Indexed: 02/07/2023]
Abstract
Nausea and vomiting are among the most frequently occurring symptoms observed by clinicians. While advances have been made in understanding both the physiological as well as the neurophysiological pathways involved in nausea and vomiting, the final common pathway(s) for emesis have yet to be defined. Regardless of the difficulties in elucidating the precise neurocircuitry involved in nausea and vomiting, it has been accepted for over a century that the locus for these neurocircuits encompasses several structures within the medullary reticular formation of the hindbrain and that the role of vagal neurocircuits in particular are of critical importance. The afferent vagus nerve is responsible for relaying a vast amount of sensory information from thoracic and abdominal organs to the central nervous system. Neurons within the nucleus of the tractus solitarius not only receive these peripheral sensory inputs but have direct or indirect connections with several other hindbrain, midbrain and forebrain structures responsible for the co-ordination of the multiple organ systems. The efferent vagus nerve relays the integrated and co-ordinated output response to several peripheral organs responsible for emesis. The important role of both sensory and motor vagus nerves, and the available nature of peripheral vagal afferent and efferent nerve terminals, provides extensive and readily accessible targets for the development of drugs to combat nausea and vomiting.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Kirsteen N Browning
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
12
|
Travagli RA. Of apples and oranges: GABA and glutamate transmission in neurones of the nucleus tractus solitarii could not be more different. J Physiol 2012; 590:5559. [PMID: 23154854 DOI: 10.1113/jphysiol.2012.245340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- R Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University - College of Medicine, Hershey, PA, USA.
| |
Collapse
|
13
|
Holmes GM. Upper gastrointestinal dysmotility after spinal cord injury: is diminished vagal sensory processing one culprit? Front Physiol 2012; 3:277. [PMID: 22934031 PMCID: PMC3429051 DOI: 10.3389/fphys.2012.00277] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 06/27/2012] [Indexed: 12/12/2022] Open
Abstract
Despite the widely recognized prevalence of gastric, colonic, and anorectal dysfunction after spinal cord injury (SCI), significant knowledge gaps persist regarding the mechanisms leading to post-SCI gastrointestinal (GI) impairments. Briefly, the regulation of GI function is governed by a mix of parasympathetic, sympathetic, and enteric neurocircuitry. Unlike the intestines, the stomach is dominated by parasympathetic (vagal) control whereby gastric sensory information is transmitted via the afferent vagus nerve to neurons of the nucleus tractus solitarius (NTS). The NTS integrates this sensory information with signals from throughout the central nervous system. Glutamatergic and GABAergic NTS neurons project to other nuclei, including the preganglionic parasympathetic neurons of the dorsal motor nucleus of the vagus (DMV). Finally, axons from the DMV project to gastric myenteric neurons, again, through the efferent vagus nerve. SCI interrupts descending input to the lumbosacral spinal cord neurons that modulate colonic motility and evacuation reflexes. In contrast, vagal neurocircuitry remains anatomically intact after injury. This review presents evidence that unlike the post-SCI loss of supraspinal control which leads to colonic and anorectal dysfunction, gastric dysmotility occurs as an indirect or secondary pathology following SCI. Specifically, emerging data points toward diminished sensitivity of vagal afferents to GI neuroactive peptides, neurotransmitters and, possibly, macronutrients. The neurophysiological properties of rat vagal afferent neurons are highly plastic and can be altered by injury or energy balance. A reduction of vagal afferent signaling to NTS neurons may ultimately bias NTS output toward unregulated GABAergic transmission onto gastric-projecting DMV neurons. The resulting gastroinhibitory signal may be one mechanism leading to upper GI dysmotility following SCI.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Penn State University College of MedicineHershey, PA, USA
| |
Collapse
|
14
|
Browning KN, Wan S, Baptista V, Travagli RA. Vanilloid, purinergic, and CCK receptors activate glutamate release on single neurons of the nucleus tractus solitarius centralis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R394-401. [PMID: 21543639 DOI: 10.1152/ajpregu.00054.2011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Baroreceptor inputs to nucleus of the tractus solitarius medialis (mNTS) neurons can be differentiated, among other features, by their response to vanilloid or purinergic agonists, active only on C- or A-fibers, respectively. A major aim of this study was to examine whether neurons of NTS centralis (cNTS), a subnucleus dominated by esophageal inputs, exhibit a similar dichotomy. Since it has been suggested that cholecystokinin (CCK), exerts its gastrointestinal (GI)-related effects via paracrine activation of vagal afferent C-fibers, we tested whether CCK-sensitive fibers impinging upon cNTS neurons are responsive to vanilloid but not purinergic agonists. Using whole cell patch-clamp recordings from cNTS, we recorded miniature excitatory postsynaptic currents (mEPSCs) to test the effects of the vanilloid agonist capsaicin, the purinergic agonist α,β-methylene-ATP (α,β-Met-ATP), and/or CCK-octapeptide (CCK-8s). α,β-Met-ATP, capsaicin; and CCK-8s increased EPSC frequency in 37, 71, and 46% of cNTS neurons, respectively. Approximately 30% of cNTS neurons were responsive to both CCK-8s and α,β-Met-ATP, to CCK-8s and capsaicin, or to α,β-Met-ATP and capsaicin, while 32% of neurons were responsive to all three agonists. All neurons responding to either α,β-Met-ATP or CCK-8s were also responsive to capsaicin. Perivagal capsaicin, which is supposed to induce a selective degeneration of C-fibers, decreased the number of cNTS neurons responding to capsaicin or CCK-8s but not those responding to α,β-Met-ATP. In summary, GI inputs to cNTS neurons cannot be distinguished on the basis of their selective responses to α,β-Met-ATP or capsaicin. Our data also indicate that CCK-8s increases glutamate release from purinergic and vanilloid responsive fibers impinging on cNTS neurons.
Collapse
Affiliation(s)
- Kirsteen N Browning
- Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania 17033-0850, USA
| | | | | | | |
Collapse
|
15
|
Tong M, Qualls-Creekmore E, Browning KN, Travagli RA, Holmes GM. Experimental spinal cord injury in rats diminishes vagally-mediated gastric responses to cholecystokinin-8s. Neurogastroenterol Motil 2011; 23:e69-79. [PMID: 20950355 PMCID: PMC3021002 DOI: 10.1111/j.1365-2982.2010.01616.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND We have shown recently that our model of experimental high-thoracic spinal cord injury (T3-SCI) mirrors the gastrointestinal clinical presentation of neurotrauma patients, whereby T3-SCI animals show diminished gastric emptying and dysmotility. In this study we used cholecystokinin as a model peptide to test the hypothesis that the T3-SCI induced gastroparesis is due, in part, to an impaired vagally-mediated response to gastrointestinal peptides. METHODS We measured the responses to sulfated cholecystokinin (CCK-8s) in control and T3-SCI (3 or 21 days after injury) rats utilizing: (i) c-fos expression in the nucleus tractus solitarius (NTS) following peripherally administered CCK-8s; (ii) in vivo gastric tone and motility following unilateral microinjection of CCK-8s into the dorsal vagal complex (DVC); and (iii) whole cell recordings of glutamatergic synaptic inputs to NTS neurons. KEY RESULTS Our results show that: (i) medullary c-fos expression in response to peripheral CCK-8s was significantly lower in T3-SCI rats 3 days after the injury, but recovered to control values at 3 weeks post-SCI, (ii) Unilateral microinjection of CCK-8s in the DVC induced a profound gastric relaxation in control animals, but did not induce any response in T3-SCI rats at both 3 and 21 days after SCI, (iii) Perfusion with CCK-8s increased glutamatergic currents in 55% of NTS neurons from control rats, but failed to induce any response in NTS neurons from T3-SCI rats. CONCLUSIONS & INFERENCES Our data indicate alterations of vagal responses to CCK-8s in T3-SCI rats that may reflect a generalized impairment of gastric vagal neurocircuitry, leading to a reduction of gastric functions after SCI.
Collapse
Affiliation(s)
| | | | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Penn State University College of Medicine, Hershey, PA 17033
| | - Gregory M. Holmes
- Corresponding Author: Dr. Gregory M. Holmes, Pennington Biomedical Research Center, 6400 Perkins Rd., Baton Rouge, LA 70808, Tel: +1 225 763 2520, fax; +1 225 763 2525,
| |
Collapse
|
16
|
Babic T, Browning KN, Travagli RA. Differential organization of excitatory and inhibitory synapses within the rat dorsal vagal complex. Am J Physiol Gastrointest Liver Physiol 2011; 300:G21-32. [PMID: 20947702 PMCID: PMC3025513 DOI: 10.1152/ajpgi.00363.2010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The dorsal motor nucleus of the vagus (DMV) is pivotal in the regulation of upper gastrointestinal functions, including motility and both gastric and pancreatic secretion. DMV neurons receive robust GABA- and glutamatergic inputs. Microinjection of the GABA(A) antagonist bicuculline (BIC) into the DMV increases pancreatic secretion and gastric motility, whereas the glutamatergic antagonist kynurenic acid (KYN) is ineffective unless preceded by microinjection of BIC. We used whole cell patch-clamp recordings with the aim of unveiling the brain stem neurocircuitry that uses tonic GABA- and glutamatergic synapses to control the activity of DMV neurons in a brain stem slice preparation. Perfusion with BIC altered the firing frequency of 71% of DMV neurons, increasing firing frequency in 80% of the responsive neurons and decreasing firing frequency in 20%. Addition of KYN to the perfusate either decreased (52%) or increased (25%) the firing frequency of BIC-sensitive neurons. When KYN was applied first, the firing rate was decreased in 43% and increased in 21% of the neurons; further perfusion with BIC had no additional effect in the majority of neurons. Our results indicate that there are several permutations in the arrangements of GABA- and glutamatergic inputs controlling the activity of DMV neurons. Our data support the concept of brain stem neuronal circuitry that may be wired in a finely tuned organ- or function-specific manner that permits precise and discrete modulation of the vagal motor output to the gastrointestinal tract.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - Kirsteen N. Browning
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| | - R. Alberto Travagli
- Department of Neural and Behavioral Sciences, Pennsylvania State College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
17
|
Wan S, Browning KN. Glucose increases synaptic transmission from vagal afferent central nerve terminals via modulation of 5-HT3 receptors. Am J Physiol Gastrointest Liver Physiol 2008; 295:G1050-7. [PMID: 18801915 PMCID: PMC6842884 DOI: 10.1152/ajpgi.90288.2008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Acute hyperglycemia has profound effects on vagally mediated gastrointestinal functions. We have reported recently that the release of glutamate from the central terminals of vagal afferent neurons is correlated directly with the extracellular glucose concentration. The present study was designed to test the hypothesis that 5-HT(3) receptors present on vagal afferent nerve terminals are involved in this glucose-dependent modulation of glutamatergic synaptic transmission. Whole-cell patch-clamp recordings were made from neurons of the nucleus tractus solitarius (NTS) in thin rat brainstem slices. Spontaneous and evoked glutamate release was decreased in a concentration-dependent manner by the 5-HT(3) receptor selective antagonist, ondansetron. Alterations in the extracellular glucose concentration induced parallel shifts in the ondansetron-mediated inhibition of glutamate release. The changes in excitatory synaptic transmission induced by extracellular glucose concentration were mimicked by the serotonin uptake inhibitor, fenfluramine. These data suggest that glucose alters excitatory synaptic transmission within the rat brainstem via actions on tonically active 5-HT(3) receptors, and the number of 5-HT(3) receptors on vagal afferent nerve terminals is positively correlated with the extracellular glucose concentration. These data indicate that the 5-HT(3) receptors present on synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose acts to modulate vagovagal reflexes.
Collapse
|
18
|
Wan S, Browning KN, Coleman FH, Sutton G, Zheng H, Butler A, Berthoud HR, Travagli RA. Presynaptic melanocortin-4 receptors on vagal afferent fibers modulate the excitability of rat nucleus tractus solitarius neurons. J Neurosci 2008; 28:4957-66. [PMID: 18463249 PMCID: PMC2681297 DOI: 10.1523/jneurosci.5398-07.2008] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Revised: 03/10/2008] [Accepted: 03/31/2008] [Indexed: 11/21/2022] Open
Abstract
The nucleus tractus solitarius (NTS) integrates visceral sensory signals with information from the forebrain to control homeostatic functions, including food intake. Melanocortin 3/4 receptor (MC3/4R) ligands administered directly to the caudal brainstem powerfully modulate meal size but not frequency, suggesting the enhancement of visceral satiety signals. Using whole-cell recordings from rat brainstem slices, we examined the effects of melanocortin ligands, alpha-melanocyte-stimulating hormone (alphaMSH) and melanotan II (MTII), on EPSC in NTS neurons. Thirty-two percent of NTS neurons responded to perfusion with MTII or alphaMSH with either an increase (24%) or a decrease (8%) in the frequency, but not amplitude, of spontaneous EPSCs; the effects of MTII were abolished by pretreatment with SHU9119. After surgical vagal deafferentation, only four of 34 (9%) NTS neurons responded to MTII with an increase in EPSC frequency. When EPSCs were evoked by electrical stimulation of the tractus solitarius in Krebs' solution with 2.4 mm Ca(2+)(e), alphaMSH and MTII increased the amplitude in six of the 28 neurons tested, decreased amplitude in 14 with no effect in the remaining eight neurons. In four of six neurons unresponsive to MTII, decreasing Ca(2+)(e) levels to 1.5 mM uncovered an excitatory effect of MTII on EPSC amplitude. Reverse transcription-PCR analysis revealed the presence of MC4R, but not MC3R, in nodose ganglia. These results show that MC4R signaling leads mainly to presynaptic modulation of glutamatergic synaptic transmission and suggest that melanocortinergic-induced decrease of food intake may occur via enhancement of vagal afferent satiation signals from the gastrointestinal tract.
Collapse
Affiliation(s)
- Shuxia Wan
- Key Laboratory of Allergy and Immune-Related Diseases, Department of Physiology, School of Basic Medical Science, Wuhan University, Wuhan 430071, Hubei, China
| | - Kirsteen N. Browning
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - F. Holly Coleman
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Gregory Sutton
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Hiyuan Zheng
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Andrew Butler
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - Hans-Rudolf Berthoud
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| | - R. Alberto Travagli
- Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808, and
| |
Collapse
|
19
|
Accorsi-Mendonça D, Almado CE, Dagostin AL, Machado BH, Leão RM. Inhibition of spontaneous neurotransmission in the nucleus of solitary tract of the rat by the cannabinoid agonist WIN 55212-2 is not via CB1 or CB2 receptors. Brain Res 2008; 1200:1-9. [DOI: 10.1016/j.brainres.2008.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 01/02/2008] [Accepted: 01/04/2008] [Indexed: 01/20/2023]
|
20
|
Wan S, Browning KN. D-glucose modulates synaptic transmission from the central terminals of vagal afferent fibers. Am J Physiol Gastrointest Liver Physiol 2008; 294:G757-63. [PMID: 18202107 DOI: 10.1152/ajpgi.00576.2007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Experimental evidence suggests that glucose modulates gastric functions via vagally mediated effects. It is unclear whether glucose affects only peripheral vagal nerve activity or whether glucose also modulates vagal circuitry at the level of the brain stem. This study used whole cell patch-clamp recordings from neurons of the nucleus of the tractus solitarius (NTS) to assess whether acute variations in glucose modulates vagal brain stem neurocircuitry. Increasing D-glucose concentration induced a postsynaptic response in 40% of neurons; neither the response type (inward vs. outward current) nor response magnitude was altered in the presence of tetrodotoxin suggesting direct effects on the NTS neuronal membrane. In contrast, reducing d-glucose concentration induced a postsynaptic response (inward or outward current) in 54% of NTS neurons; tetrodotoxin abolished these responses, suggesting indirect sites of action. The frequency, but not amplitude, of spontaneous and miniature excitatory postsynaptic currents (EPSCs) was correlated with d-glucose concentration in 79% of neurons tested (n = 48). Prior surgical afferent rhizotomy abolished the ability of D-glucose to modulate spontaneous EPSC frequency, suggesting presynaptic actions at vagal afferent nerve terminals to modulate glutamatergic synaptic transmission. In experiments in which EPSCs were evoked via electrical stimulation of the tractus solitarius, EPSC amplitude correlated with D-glucose concentration. These effects were not mimicked by L-glucose, suggesting the involvement of glucose metabolism, not uptake, in the nerve terminal. These data suggest that the synaptic connections between vagal afferent nerve terminals and NTS neurons are a strong candidate for consideration as one of the sites where glucose-evoked changes in vagovagal reflexes occurs.
Collapse
Affiliation(s)
- Shuxia Wan
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA 70808, USA
| | | |
Collapse
|
21
|
Visceral afferents directly activate catecholamine neurons in the solitary tract nucleus. J Neurosci 2008; 27:13292-302. [PMID: 18045923 DOI: 10.1523/jneurosci.3502-07.2007] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Brainstem A2/C2 neurons are catecholamine (CA) neurons within the solitary tract nucleus (NTS) that influence many homeostatic functions, including cardiovascular reflexes, food intake, and stress. Because NTS is a major interface between sensory visceral afferents and the CNS, NTS CA neurons are ideally suited to coordinate complex responses by their projections to multiple brain regions. To test how NTS CA neurons process visceral afferent information carried by solitary tract (ST) afferents, we identified CA neurons using transgenic mice expressing TH-EGFP (enhanced green fluorescent protein under the control of the tyrosine hydroxylase promoter) and recorded synaptic responses to ST activation in horizontal slices. ST shocks evoked large-amplitude, short-latency, glutamatergic EPSCs (ST-EPSCs) in 90% of NTS CA neurons. Within neurons, ST-EPSCs had constant latency, rarely failed, and depressed substantially at high ST frequencies, indicating that NTS CA neurons receive direct monosynaptic connections from afferent terminals. NTS CA neurons received direct ST inputs from only one or two afferent fibers, with one-half also receiving smaller amplitude indirect inputs. Up to 90% of ST shocks evoked action potentials in NTS CA neurons. However, transmission of sensory afferent information through NTS CA neurons critically depended on the expression of an A-type potassium current (I(KA)), which when active attenuated ST-activated action potentials to a 37% success rate. The satiety peptide, cholecystokinin, presynaptically facilitated glutamate transmission in one-half of NTS CA neurons. Thus, NTS CA neurons are directly driven by visceral afferents with output being modulated by presynaptic peptide receptors and postsynaptic potassium channels.
Collapse
|
22
|
Browning KN, Travagli RA. Functional organization of presynaptic metabotropic glutamate receptors in vagal brainstem circuits. J Neurosci 2007; 27:8979-88. [PMID: 17715335 PMCID: PMC3055657 DOI: 10.1523/jneurosci.1105-07.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We demonstrated previously that, by suppressing cAMP levels, metabotropic glutamate receptors (mGluRs) play a crucial role in opioid receptor trafficking on GABAergic nerve terminals within gastric brainstem vagal circuits. Using whole-cell patch-clamp recordings, we aimed to correlate the influence of sensory vagal afferent fibers with the functional organization of mGluRs on the synaptic connections between the nucleus tractus solitarius and dorsal motor nucleus of the vagus. Group II mGluRs were identified on both excitatory and inhibitory synapses; the receptor-selective agonist APDC [(2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate] induced a concentration-dependent decrease in glutamatergic and GABAergic synaptic transmission (EC50, approximately 20 microM for both). The group II mGluRs were activated tonically on GABAergic, but not glutamatergic synapses, as the receptor-selective antagonist (2S)-alpha-ethylglutamic acid (EGLU; 200 microM) modulated GABA currents only. After selective vagal deafferentation, EGLU was without effect, suggesting that vagal afferent (sensory) fibers are the source of this tonic input. Conversely, group III mGluRs, although not activated tonically, were present on excitatory, but not inhibitory, synapses; in fact, the receptor-selective agonist L-AP-4 [L-(+)-2-amino-4-phosphonbutyric acid] induced a concentration-dependent decrease in glutamatergic synaptic transmission (EC50, approximately 2 microM) but had no effect on GABAergic synaptic transmission. Together with our previous results on receptor trafficking, these data suggest that visceral information plays a fundamental role in shaping the response of homeostatic brainstem circuits that receive inputs from higher integrative neuronal centers.
Collapse
Affiliation(s)
- Kirsteen N. Browning
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| | - R. Alberto Travagli
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, Louisiana 70808
| |
Collapse
|
23
|
Baptista V, Browning KN, Travagli RA. Effects of cholecystokinin-8s in the nucleus tractus solitarius of vagally deafferented rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1092-100. [PMID: 17122331 PMCID: PMC3062489 DOI: 10.1152/ajpregu.00517.2006] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have shown recently that cholecystokinin octapeptide (CCK-8s) increases glutamate release from nerve terminals onto neurons of the nucleus tractus solitarius pars centralis (cNTS). The effects of CCK on gastrointestinal-related functions have, however, been attributed almost exclusively to its paracrine action on vagal afferent fibers. Because it has been reported that systemic or perivagal capsaicin pretreatment abolishes the effects of CCK, the aim of the present work was to investigate the response of cNTS neurons to CCK-8s in vagally deafferented rats. In surgically deafferented rats, intraperitoneal administration of 1 or 3 mug/kg CCK-8s increased c-Fos expression in cNTS neurons (139 and 251% of control, respectively), suggesting that CCK-8s' effects are partially independent of vagal afferent fibers. Using whole cell patch-clamp techniques in thin brain stem slices, we observed that CCK-8s increased the frequency of spontaneous and miniature excitatory postsynaptic currents in 43% of the cNTS neurons via a presynaptic mechanism. In slices from deafferented rats, the percentage of cNTS neurons receiving glutamatergic inputs responding to CCK-8s decreased by approximately 50%, further suggesting that central terminals of vagal afferent fibers are not the sole site for the action of CCK-8s in the brain stem. Taken together, our data suggest that the sites of action of CCK-8s include the brain stem, and in cNTS, the actions of CCK-8s are not restricted to vagal central terminals but that nonvagal synapses are also involved.
Collapse
Affiliation(s)
- V Baptista
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
24
|
Abstract
Brainstem parasympathetic circuits that modulate digestive functions of the stomach are comprised of afferent vagal fibers, neurons of the nucleus tractus solitarius (NTS), and the efferent fibers originating in the dorsal motor nucleus of the vagus (DMV). A large body of evidence has shown that neuronal communications between the NTS and the DMV are plastic and are regulated by the presence of a variety of neurotransmitters and circulating hormones as well as the presence, or absence, of afferent input to the NTS. These data suggest that descending central nervous system inputs as well as hormonal and afferent feedback resulting from the digestive process can powerfully regulate vago-vagal reflex sensitivity. This paper first reviews the essential "static" organization and function of vago-vagal gastric control neurocircuitry. We then present data on the opioidergic modulation of NTS connections with the DMV as an example of the "gating" of these reflexes, i.e., how neurotransmitters, hormones, and vagal afferent traffic can make an otherwise static autonomic reflex highly plastic.
Collapse
|
25
|
Okada T, Yoshioka M, Inoue K, Kawai Y. Local axonal arborization patterns of distinct neuronal types in the caudal nucleus of the tractus solitarius. Brain Res 2006; 1083:134-44. [PMID: 16545781 DOI: 10.1016/j.brainres.2006.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/27/2006] [Accepted: 02/01/2006] [Indexed: 11/20/2022]
Abstract
Neurons in the caudal nucleus of the tractus solitarius (cNTS) are quite heterogeneous in cell size (50 to 450 microm(2) in somal area) and other morphologic characteristics. For a more objective classification of cNTS neurons, their morphologic features were analyzed quantitatively based on reconstructed biocytin-filled cells after whole-cell patch-clamp recordings. According to the patterns of axonal branching behaviors, cNTS cells could be classified into two groups: smaller cells (94.1 microm(2) in mean somal area, range 62-120 microm(2), n = 22) and larger cells (245 microm(2) in mean somal area, range 142-411 microm(2), n = 23). Extensive axonal arborization with numerous possible synaptic boutons was specifically associated with smaller neurons, while larger cells possessed no or few axon collaterals, suggesting their distinct roles as local circuit neurons (or interneurons) and projection neurons, respectively. With regard to somatodendritic characteristics, the following correlations with cell size were found: smaller cells had larger form factors than larger cells (P < 0.05). Larger neurons had more extensive dendritic arborization, expressed by total dendritic length (P < 0.01) and number of dendritic branching points (P < 0.01), than smaller cells. It was suggested that small cNTS neurons contribute specifically to an integration of input information generated in the local circuits, while large neurons convey the integrated information to other autonomic brain regions.
Collapse
Affiliation(s)
- Tomoaki Okada
- Department of Anatomy I, Jikei University School of Medicine, 3-25-8 Nishi-Shimbashi Minato-ku, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
26
|
Browning KN, Travagli RA. Short-term receptor trafficking in the dorsal vagal complex: an overview. Auton Neurosci 2006; 126-127:2-8. [PMID: 16580267 PMCID: PMC3062487 DOI: 10.1016/j.autneu.2006.01.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2005] [Accepted: 01/30/2006] [Indexed: 02/06/2023]
Abstract
Sensory information from the gastrointestinal (GI) tract is transmitted centrally via primary afferents that terminate within the nucleus of the tractus solitarius (NTS) and utilize glutamate as their major neurotransmitter. Neurons of the NTS integrate this sensory information and transmit it to parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus (DMV), as well as to other areas, using principally glutamate, GABA and norepinephrine as neurotransmitters. Although susceptible to modulation by a vast array of neurotransmitters, the glutamatergic NTS to DMV synapse seems to play a minor role in the tonic modulation of gastric vagal reflexes. GABAergic neurotransmission between the NTS and DMV, however, is of critical importance as its in vivo blockade induces dramatic effects on gastric tone, motility and secretion. In in vitro experiments, however, this synapse appears initially resistant to modulation by most exogenously applied neuromodulators. Using opioid peptides as a model, this review will discuss the remarkable plasticity of the NTS-DMV GABAergic synapse. Modulation of this synapse appears dependent upon the levels of cAMP within the brainstem circuit. In particular, this review will outline how vagal afferent inputs appear to dampen the cAMP-PKA system via tonic activation of metabotropic glutamate receptors. Removal of vagal sensory input, coincident activation of the cAMP-PKA system, or inhibition of group II metabotropic glutamate receptors, allows receptor trafficking to occur selectively at the level of the NTS-DMV GABAergic synapse. Thus, we propose that the state of activation of vagal sensory inputs determines the gastric motor response via selective engagement of GABAergic synapses. This mini-review is based upon a presentation given at the International Society for Autonomic Neuroscience meeting in Marseille, France in July 2005.
Collapse
|
27
|
Baptista V, Zheng ZL, Coleman FH, Rogers RC, Travagli RA. Cholecystokinin octapeptide increases spontaneous glutamatergic synaptic transmission to neurons of the nucleus tractus solitarius centralis. J Neurophysiol 2005; 94:2763-71. [PMID: 16093341 PMCID: PMC3062488 DOI: 10.1152/jn.00351.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cholecystokinin (CCK) is released from enteroendocrine cells after ingestion of nutrients and induces multiple effects along the gastrointestinal tract, including gastric relaxation and short-term satiety. We used whole cell patch-clamp and immunohistochemical techniques in rat brain stem slices to characterize the effects of CCK. In 45% of the neurons of nucleus tractus solitarius subnucleus centralis (cNTS), perfusion with the sulfated form of CCK (CCK-8s) increased the frequency of spontaneous excitatory currents (sEPSCs) in a concentration-dependent manner (1-300 nM). The threshold for the CCK-8s excitatory effect was 1 nM, the EC(50) was 20 nM, and E(max) was 100 nM. The excitatory effects of CCK-8s were still present when the slices were preincubated with tetrodotoxin or bicuculline or when the recordings were conducted with Cs(+) electrodes. Pretreatment with the CCK-A receptor antagonist, lorglumide (1 microM), antagonized the effects of CCK-8s, whereas perfusion with the CCK-B preferring agonist CCK-8 nonsulfated (CCK-ns, 1 microM) did not affect the frequency of sEPSCs. Similarly, pretreatment with the CCK-B receptor antagonist, triglumide (1 microM), did not prevent the actions of CCK-8s. Although the majority (i.e., 76%) of CCK-8s unresponsive cNTS neurons had a bipolar somata shape and were TH-IR negative, no differences were found in either the morphological or the neurochemical phenotype of cNTS neurons responsive to CCK-8s. Our results suggest that the excitatory effects of CCK-8s on terminals impinging on a subpopulation of cNTS neurons are mediated by CCK-A receptors; these responsive neurons, however, do not have morphological or neurochemical characteristics that automatically distinguish them from nonresponsive neurons.
Collapse
Affiliation(s)
- V Baptista
- Department of Neuroscience, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, 70808, USA
| | | | | | | | | |
Collapse
|